ANALYSIS OF PERFORMANCE OF AMMONIA AIR-BREATHING VARIABLE CYCLE ENGINE
-
摘要: 针对飞行马赫数0 ~ 10的宽域飞行器对吸气式动力的需求, 提出了一种以氨为燃料和冷却剂的宽域吸气式变循环发动机, 其工作模态可有3种: 涡轮模态、预冷模态和冲压模态. 首先通过对该发动机各模态热力循环过程进行建模, 计算得到发动机比推力、比冲和总效率等性能参数, 初步验证其在马赫数0 ~ 10范围内工作的可行性; 然后, 选取甲烷和正癸烷为低温低密度和煤油类碳氢燃料的典型代表, 对比各模态下氨与碳氢燃料发动机的性能差异. 结果表明, 由于氨突出的当量总热沉和当量热值, 飞行马赫数3 ~ 5的预冷模态发动机性能各指标均优于碳氢燃料. 在涡轮模态和冲压模态下, 氨燃料发动机比冲较低, 但比推力和总效率优于碳氢燃料; 最后, 对比分析各类燃料马赫数0 ~ 10宽域工作特性, 发现氨预冷可以显著提升发动机比推力, 特别在高马赫数范围, 再生冷却通道内氨可发生裂解反应大量吸热并分解为氢气和氮气, 会进一步提升发动机比推力和比冲, 且不会堵塞冷却通道, 因此可胜任飞行马赫数0 ~ 10的宽范围飞行需求. 而煤油类碳氢燃料受限于比推力低和裂解结焦问题, 最高工作马赫数难以超过8. 本文提出的氨燃料吸气式变循环发动机, 当量冷却能力强且比推力高, 适合用于二级入轨飞行器的一级动力、高马赫数宽域吸气式飞行以及未来高超声速民航等场景.Abstract: In response to the demand of air-breathing power for wide-range aircraft with flight Mach number 0 ~ 10, a wide-range air-breathing variable cycle engine using ammonia as the fuel and coolant is proposed in the research. There are three working modes: turbine mode, pre-cooling mode and ramjet mode. Firstly, the feasibility of the engine at Mach 0 ~ 10 was preliminarily verified by modeling the thermodynamic cycle process of each mode and calculating the performance parameters such as specific thrust, specific impulse and total efficiency. Then, methane and decane were selected as the typical representatives of low temperature and low density and kerosene hydrocarbon fuels, and the performance of the engines fueled by ammonia and hydrocarbon fuels in turbine mode, pre-cooling mode and ramjet mode were comprehensively compared. The results show that due to the outstanding equivalent total heat sink and equivalent heat value of ammonia, the performance of it in the pre-cooling mode at Mach 3 ~ 5 is better than that of hydrocarbon fuels. In turbine mode and ramjet mode, the specific impulse of the engine using ammonia as the fuel is lower, but the specific thrust and total efficiency are better than that of hydrocarbon fuels. In the end, the operating characteristics of various fuels at Mach 0 ~ 10 were compared and analyzed, it shows that ammonia precooling can significantly improve engine performance in terms of wide-range operating characteristics, especially in the high Mach number, when ammonia is thermally decomposed into hydrogen and nitrogen in the regenerative cooling channel on the combustion chamber wall, the specific thrust and specific impulse of the engine will be further improved. And using ammonia as the coolant will not block the cooling channel, so it can meet the wide-range flight requirements of Mach 0 ~ 10. Kerosene hydrocarbon fuel is limited by low specific thrust and pyrolysis coking problems, and generally the maximum working Mach number does not exceed 8. In conclusion, the air-breathing variable cycle engine using ammonia as the fuel proposed in this paper has excellent equivalent cooling capacity and specific thrust index, and is suitable for applications such as the primary power of the two-stage orbiting vehicle, high Mach number air-breathing flight and future hypersonic civil aviation.
