EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深海天然气水合物机械−热联合开采方法研究综述

李鹏 张旭辉 刘乐乐 张岩 鲁晓兵 李清平 何玉发

李鹏, 张旭辉, 刘乐乐, 张岩, 鲁晓兵, 李清平, 何玉发. 深海天然气水合物机械−热联合开采方法研究综述. 力学学报, 2022, 54(8): 1-18 doi: 10.6052/0459-1879-22-301
引用本文: 李鹏, 张旭辉, 刘乐乐, 张岩, 鲁晓兵, 李清平, 何玉发. 深海天然气水合物机械−热联合开采方法研究综述. 力学学报, 2022, 54(8): 1-18 doi: 10.6052/0459-1879-22-301
Li Peng, Zhang Xuhui, Liu Lele, Zhang Yan, Lu Xiaobing, Li Qingping, He Yufa. Review on the mechanical-thermal combined exploitation methods of deep sea natural gas hydrate. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 1-18 doi: 10.6052/0459-1879-22-301
Citation: Li Peng, Zhang Xuhui, Liu Lele, Zhang Yan, Lu Xiaobing, Li Qingping, He Yufa. Review on the mechanical-thermal combined exploitation methods of deep sea natural gas hydrate. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 1-18 doi: 10.6052/0459-1879-22-301

深海天然气水合物机械−热联合开采方法研究综述

doi: 10.6052/0459-1879-22-301
基金项目: 国家自然科学基金( 11872365; 12072347)和南方海洋科学与工程广东省实验室(湛江)(ZJW-2019-03)资助项目
详细信息
    作者简介:

    张旭辉, 副研究员, 主要研究方向: 天然气水合物, 岩土力学和渗流力学. E-mail: zhangxuhui@imech.ac.cn

  • 中图分类号: O359

REVIEW ON THE MECHANICAL-THERMAL COMBINED EXPLOITATION METHODS OF DEEP SEA NATURAL GAS HYDRATE

  • 摘要: 天然气水合物由于储量大、污染低等优点, 已成为我国非常重要的战略能源, 世界各国也加快了天然气水合物的勘探和开发工作. 经济高效的开采方法以及相关的灾害控制和环境保护是对天然气水合物进行商业化开采必须要解决好的两个关键问题. 目前, 注热法和降压法的联合使用被认为是最为有效的天然气水合物开采方法. 在降压法和注热法中, 天然气水合物开采涉及传热、相变、渗流和变形等物理过程和效应, 而传热最慢且相变会消耗大量的热量, 无法直接采用常规的单纯依靠渗流原理的油气开采方案来开采天然气水合物. 我国南海的天然气水合物主要赋存于粉砂质黏土和粉细砂等类型的沉积物中, 胶结性差且埋深较浅. 常规的开采方法还不适合我国南海的水合物开采, 需要考虑新型的开采方式, 这其中提高沉积层中的热传导效率是天然气水合物开采的关键. 郑哲敏提出了机械-热联合开采的新概念方法, 利用无穷无尽表层海水的热量, 基于对流传热的原理和管道输送技术, 并兼顾类似采煤挖掘可能导致的深海浅软地层安全问题. 天然气水合物机械-热联合开采法是一种新的概念模式, 具有开采可控、高效且能有效降低地层安全性风险的优点. 本文针对该新方法的能量、装备、经济可行性进行综合评估, 阐述了针对核心问题管道含相变气液固多相流动、地层安全方面的研究进展, 展望了未来推广应用的空间.

     

  • 图  1  水合物地层金字塔形分布(1 Tcf=2.8 × 1010STm3)[9]

    Figure  1.  Pyramid distribution of gas hydrate in sediments[9]

    图  2  机械−热开采法流程图[17]

    Figure  2.  Sketch of Mechanical-thermal recovery of gas hydrate[17]

    图  3  机械-热开采项目20年内净现金流量图

    Figure  3.  Net cash flow during 20 years of hydrate exploitation by mechanical excavation method

    图  4  含天然气水合物沉积物球形颗粒分解速率测量示意图

    Figure  4.  Experimental apparatus for group gas hydrate-bearing sediment particles dissociation

    图  5  (a)(b)实验室中合成的含水合物沉积物球形颗粒; (c)含水合物颗粒在水中下落过程中的分解现象[36]

    Figure  5.  (a)(b) The gas hydrate-bearing sediment particles synthesized under laboratory conditions; (c) Visualization of gas bubbles emerging from the surface of the particle[36]

