EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氨燃料吸气式变循环发动机性能分析

张鑫 陆阳 程迪 范学军

张鑫, 陆阳, 程迪, 范学军. 氨燃料吸气式变循环发动机性能分析. 力学学报, 2022, 54(11): 3223-3237 doi: 10.6052/0459-1879-22-295
引用本文: 张鑫, 陆阳, 程迪, 范学军. 氨燃料吸气式变循环发动机性能分析. 力学学报, 2022, 54(11): 3223-3237 doi: 10.6052/0459-1879-22-295
Zhang Xin, Lu Yang, Cheng Di, Fan Xuejun. Analysis of performance of ammonia air-breathing variable cycle engine. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 3223-3237 doi: 10.6052/0459-1879-22-295
Citation: Zhang Xin, Lu Yang, Cheng Di, Fan Xuejun. Analysis of performance of ammonia air-breathing variable cycle engine. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 3223-3237 doi: 10.6052/0459-1879-22-295

氨燃料吸气式变循环发动机性能分析

doi: 10.6052/0459-1879-22-295
基金项目: 中国科学院战略性先导专项资助项目(XDA17030100)
详细信息
    作者简介:

    陆阳, 副研究员, 主要研究方向: 飞行器综合能量利用与热防护. E-mail: luyang@imech.ac.cn

  • 中图分类号: V236

ANALYSIS OF PERFORMANCE OF AMMONIA AIR-BREATHING VARIABLE CYCLE ENGINE

  • 摘要: 针对飞行马赫数0 ~ 10的宽域飞行器对吸气式动力的需求, 提出了一种以氨为燃料和冷却剂的宽域吸气式变循环发动机, 其工作模态可有3种: 涡轮模态、预冷模态和冲压模态. 首先通过对该发动机各模态热力循环过程进行建模, 计算得到发动机比推力、比冲和总效率等性能参数, 初步验证其在马赫数0 ~ 10范围内工作的可行性; 然后, 选取甲烷和正癸烷为低温低密度和煤油类碳氢燃料的典型代表, 对比各模态下氨与碳氢燃料发动机的性能差异. 结果表明, 由于氨突出的当量总热沉和当量热值, 飞行马赫数3 ~ 5的预冷模态发动机性能各指标均优于碳氢燃料. 在涡轮模态和冲压模态下, 氨燃料发动机比冲较低, 但比推力和总效率优于碳氢燃料; 最后, 对比分析各类燃料马赫数0 ~ 10宽域工作特性, 发现氨预冷可以显著提升发动机比推力, 特别在高马赫数范围, 再生冷却通道内氨可发生裂解反应大量吸热并分解为氢气和氮气, 会进一步提升发动机比推力和比冲, 且不会堵塞冷却通道, 因此可胜任飞行马赫数0 ~ 10的宽范围飞行需求. 而煤油类碳氢燃料受限于比推力低和裂解结焦问题, 最高工作马赫数难以超过8. 本文提出的氨燃料吸气式变循环发动机, 当量冷却能力强且比推力高, 适合用于二级入轨飞行器的一级动力、高马赫数宽域吸气式飞行以及未来高超声速民航等场景.

     

  • 图  1  几种燃料燃烧热值的对比

    Figure  1.  Comparison of net heating value of several fuels

    图  2  微型通道内氨的转化率曲线[25]

    Figure  2.  Conversion curve of ammonia in microchannel[25]

    图  3  几种燃料冷却能力的对比

    Figure  3.  Comparison of cooling capabilities of several fuels

    图  4  热力循环结构示意图

    Figure  4.  Schematic diagram of thermodynamic cycle structure

    图  5  热力循环T-S

    Figure  5.  T-S diagram of thermodynamic cycle

    图  6  涡轮、预冷模态发动机性能的对比(3马赫)

    Figure  6.  Comparison of engine performance in turbine mode and precooling mode (Ma = 3)

    6  涡轮、预冷模态发动机性能的对比(3马赫) (续)

    6.  Comparison of engine performance in turbine mode and precooling mode (Ma = 3) (continued)

    7  预冷模态发动机性能的对比(5马赫)

    7.  Comparison of engine performance in precooling mode (Ma = 5)

    图  8  总压比随压缩效率的变化

    Figure  8.  Variation of total pressure ratio with compression efficiency

    图  9  碳氢燃料吸气式冲压发动机比冲随来流速度变化曲线

    Figure  9.  Variation curve of specific impulse of hydrocarbon fuel air-breathing ramjet with incoming flow speed