-
Key words:
- ammonia /
- turbine mode /
- pre-cooling mode /
- ramjet mode /
- equivalent total heat sink /
- equivalent heat value
-
表 1 几种典型燃料的燃烧特性汇总
Table 1. Summary of combustion characteristics of several fuels
Fuel NH3 Aviation kerosene CH4 H2 net heating value/(MJ·kg−1) 18.6 42.5 50.0 120.0 flammability/% 15 ~ 28 1.4 ~ 7.5 5 ~ 15 4 ~ 75 adiabatic flame temperature/K 2092 2342 2277 2384 minimum auto ignition temperature/°C 650 425 630 520 表 2 几种燃料的物理性质汇总
Table 2. Summary of physical properties of several fuels
Fuel NH3 C10H22 CH4 H2 boiling temperature at 1 atm/°C −33.4 174.2 −161.0 −253.0 liquid density/(kg·m−3) 682.5 731.2 422.5 72.2 fst 0.165 0.067 0.058 0.029 hfc/(kJ·kg−1) 4500 3300 3338 14197 hPR/(MJ·kg−1) 18.6 44.6 50.0 120 fst∙hfc/(kJ·kg−1) 742.5 219.8 194.3 414.5 fst∙hPR/(MJ·kg−1) 3.07 2.97 2.91 3.50 market prices/(CNY·kg−1) 5.2 7.9 7.2 70.0 表 3 不同飞行工况下的进气道压缩效率
Table 3. Compression efficiency of intake under different flight conditions
Ma0 σc ηc 5 0.487 0.942 6 0.341 0.909 7 0.228 0.868 8 0.151 0.821 9 0.101 0.770 10 0.070 0.716 表 4 不同燃料的总动能效率
Table 4. Total kinetic energy efficiency of different fuels
Ma0 ηKEO(NH3) ηKEO(C10H22) ηKEO(CH4) 5 0.816 0.822 0.824 6 0.764 0.767 0.769 7 0.729 0.729 0.731 8 0.705 0.703 0.705 9 0.688 — 0.687 10 0.678 — 0.677 -
[1] Sato T, Taguchi H, Kobayashi H, et al. Development study of precooled cycle hypersonic turbojet engine for flight demonstration. Acta Astronautica, 2007, 61(6): 367-375 [2] 魏毅寅. 组合动力空天飞行若干科技关键问题. 空天技术, 2022, 52(1): 1-12 (Wei Yiyin. Major technological issues of aerospace vehicle with combined-cycle propulsion. Aerospace Technology, 2022, 52(1): 1-12 (in Chinese) [3] 邹正平, 王一帆, 额日其太等. 高超声速强预冷航空发动机技术研究进展. 航空发动机, 2021, 47(4): 8-21 (Zou Zhengping, Wang Yifan, Eri Qitai, et al. Research progress on hypersonic precooled airbreathing engine technology. Aeroengine, 2021, 47(4): 8-21 (in Chinese) [4] 朱大明, 陈敏, 唐海龙等. 高超声速涡轮/冲压组合发动机方案. 北京航空航天大学学报, 2006, 32(3): 263-266 (Zhu Daming, Chen Min, Tang Hailong, et al. “Over-under” concept hypersonic turbo-ramjet combined propulsion system. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(3): 263-266 (in Chinese) [5] Taguchi H, Kobayashi H, Kojima T, et al. Performance evaluation of hypersonic pre-cooled turbojet engine//20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Glasgow, Scotland, 2015 [6] Taguchi H, Hongoh M, Kojima T, et al. Mach 4 performance evaluation of hypersonic pre-cooled turbojet engine//22nd AIAA International Space Planes and Hypersonics Systems and Technologies Conference, Florida, USA, 2018 [7] 姚尧, 王占学, 张晓博等. 液氢预冷吸气式发动机建模与循环特性分析. 推进技术, 2022, 43(4): 26-36 (Yao Yao, Wang Zhanxue, Zhang Xiaobo, et al. Modeling and cycle characteristics analysis of liquid hydrogen pre-cooled air-breathing engine. Journal of Propu1 s1 on Technology, 2022, 43(4): 26-36 (in Chinese) doi: 10.13675/j.cnki.tjjs.200731 [8] 郑日恒, 陈操斌. 涡轮基组合循环发动机推力陷阱问题解决方案. 