    图  6  含水合物颗粒在(a)冷水和(b)热水中的分解现象[38]

    Figure  6.  Dissociation of hydrate-bearing quartz particles in (a) cold water and (b) warm water. The red arrows indicate the trajectories of bubbles at the back ends of the particles[38]

    图  7  欧拉三相流模型下气液固多相流与水合物分解的耦合方式[49]

    Figure  7.  The coupling method of the multiphase flow transport containing gas hydrate dissociation in vertical pipe[49]

    图  8  含水合物分解的气液固三相流动中: (a)固相体积分数的瞬时分布云图; (b)气相体积分数的瞬时分布云图[49]

    Figure  8.  Instantaneous distribution of (a) the solid volume fraction and (b) the gas volume fraction for gas-liquid-solid three-phase flow with gas hydrate dissociation[49]

    图  9  含水合物分解的多相流输运系统中的完全分解平衡高度[50]

    Figure  9.  The dissociation equilibrium height in the multiphase flow transport system containing hydrate dissociation[50]

    图  10  分解200 m下地层的影响区和变形

    Figure  10.  The influence zone and deformation under the dissociation length of 200 m

    图  11  各分解范围下表层沉降

    Figure  11.  The settlement of the surface of the seafloor under different dissociation length

    图  12  不同分解范围下的影响区曲线

    Figure  12.  The influence length at the surface of the seafloor under different dissociation length

    图  13  水平位移分布

    Figure  13.  The horizontal displacement

    图  14  基于土层分层的滑塌模型

    Figure  14.  The slump model based on soil layer

    表  1  不同分解长度下的安全系数

    Table  1.   Safety factor at different dissociation lengths

    Dissociation length/Overburden thicknessSafety factor of initial sliding surfaceSafety factor of critical sliding surface
    101.4981.046
    111.4981.044
    121.4980.931
    下载: 导出CSV

    表  2  不同地震等级下的安全系数

    Table  2.   Safety factors at different earthquake levels

    Earthquake gradeSafety factor of initial sliding surfaceSafety factor of critical sliding surface
    none1.4981.046
    71.2831.002
    81.1420.896
    下载: 导出CSV
  • [1] Sloan ED. Clathrate Hydrates of Natural Gas. 2 nd ed. New York: Marcel Dekker, 1998
    [2] Koh CA. Towards a fundamental understanding of natural gas hydrates. Chemical Society Reviews, 2002, 31: 157-167 doi: 10.1039/b008672j
    [3] 魏纳, 白睿玲, 周守为, 等. 碳达峰目标下中国深海天然气水合物开发战略. 天然气工业, 2022, 42(2): 156-165 doi: 10.3787/j.issn.1000-0976.2022.02.017

    Wei Na, Bai Ruiling, Zhou Shouwei, et al. China’s deepwater gas hydrate development strategies under the goal of carbon peak. Natural Gas Industry, 2022, 42(2): 156-165 (in Chinese) doi: 10.3787/j.issn.1000-0976.2022.02.017
    [4] 鲁晓兵, 张旭辉, 王平康, 等. 天然气水合物成藏动力学研究进展. 中国科学: 物理学力学天文学, 2019, 49: 034605 doi: 10.1360/SSPMA2018-00362

    Lu Xiaobing, Zhang Xuhui, Wang Pingkang, et al. Advances of formation dynamics of natural gas hydrate. Sci Sin-Phys Mech Astron, 2019, 49: 034605 (in Chinese) doi: 10.1360/SSPMA2018-00362
    [5] 祝有海, 庞守吉, 王平康, 等. 中国天然气水合物资源潜力及试开采进展. 沉积与特提斯地质, 2021, 41(4): 524-535 doi: 10.19826/j.cnki.1009-3850.2021.12001

    Zhu Youhai, Pang Shouji, Wang Pingkang, et al. A review of the resource potentials and test productions of natural gas hydrates in China. Sedimentary Geology and Tethyan Geology, 2021, 41(4): 524-535 (in Chinese) doi: 10.19826/j.cnki.1009-3850.2021.12001
    [6] 龚建明, 王红霞, 陈建文, 等. 天然气水合物在沉积地层中的分布模式. 海洋地质动态, 2004, 20(6): 6-8 doi: 10.3969/j.issn.1009-2722.2004.06.003