    图  10  冲压模态下发动机性能的对比

    Figure  10.  Comparison of engine performance in ramjet mode

    图  11  不同马赫数下的发动机性能

    Figure  11.  Engine performance at different Mach numbers

    表  1  几种典型燃料的燃烧特性汇总

    Table  1.   Summary of combustion characteristics of several fuels

    FuelNH3Aviation keroseneCH4H2
    net heating value/(MJ·kg−1)18.642.550.0120.0
    flammability/%15 ~ 281.4 ~ 7.55 ~ 154 ~ 75
    adiabatic flame temperature/K2092234222772384
    minimum auto ignition temperature/°C650425630520
    下载: 导出CSV

    表  2  几种燃料的物理性质汇总

    Table  2.   Summary of physical properties of several fuels

    FuelNH3C10H22CH4H2
    boiling temperature at 1 atm/°C−33.4174.2−161.0−253.0
    liquid density/(kg·m−3)682.5731.2422.572.2
    fst0.1650.0670.0580.029
    hfc/(kJ·kg−1)45003300333814197
    hPR/(MJ·kg−1)18.644.650.0120
    fst∙hfc/(kJ·kg−1)742.5219.8194.3414.5
    fst∙hPR/(MJ·kg−1)3.072.972.913.50
    market prices/(CNY·kg−1)5.27.97.270.0
    下载: 导出CSV

    表  3  不同飞行工况下的进气道压缩效率

    Table  3.   Compression efficiency of intake under different flight conditions

    Ma0σcηc
    50.4870.942
    60.3410.909
    70.2280.868
    80.1510.821
    90.1010.770
    100.0700.716
    下载: 导出CSV

    表  4  不同燃料的总动能效率

    Table  4.   Total kinetic energy efficiency of different fuels

    Ma0ηKEO(NH3)ηKEO(C10H22)ηKEO(CH4)
    50.8160.8220.824
    60.7640.7670.769
    70.7290.7290.731
    80.7050.7030.705
    90.6880.687
    100.6780.677
    下载: 导出CSV
  • [1] Sato T, Taguchi H, Kobayashi H, et al. Development study of precooled cycle hypersonic turbojet engine for flight demonstration. Acta Astronautica, 2007, 61(6): 367-375
    [2] 魏毅寅. 组合动力空天飞行若干科技关键问题. 空天技术, 2022, 52(1): 1-12 (Wei Yiyin. Major technological issues of aerospace vehicle with combined-cycle propulsion. Aerospace Technology, 2022, 52(1): 1-12 (in Chinese)
    [3] 邹正平, 王一帆, 额日其太等. 高超声速强预冷航空发动机技术研究进展. 航空发动机, 2021, 47(4): 8-21 (Zou Zhengping, Wang Yifan, Eri Qitai, et al. Research progress on hypersonic precooled airbreathing engine technology. Aeroengine, 2021, 47(4): 8-21 (in Chinese)
    [4] 朱大明, 陈敏, 唐海龙等. 高超声速涡轮/冲压组合发动机方案. 北京航空航天大学学报, 2006, 32(3): 263-266 (Zhu Daming, Chen Min, Tang Hailong, et al. “Over-under” concept hypersonic turbo-ramjet combined propulsion system. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(3): 263-266 (in Chinese)
    [5] Taguchi H, Kobayashi H, Kojima T, et al. Performance evaluation of hypersonic pre-cooled turbojet engine//20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Glasgow, Scotland, 2015
    [6] Taguchi H, Hongoh M, Kojima T, et al. Mach 4 performance evaluation of hypersonic pre-cooled turbojet engine//22nd AIAA International Space Planes and Hypersonics Systems and Technologies Conference, Florida, USA, 2018
    [7] 姚尧, 王占学, 张晓博等. 液氢预冷吸气式发动机建模与循环特性分析. 推进技术, 2022, 43(4): 26-36 (Yao Yao, Wang Zhanxue, Zhang Xiaobo, et al. Modeling and cycle characteristics analysis of liquid hydrogen pre-cooled air-breathing engine. Journal of Propu1 s1 on Technology, 2022, 43(4): 26-36 (in Chinese) doi: 10.13675/j.cnki.tjjs.200731
    [8] 郑日恒, 陈操斌. 涡轮基组合循环发动机推力陷阱问题解决方案. 火箭推进, 2021, 47(6): 21-32 (Zheng Riheng, Chen Caobin. Overview of solution to TBCC engine thrust trap problem. Jounal of Rocket Propulsion, 2021, 47(6): 21-32 (in Chinese) doi: 10.3969/j.issn.1672-9374.2021.06.003
    [9] Bulman MJ, Siebenhaar A. Combined cycle propulsion: aerojet innovations for practical hypersonic vehicles//17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, San Francisco, USA, 2011
    [10] Wang ZG, Wang Y, Zhang JQ, et al. Overview of the key technologies of combined cycle engine precooling systems and the advanced applications of micro-channel heat transfer. Aerospace Science & Technology, 2014, 39: 31-39
    [11] Carter P, Balepin V. Mass injection and pre-compressor cooling engines analyses//38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Indianapolis, USA, 2002
    [12] 林阿强. 航空涡轮发动机射流预冷流动及传热性能研究. [博士论文]. 哈尔滨: 哈尔滨工程大学, 2020