火箭推进, 2021, 47(6): 21-32 (Zheng Riheng, Chen Caobin. Overview of solution to TBCC engine thrust trap problem. Jounal of Rocket Propulsion, 2021, 47(6): 21-32 (in Chinese) doi: 10.3969/j.issn.1672-9374.2021.06.003 [9] Bulman MJ, Siebenhaar A. Combined cycle propulsion: aerojet innovations for practical hypersonic vehicles//17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, San Francisco, USA, 2011 [10] Wang ZG, Wang Y, Zhang JQ, et al. Overview of the key technologies of combined cycle engine precooling systems and the advanced applications of micro-channel heat transfer. Aerospace Science & Technology, 2014, 39: 31-39 [11] Carter P, Balepin V. Mass injection and pre-compressor cooling engines analyses//38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Indianapolis, USA, 2002 [12] 林阿强. 航空涡轮发动机射流预冷流动及传热性能研究. [博士论文]. 哈尔滨: 哈尔滨工程大学, 2020Lin Aqiang. Investigation on the flow and heat transfer. [PhD Thesis]. Harbin: Harbin Engineering University, 2020 (in Chinese) [13] Mehta U, Bowles J, Melton J, et al. Water injection pre-compressor cooling assist space access. The Aeronautical Journal, 2015, 119(1212): 145-171 doi: 10.1017/S0001924000010319 [14] 林阿强, 郑群, 吴锋等. 航空涡轮发动机射流预冷技术研究. 推进技术, 2020, 41(4): 721-728 (Lin Aqiang, Zheng Qun, Wu Feng, et al. Investigation on mass injection pre-cooling technology of aero-turbine engine. Journal of Propulsion Technology, 2020, 41(4): 721-728 (in Chinese) doi: 10.13675/j.cnki.tjjs.190445 [15] Sato T, Tanatsugu N, Naruo Y, et al. Development study on atrex engine. Acta Astronautica, 2000, 47(11): 799-808 doi: 10.1016/S0094-5765(00)00129-6 [16] Webber H, Bond A, Hempsell M. The sensitivity of precooled air-breathing engine performance to heat exchanger design parameters. Journal of the British Interplanetary Society, 2007, 60(5): 188-196 [17] Mosesp. X-43 C Plans and status//12th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Virginia, USA, 2003 [18] Kobayashi H, Hayakawa A, Somarathne K, et al. Science and technology of ammonia combustion. Proceedings of the Combustion Institute, 2019, 37(1): 109-133 doi: 10.1016/j.proci.2018.09.029 [19] Karabeyoglu A. Fuel conditioning system for ammonia fired power plants//9th Annual NH3 Fuel Association Conference, 2012: 38-39 [20] 刘爱虢, 陈欣, 陈保东等. 液化天然气作为航空燃料的发展趋势及特点分析. 航空动力学报, 2016, 6: 1281-1288 (Liu Aiguo, Chen Xin, Chen Baodong, et al. Development trend and characteristics of liquefied natural gas as the aviation fuel. Journal of Aerospace Power, 2016, 6: 1281-1288 (in Chinese) [21] Robert WS, George H. The Choice of NH3 to Fuel the X-15 Rocket Plane. Portland: Iowa State University Press, 2011 [22] Kyunghyun R, George E, Zacharakis J, et al. Performance enhancement of ammonia-fueled engine by using dissociation catalyst for hydrogen generation. International Journal of Hydrogen Energy, 2014, 39: 2390-2398 [23] Fan XJ, Zhong FQ, Yu G, et al. Catalytic cracking and heat sink capacity of aviation kerosene under supercritical conditions. Journal of Propulsion and Power, 2009, 25(6): 1226-1232 doi: 10.2514/1.41966 [24] Chiuta S, Everson RC, Neomagus H, et al. Reactor technology options for distributed hydrogen generation via ammonia decomposition: a review. International Journal of Hydrogen Energy, 