    Gong Jianming, Wang Hongxia, Chen Jianwen, et al. Geophysical recognition technique for gas hydrate. Marine Geology Letters, 2004, 20(6): 6-8 (in Chinese) doi: 10.3969/j.issn.1009-2722.2004.06.003
    [7] 金春爽, 汪集旸, 张光学. 南海天然气水合物稳定带的影响因素. 矿床地质, 2005, 24(4): 388-397 doi: 10.3969/j.issn.0258-7106.2005.04.004

    Jin Chunshuang, Wang Jiyang, Zhang Guangxue. Factors affecting natural gas hydrate stability zone in the South China Sea. Mineral Deposits, 2005, 24(4): 388-397 (in Chinese) doi: 10.3969/j.issn.0258-7106.2005.04.004
    [8] Ye YG, Liu CL. Natural gas hydrates: Experimental techniques and their application. Verlag Berlin Heidelberg:Springer, 2013: 10-13
    [9] Boswell R, Collett TS. The gas hydrates resource pyramid. Fire in the ice, Methane hydrate newsletter, US Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory, 2006, Fall Issue, 5-7
    [10] 自然资源部. 我国海域天然气水合物预测资源量约800亿吨油当量. 中国矿产资源报告, 2018

    Ministry of Natural Resources, PRC. The predicted resource of natural gas hydrate in China's sea area is about 80 billion tons of oil equivalent. China Mineral Resources, 2018 (in Chinese)
    [11] 鲁晓兵, 张旭辉, 王淑云. 天然气水合物开采相关的安全性研究进展. 中国科学: 物理学力学天文学, 2019, 49: 034602 doi: 10.1360/SSPMA2018-00213

    Lu Xiaobing, Zhang Xuhui, Wang Shuyun. Advances on the safety related with natural gas hydrate exploitation. Sci Sin-Phys Mech Astron, 2019, 49: 034602 (in Chinese) doi: 10.1360/SSPMA2018-00213
    [12] 戴兰宏. 工程科学前沿的拓荒者—郑哲敏. 力学进展, 2013, 43(3): 265-294 doi: 10.6052/1000-0992-13-033

    Dai Lanhong. A pioneer in the frontier of engineering science—Zhe-Min Zheng. Advances in Mechanics, 2013, 43(3): 265-294 (in Chinese) doi: 10.6052/1000-0992-13-033
    [13] 郑哲敏. 关于天然气水合物开发工程科学研究的一点认识. 中国科学: 物理学力学天文学, 2019, 49: 034601

    Zheng Zhemin. Special issue on the exploitation and safety control of natural gas hydrate. Science China Physics, Mechanics & Astronomy, 2019, 49: 034601 (in Chinese)
    [14] 鲁晓兵, 张旭辉. 机械−热开采水合物可行性论证. 中国科学院力学研究所科技报告, 2012

    Lu Xiaobing, Zhang Xuhui. Feasibility study on mechanical-thermal hydrate recovery method. Scientific Report in Institute of Mechanics, Chinese Academy of Sciences, 2012 (in Chinese)
    [15] 张旭辉, 鲁晓兵, 刘乐乐. 天然气水合物开采方法研究进展. 地球物理学进展, 2014, 29(2): 858-869 doi: 10.6038/pg20140252

    Zhang Xuhui, Lu Xiaobing, Liu Lele. Advances in natural gas hydrate recovery methods. Progress in Geophysics, 2014, 29(2): 858-869 (in Chinese) doi: 10.6038/pg20140252
    [16] 张旭辉, 鲁晓兵. 一种新的海洋浅层水合物开采法—机械-热联合法. 力学学报, 2016, 48(5): 1238-1246 doi: 10.6052/0459-1879-15-112

    Zhang Xuhui, Lu Xiaobing. A new exploitation method for gas hydrate in shallow stratum: mechanical-thermal method. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1238-1246 (in Chinese) doi: 10.6052/0459-1879-15-112
    [17] 张旭辉, 鲁晓兵, 李鹏. 天然气水合物开采方法的研究综述. 中国科学: 物理学力学天文学, 2019, 49: 034604

    Zhang Xuhui, Lu Xiaobing, Li Peng. A comprehensive review in natural gas hydrate recovery methods. Science China Physics, Mechanics & Astronomy, 2019, 49: 034604, (in Chinese)
    [18] 赵金洲, 李海涛, 张烈辉, 等. 海洋天然气水合物固态流化开采大型物理模拟实验. 天然气工业, 2018, 38(10): 76-83 doi: 10.3787/j.issn.1000-0976.2018.10.011