    Lin Aqiang. Investigation on the flow and heat transfer. [PhD Thesis]. Harbin: Harbin Engineering University, 2020 (in Chinese)
    [13] Mehta U, Bowles J, Melton J, et al. Water injection pre-compressor cooling assist space access. The Aeronautical Journal, 2015, 119(1212): 145-171 doi: 10.1017/S0001924000010319
    [14] 林阿强, 郑群, 吴锋等. 航空涡轮发动机射流预冷技术研究. 推进技术, 2020, 41(4): 721-728 (Lin Aqiang, Zheng Qun, Wu Feng, et al. Investigation on mass injection pre-cooling technology of aero-turbine engine. Journal of Propulsion Technology, 2020, 41(4): 721-728 (in Chinese) doi: 10.13675/j.cnki.tjjs.190445
    [15] Sato T, Tanatsugu N, Naruo Y, et al. Development study on atrex engine. Acta Astronautica, 2000, 47(11): 799-808 doi: 10.1016/S0094-5765(00)00129-6
    [16] Webber H, Bond A, Hempsell M. The sensitivity of precooled air-breathing engine performance to heat exchanger design parameters. Journal of the British Interplanetary Society, 2007, 60(5): 188-196
    [17] Mosesp. X-43 C Plans and status//12th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Virginia, USA, 2003
    [18] Kobayashi H, Hayakawa A, Somarathne K, et al. Science and technology of ammonia combustion. Proceedings of the Combustion Institute, 2019, 37(1): 109-133 doi: 10.1016/j.proci.2018.09.029
    [19] Karabeyoglu A. Fuel conditioning system for ammonia fired power plants//9th Annual NH3 Fuel Association Conference, 2012: 38-39
    [20] 刘爱虢, 陈欣, 陈保东等. 液化天然气作为航空燃料的发展趋势及特点分析. 航空动力学报, 2016, 6: 1281-1288 (Liu Aiguo, Chen Xin, Chen Baodong, et al. Development trend and characteristics of liquefied natural gas as the aviation fuel. Journal of Aerospace Power, 2016, 6: 1281-1288 (in Chinese)
    [21] Robert WS, George H. The Choice of NH3 to Fuel the X-15 Rocket Plane. Portland: Iowa State University Press, 2011
    [22] Kyunghyun R, George E, Zacharakis J, et al. Performance enhancement of ammonia-fueled engine by using dissociation catalyst for hydrogen generation. International Journal of Hydrogen Energy, 2014, 39: 2390-2398
    [23] Fan XJ, Zhong FQ, Yu G, et al. Catalytic cracking and heat sink capacity of aviation kerosene under supercritical conditions. Journal of Propulsion and Power, 2009, 25(6): 1226-1232 doi: 10.2514/1.41966
    [24] Chiuta S, Everson RC, Neomagus H, et al. Reactor technology options for distributed hydrogen generation via ammonia decomposition: a review. International Journal of Hydrogen Energy, 2013, 38(35): 14968-14991 doi: 10.1016/j.ijhydene.2013.09.067
    [25] Deshmukh SR, Mhadeshwar AB, Vlachos DG. Microreactor modeling for hydrogen production from ammonia decomposition on ruthenium. Industrial & Engineering Chemistry Research, 2004, 43(12): 2986-2999
    [26] Zhao H, Kamp LM, Lukszo Z. The potential of green ammonia production to reduce renewable power curtailment and encourage the energy transition in China. International Journal of Hydrogen Energy, 2022, 47(44): 18935-18954 doi: 10.1016/j.ijhydene.2022.04.088
    [27] 范学军, 陆阳, 李龙等. 组合式发动机. 北京: CN109026444 B, 2017-06-09