2013, 38(35): 14968-14991 doi: 10.1016/j.ijhydene.2013.09.067 [25] Deshmukh SR, Mhadeshwar AB, Vlachos DG. Microreactor modeling for hydrogen production from ammonia decomposition on ruthenium. Industrial & Engineering Chemistry Research, 2004, 43(12): 2986-2999 [26] Zhao H, Kamp LM, Lukszo Z. The potential of green ammonia production to reduce renewable power curtailment and encourage the energy transition in China. International Journal of Hydrogen Energy, 2022, 47(44): 18935-18954 doi: 10.1016/j.ijhydene.2022.04.088 [27] 范学军, 陆阳, 李龙等. 组合式发动机. 北京: CN109026444 B, 2017-06-09Fan Xuejun, Lu Yang, Li Long, et al. Combined engine. Beijing: CN109026444 B, 2017-06-09 (in Chinese) [28] 陆阳, 范学军. 甲烷预冷吸气式发动机概念设计//第十三届全国高超声速科技学术会议, 厦门市, 2021Lu Yang, Fan Xuejun. Concept design of a high-speed precooling air-breathing engine using methane//The 13th National Conference on Hypersonic Technology, Xiamen, 2021 (in Chinese) [29] 苏雷. 航空发动机涡轮冷却空气预冷系统研究. [硕士论文]. 沈阳: 沈阳航空航天大学, 2018Su Lei. Precooling turbine cooling air for aviation engines. [Master Thesis]. Shenyang: Shenyang Aerospace University, 2018 (in Chinese) [30] Zhao W, Huang C, Zhao Q, et al. Performance analysis of a pre-cooled and fuel-rich pre-burned mixed-flow turbofan cycle for high speed vehicles. Energy, 2018, 154(1): 96-109 [31] 王新月, 胡春波, 张堃元等. 气体动力学基础. 西安: 西北工业大学出版社, 2006Wang Xinyue, Hu Chunbo, Zhang Kunyuan, et al. Basics of Aerodynamics. Xian: Northwestern Polytechnical University Press, 2006 (in Chinese) [32] 朱俊强, 黄国平, 雷志军. 航空发动机进排气系统气动热力学. 上海: 上海交通大学出版社, 2014Zhu Junqiang, Huang Guoping, Lei Zhijun. Aerothermo Dynamics of Aeroengine lntake and Exhaust System. Shanghai: Shanghai Jiaotong University Press, 2014 (in Chinese) [33] 杨世铭, 陶文铨. 传热学. 北京: 高等教育出版社, 2006Yang Shiming, Tao Wenquan. Heat Transfer. Beijing: Higher Education Press, 2006 (in Chinese) [34] 王月姑. 以氨为燃料和载氢介质的生命周期能效和环境效益分析. [硕士论文]. 厦门: 厦门大学, 2019Wang Yuegu. Life cycle analysis of energy efficiency and environmental benefits using ammonia as fuel and hydrogen carrier. [Master Thesis]. Xiamen: Xiamen University, 2019 (in Chinese) [35] 付志坚, 傅敏, 陈其峰. 高温空气在部分离解和电离区的热力学性质的计算. 四川大学学报(自然科学版), 2010, 47(3): 585-592 (Fu Zhijian, Fu Min, Chen Qifeng. Thermodynamic properties of high temperature air in the region of partial dissociation and ionization. Journal of Sichua University (Natural Science Edition) , 2010, 47(3): 585-592 (in Chinese) [36] Heiser W, Pratt D, Daley D, et al. Hypersonic Airbreathing Propulsion. Washington: American Institute of Aeronautics and Astronautics Press, 1994 [37] Yu X, Pan X, Zheng J, et al. Thermodynamic spectrum of direct precooled airbreathing propulsion. Energy, 2017, 135(15): 777-787 [38] 俞刚, 范学军. 超声速燃烧与高超声速推进. 力学进展, 2013, 43(5): 449-471 (Yu Gang, Fan Xuejun. Supersonic combustion and hypersonic propulsion. Advances in Mechanics, 2013, 43(5): 449-471 (in Chinese) [39] 沈剑, 王伟. 国外高超声速飞行器研制计划. 飞航导弹, 2006, 8: 1-9 (Shen Jian, Wang Wei. Foreign hypersonic aircraft research and development plan. Aerodynamic Missile Journal, 2006, 8: 1-9 (in Chinese) doi: 10.3969/j.issn.1009-1319.2006.08.001 -