    Zhao Jinzhou, Li Haitao, Zhang Liehui, et al. The first global physical simulation experimental systems for the exploitation of marine natural gas hydrates through solid fluidization. Natural Gas Industry, 2018, 38(10): 76-83 (in Chinese) doi: 10.3787/j.issn.1000-0976.2018.10.011
    [19] 周守为, 陈伟, 李清平, 等. 深水浅层非成岩天然气水合物固态流化试采技术研究及进展. 中国海上油气, 2017, 29(4): 1-8 doi: 10.11935/j.issn.1673-1506.2017.04.001

    Zhou Shouwei, Chen Wei, Li Qqingping, et al. Research on the solid fluidization well testing and production for shallow non-daigenetic natural gas hydrate in deep water area. China Offshore Oil and Gas, 2017, 29(4): 1-8 (in Chinese) doi: 10.11935/j.issn.1673-1506.2017.04.001
    [20] 张晟, 梁晶, 张斌. 油气田经济产量研究综述. 改革与战略, 2010, 26(1): 182-186 doi: 10.3969/j.issn.1002-736X.2010.01.052

    Zhang Sheng, Liang Jing, Zhang Bin. Reviews on economic production of gas and oil fields. Reformation & Strategy, 2010, 26(1): 182-186 (in Chinese) doi: 10.3969/j.issn.1002-736X.2010.01.052
    [21] 贾承造. 美国SEC油气储量评估方法. 北京: 石油工业出版社, 2004

    Jia Chengzao. SEC estimation approach for oil & gas reserves. Beijing: Petroleum Industry Press, 2004 (in Chinese)
    [22] 刘亚平. 天然气水合物藏降压开发方案基础研究. [博士论文]. 青岛: 中国石油大学(华东), 2009

    Liu Y P. Fundamental studies on natural gas hydrate reservoir development program by depressurization. [PhD Thesis]. Qingdao: China University of Petroleum (East China), 2009 (in Chinese)
    [23] 刘晓宇, 樊恮狮, 梁德青, 等. 水合物气资源经济性评估模型. 天然气地球科学, 2007, 18(4): 601-605 doi: 10.3969/j.issn.1672-1926.2007.04.025

    Liu Xiaoyu, Fan Shuanshi, Liang Deqing, et al. Economic evaluation model of natural gas hydrate resource. Natural Gas Geoscience, 2007, 18(4): 601-605 (in Chinese) doi: 10.3969/j.issn.1672-1926.2007.04.025
    [24] 中国石油天然气总公司计划局, 中国石油天然气总公司规划设计总院. 石油工业建设项目经济评价方法与参数. 北京: 石油工业出版社, 1994

    Planning Bureau of CNPC, Programming and design institute of CNPC. Economic evaluation approaches and parameters of petroleum industry building projects. Beijing: Petroleum Industry Press, 1994 (in Chinese)
    [25] Sean WY, Sato T, Yamasaki A, et al. CFD and experimental study on methane hydrate dissociation Part I. Dissociation under water flow. AIChE Journal, 2007, 53: 262-274
    [26] 郑荣荣, 左江伟, 路大勇, 等. 流动体系水合物生成/分解特性研究综述. 当代化工, 2020, 49(6): 1166-1174 doi: 10.3969/j.issn.1671-0460.2020.06.039