    Fan Xuejun, Lu Yang, Li Long, et al. Combined engine. Beijing: CN109026444 B, 2017-06-09 (in Chinese)
    [28] 陆阳, 范学军. 甲烷预冷吸气式发动机概念设计//第十三届全国高超声速科技学术会议, 厦门市, 2021

    Lu Yang, Fan Xuejun. Concept design of a high-speed precooling air-breathing engine using methane//The 13th National Conference on Hypersonic Technology, Xiamen, 2021 (in Chinese)
    [29] 苏雷. 航空发动机涡轮冷却空气预冷系统研究. [硕士论文]. 沈阳: 沈阳航空航天大学, 2018

    Su Lei. Precooling turbine cooling air for aviation engines. [Master Thesis]. Shenyang: Shenyang Aerospace University, 2018 (in Chinese)
    [30] Zhao W, Huang C, Zhao Q, et al. Performance analysis of a pre-cooled and fuel-rich pre-burned mixed-flow turbofan cycle for high speed vehicles. Energy, 2018, 154(1): 96-109
    [31] 王新月, 胡春波, 张堃元等. 气体动力学基础. 西安: 西北工业大学出版社, 2006

    Wang Xinyue, Hu Chunbo, Zhang Kunyuan, et al. Basics of Aerodynamics. Xian: Northwestern Polytechnical University Press, 2006 (in Chinese)
    [32] 朱俊强, 黄国平, 雷志军. 航空发动机进排气系统气动热力学. 上海: 上海交通大学出版社, 2014

    Zhu Junqiang, Huang Guoping, Lei Zhijun. Aerothermo Dynamics of Aeroengine lntake and Exhaust System. Shanghai: Shanghai Jiaotong University Press, 2014 (in Chinese)
    [33] 杨世铭, 陶文铨. 传热学. 北京: 高等教育出版社, 2006

    Yang Shiming, Tao Wenquan. Heat Transfer. Beijing: Higher Education Press, 2006 (in Chinese)
    [34] 王月姑. 以氨为燃料和载氢介质的生命周期能效和环境效益分析. [硕士论文]. 厦门: 厦门大学, 2019

    Wang Yuegu. Life cycle analysis of energy efficiency and environmental benefits using ammonia as fuel and hydrogen carrier. [Master Thesis]. Xiamen: Xiamen University, 2019 (in Chinese)
    [35] 付志坚, 傅敏, 陈其峰. 高温空气在部分离解和电离区的热力学性质的计算. 四川大学学报(自然科学版), 2010, 47(3): 585-592 (Fu Zhijian, Fu Min, Chen Qifeng. Thermodynamic properties of high temperature air in the region of partial dissociation and ionization. Journal of Sichua University (Natural Science Edition), 2010, 47(3): 585-592 (in Chinese)
    [36] Heiser W, Pratt D, Daley D, et al. Hypersonic Airbreathing Propulsion. Washington: American Institute of Aeronautics and Astronautics Press, 1994
    [37] Yu X, Pan X, Zheng J, et al. Thermodynamic spectrum of direct precooled airbreathing propulsion. Energy, 2017, 135(15): 777-787
    [38] 俞刚, 范学军. 超声速燃烧与高超声速推进. 力学进展, 2013, 43(5): 449-471 (Yu Gang, Fan Xuejun. Supersonic combustion and hypersonic propulsion. Advances in Mechanics, 2013, 43(5): 449-471 (in Chinese)
    [39] 沈剑, 王伟. 国外高超声速飞行器研制计划. 飞航导弹, 2006, 8: 1-9 (Shen Jian, Wang Wei. Foreign hypersonic aircraft research and development plan. Aerodynamic Missile Journal, 2006, 8: 1-9 (in Chinese) doi: 10.3969/j.issn.1009-1319.2006.08.001
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  569
  • HTML全文浏览量:  169
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-06
  • 录用日期:  2022-09-08
  • 网络出版日期:  2022-09-09
  • 刊出日期:  2022-11-18

目录

    /

    返回文章
    返回