    Zheng Rongrong, Zuo Jiangwei, Lu Dayong, et al. Review of Study on Kinetic Characteristics of Hydrate Formation/Decomposition in Flow Systems. Contemporary Chemical Industry, 2020, 49(6): 1166-1174 (in Chinese) doi: 10.3969/j.issn.1671-0460.2020.06.039
    [27] Kim HC, Bishnoi PR, Heidemann PA, et al. Kinetics of methane hydrate decomposition. Chemical Engineering Science, 1987, 42(7): 1645-1653 doi: 10.1016/0009-2509(87)80169-0
    [28] Yin Z, Chong ZR, Tan HK, et al. Reviews of gas hydrate dissociation kinetic models for energy recovery. Journal of Natural Gas Science and Engineering, 2016, 35: 1362-1387 doi: 10.1016/j.jngse.2016.04.050
    [29] Jamaluddin AKM, Kalogerakis N, Bishnoi PR, Modelling of decomposition of a synthetic core of methane gas hydrate by coupling intrinsic kinetics with heat transfer rates. The Canadian Journal of Chemical Engineering, 1989, 67(6): 948-954
    [30] Sun CY, Chen GJ. Methane hydrate dissociation above 0℃ and below 0℃. Fluid Phase Equilibria, 2006, 242: 123-128 doi: 10.1016/j.fluid.2006.01.025
    [31] Oyama H, Konno Y, Masuda Y, et al. Dependence of depressurization induced dissociation of methane hydrate bearing laboratory cores on heat transfer. Energy & Fuels, 2009, 23(10): 4995-5002
    [32] Yang SHB, Babu P, Chua SFS, et al. Carbon dioxide hydrate kinetics in porous media with and without salts. Applied Energy, 2016, 162: 1131-1140 doi: 10.1016/j.apenergy.2014.11.052
    [33] Misyura SY, Donskoy IG. Dissociation kinetics of methane hydrate and CO2 hydrate for different granular composition. Fuel, 2020, 262: 116614 doi: 10.1016/j.fuel.2019.116614
    [34] 付强, 魏纳, 孟英峰, 等. 深水钻井天然气水合物井筒多相流动模型及敏感性分析. 中国海上油气, 2016, 28(4): 107-113

    Fu Qiang, Wei Na, Meng Yingfeng, et al. Mode of wellbore multiphase flow and its sensitivity analysis during drilling in deep water natural gas hydrate reservoirs. China Offshore Oil and Gas, 2016, 28(4): 107-113 (in Chinese)
    [35] Liu ZY, Yang MJ, Zhang HQ, et al. A high-pressure visual flow loop for hydrate blockage detection and observation. Review of Scientific Instruments, 2019, 90: 074102 doi: 10.1063/1.5088993
    [36] 李鹏. 垂直管道中含天然气水合物相变的气液固多相流动. [博士论文]. 北京: 中国科学院大学, 2019

    Li P. Gas-liquid-solid flow with gas hydrate dissociation in a vertical pipe. [PhD Thesis]. Beijing: University of China Academy of Sciences, 2019 (in Chinese)
    [37] Li P, Zhang XH, Lu XB. Dissociation behaviors of CO2 hydrate-bearing sediment particle during settling in water. Energies, 2018, 11(11): 2896 doi: 10.3390/en11112896
    [38] Li P, Liu DN, Zhang XH, et al. Effect of bubbles produced from hydarte-bearing particle dissociation on particle motion in water. Energy & Fuels, 2021, 35: 1371-1380
    [39] Wei N, Sun WT, Meng YF. Multiphase non equilibrium pipe flow behaviors in the solid fluidization exploitation of marine natural gas hydrate reservoir. Energy Science & Engineering, 2018, 6(6): 760-782
    [40] 黄鑫, 蔡明杰, 毛良杰, 等. 南海固态流化开采天然气水合物设计参数优化. 科学技术与工程, 2020, 20(33): 13647-13653 doi: 10.3969/j.issn.1671-1815.2020.33.019

    Huang Xin, Cai Mingjie, Mao Liangjie, et al. Optimization of design parameters of solid-fluidization exploitation of natural gas hydrate in the South China Sea. Science Technology and Engineering, 2020, 20(33): 13647-13653 (in Chinese) doi: 10.3969/j.issn.1671-1815.2020.33.019
    [41] 徐海良, 孔维阳, 杨放琼. 天然气水合物在水力提升管道中的分解特性. 天然气工业, 2018, 38(7): 129-137 doi: 10.3787/j.issn.1000-0976.2018.07.018

    Xu Hailing, Kong Weiyang, Yang Fangqiong. Decomposition characteristics of natural gas hydrates in hydraulic lifting pipelines. Natural Gas Industry, 2018, 38(7): 129-137 (in Chinese) doi: 10.3787/j.issn.1000-0976.2018.07.018
    [42] Chen W, Xu HL, Kong WY, et al. Study on three-phase flow characteristics of natural gas hydrate pipeline transmission. Ocean Engineering, 2020, 214: 107727 doi: 10.1016/j.oceaneng.2020.107727
    [43] Wang ZY, Sun BJ. Annular multiphase flow behavior during deep water drilling and the effect of hydrate phase transition. Petroleum Science, 2009, 6: 57-63 doi: 10.1007/s12182-009-0010-3
    [44] 刘艳军, 唐孝蓉, 胡坤. 天然气水合物浆体分解对其在垂直管中流动特性影响的研究. 化学通报, 2018, 81(3): 267-273 doi: 10.14159/j.cnki.0441-3776.2018.03.012

    Liu Yanjun, Tang Xiaorong, Hu Kun. Study on Flow Characteristics of Natural Gas Hydrate Slurry with Decomposition in Vertical Tube. Chemistry Bulletin, 2018, 81(3): 267-273 (in Chinese) doi: 10.14159/j.cnki.0441-3776.2018.03.012
    [45] Pan H, Chen XZ, Liang XF, et al. CFD simulations of gas–liquid–solid flow in fluidized bed reactors–A review. Powder Technology, 2016, 299: 235-258 doi: 10.1016/j.powtec.2016.05.024
    [46] 李长俊, 黄婷, 贾文龙. 深水天然气水合物及其管道输送技术. 科学通报, 2016, 61: 2449-2462

    Li Changjun, Huang Ting, Jia Wenlong. A review of natural gas hydrates and its pipeline transportation technologies in deep water. Science Bulletin, 2016, 61: 2449-2462 (in Chinese)
    [47] 王海秀, 练章华, 王树立. 基于OLGA的海底管道水合物的生成和影响因素分析. 海洋开发与管理, 2021, 2: 87-92 doi: 10.3969/j.issn.1005-9857.2021.06.015

    Wang Haixiu, Lian Zhanghua, Wang Shuli. The hydrate fromation and its influencing factors in submarine pipelines by using OLGA. Ocean Development and Management, 2021, 2: 87-92 (in Chinese) doi: 10.3969/j.issn.1005-9857.2021.06.015
    [48] 韦雪蕾, 刘宝玉, 潘振, 等. 水平管道水合物浆液流动特性的数值模拟. 化学工程, 2018, 46(3): 41-46 doi: 10.3969/j.issn.1005-9954.2018.03.009

    Wei Xuelei, Liu Baoyu, Pan Zhen, et al. Numerical simulation on hydrate slurry flow properties in horizontal pipeline. Chemical Engineering, 2018, 46(3): 41-46 (in Chinese) doi: 10.3969/j.issn.1005-9954.2018.03.009
    [49] Li P, Zhang XH, Lu XB. Three-dimensional Eulerian modeling of gas–liquid–solid flow with gas hydrate dissociation in a vertical pipe. Chemical Engineering Science, 2019, 196: 145-165 doi: 10.1016/j.ces.2018.10.053
    [50] Li P, Zhang XH, Lu XB. Dissociation equilibrium height and friction coefficient in pipeline transportation of gas hydrate-bearing sediment particles. Journal of Natural Gas Science and Engineering, 2020: 103470
    [51] 陈旭东. 天然气水合物分解对地层及地层中结构安全性影响研究. [硕士论文]. 北京: 中国科学院大学, 2015

    Chen X D. Study on the safety of stratum and structures with gas hydrate dissociation. [Master Thesis]. Beijing: University of Chinese Academy of Sciences, 2015 (in Chinese)
    [52] 王晶. 水合物分解引起井口周围土层变形与破坏的研究. [硕士论文]. 北京: 中国科学院大学, 2018

    Wang J. Study of deformation and failture caused by hydrate decomposition on wellhead soil layer. [Master Thesis]. Beijing: University of Chinese Academy of Sciences, 2018 (in Chinese)
    [53] Lu L, Zhang XH, Lu XB. Numerical study on the stratum's responses due to natural gas hydrate dissociation. Ships and Offshore Structures, 2017, 12(5-6): 775-780
    [54] 张旭辉, 胡光海, 鲁晓兵. 天然气水合物分解对地层稳定性影响的离心机实验模拟. 实验力学, 2012, 27(3): 301-310

    Zhang Xuhui, Hu Guanghai, Lu Xiaobing. Centrifuge experimental simulation of the effect of gas hydrate dissociation on the seabed stability. Journal of Experimental Mechanics, 2012, 27(3): 301-310 (in Chinese)
    [55] Zhang XH, Lu XB, Shi YH, et al. Centrifuge experimental study on instability of seabed stratum caused by gas hydrate dissociation. Ocean Engineering, 2015, 105(1): 1-9
    [56] Zhang XH, Lu XB, Chen XD, et al. Mechanism of soil stratum instability induced by hydrate dissociation. Ocean Engineering, 2016, 122: 74-83 doi: 10.1016/j.oceaneng.2016.06.015
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  24
  • HTML全文浏览量:  5
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 网络出版日期:  2022-08-04

目录

    /

    返回文章
    返回