FLUID FLOW AND HEAT TRANSFER CHARACTERISTICS IN THE MULTILAYERED-PARALLEL FRACTURED POROUS CHANNEL
-
摘要: 基于Brinkman-extended Darcy模型和局部热平衡模型, 对多层平行裂隙型多孔介质通道内的流动传热特性进行研究. 获得了多层平行裂隙型多孔介质通道内各区域的速度场、温度场、摩擦系数及努塞尔数解析解, 并分析了裂隙层数、达西数、空心率、有效热导率之比等对通道内流动传热特性的影响. 结果表明: 达西数较小时, 通道多孔介质层内会出现不随高度变化的达西速度, 此达西速度会随裂隙层数的增加而增大, 但却不受各裂隙层下多孔介质层位置变化的影响. 增加裂隙层数会减弱空心率对压降的影响, 会使通道内流体压降升高, 但升高程度会逐渐降低. 增大热导率之比或减小空心率会使多裂隙通道内出现阶梯式温度分布, 而在较小热导率之比或较大空心率时多裂隙情况下的温度分布曲线会趋于一致. 此外, 当热导率之比较小时, 多层裂隙通道内的传热效果在任何空心率下都要优于单裂隙情况, 当热导率之比较大时, 存在临界空心率使各裂隙层数通道内的传热效果相同, 且多裂隙通道内继续增加裂隙层数对传热强度影响不大.Abstract: Based on the Brinkman-extended Darcy model and the local thermal equilibrium model, the fluid flow and heat transfer characteristics in the multilayered-parallel fractured porous channel are studied. The analytical solutions of velocity field, temperature field in each region of multilayered-parallel fractured porous channel, friction coefficient and Nusselt number are obtained. The effects of the fracture number, Darcy number, hollow ratio and the ratio of effective thermal conductivity on heat transfer characteristics are analyzed. The results show that when Darcy number is small, the Darcy velocity in the porous media which does not change with the porous height increases with the increase of the number of fracture layers, and is not affected by the porous layer position in multilayer porous channel with certain number of fractures. Increasing the number of fracture layers weakens the influence of hollow ratio on pressure drop and increases the fluid pressure drop in the channel, but the increase degree gradually decreases. The increase of the ratio of effective thermal conductivity or decrease of the hollow ratio leads to a stepwise temperature distribution in the multilayered fractured porous channel, while the temperature distribution curves in the multilayered fractured channel tend to be consistent when the thermal conductivity ratio is small or the hollow ratio is large. Furthermore, when the ratio of thermal conductivity is small, the heat transfer effect in multilayered fractured porous channel is better than that in single fractured porous channel at any hollow ratio. However, when the ratio of thermal conductivity is large, there is a critical hollow ratio, which makes the heat transfer effect in the channels with different numbers of fracture layers be the same, and increasing the number of fractured layers has little influence on the heat transfer effect in multilayered fractured porous channel.
-
Key words:
- porous media /
- multilayered-parallel fractures /
- fluid flow /
- heat transfer
-
表 1 空心率S与Sn的关系
Table 1. The relationship between hollow ratio S and Sn
n = 1 n = 2 n = 3 n = 4 n = 5 S1 S (1 − S)/2 S/3 (1 − S)/5 S/5 S2 — (1 + S)/2 (3 − S)/6 (2 + 3S)/10 (5 − 2S)/15 S3 — — (1 + S)/2 (6 − S)/10 (5 + 4S)/15 S4 — — — (3 + 2S)/5 (10 − S)/15 S5 — — — — (2 + S)/3 1 裂隙层速度场系数Lj表达式
1. Coefficient expressions Lj of velocity field in fracture layers
n $ {{L}}_{{1}} $ $ {L}_{2} $ $ {L}_{3} $ $ {L}_{4} $ $ {L}_{5} $ $ {L}_{6} $ n = 1 $ 0 $ $ \dfrac{{S}^{2}}{2} + {U}_{i} $ — — — — n = 2 $ \dfrac{{S}_{1}^{2}-{S}_{2}^{2} + 2({U}_{i1}-{U}_{i2})}{{S}_{1}-{S}_{2}} $ $ \dfrac{{S}_{1}{S}_{2}\left({S}_{2}-{S}_{1}\right) + 2({U}_{i2}{S}_{1}-{U}_{i1}{S}_{2})}{2\left({S}_{1}-{S}_{2}\right)} $ — — — — n = 3 $ 0 $ $ \dfrac{{S}_{1}^{2}}{2} + {U}_{i1} $ $ \dfrac{2({U}_{i3}-{U}_{i2}) + {S}_{3}^{2}-{S}_{2}^{2}}{{S}_{3}-{S}_{2}} $ $ {U}_{i3}-\dfrac{{S}_{2}{S}_{3}}{2}-\dfrac{{S}_{3}({U}_{i3}-{U}_{i2})}{{S}_{3}-{S}_{2}} $ — — n = 4 $ \dfrac{{S}_{1}^{2}-{S}_{2}^{2} + 2({U}_{i1}-{U}_{i2})}{{S}_{1}-{S}_{2}} $ $ \dfrac{{S}_{1}{S}_{2}\left({S}_{2}-{S}_{1}\right) + 2({U}_{i2}\mathrm{*}{S}_{1}-{U}_{i1}\mathrm{*}{S}_{2})}{2\left({S}_{1}-{S}_{2}\right)} $ $ \dfrac{2({U}_{i4}-{U}_{i3}) + {S}_{4}^{2}-{S}_{3}^{2}}{{S}_{4}-{S}_{3}} $ $ {U}_{i3}-\dfrac{{S}_{3}{S}_{4}}{2}-\dfrac{{S}_{3}({U}_{i4}-{U}_{i3})}{{S}_{4}-{S}_{3}} $ — — n = 5 $ 0 $ $ \dfrac{{S}_{1}^{2}}{2} + {U}_{i1} $ $ \dfrac{2({U}_{i3}-{U}_{i2}) + {S}_{3}^{2}-{S}_{2}^{2}}{{S}_{3}-{S}_{2}} $ $ {U}_{i3}-\dfrac{{S}_{2}{S}_{3}}{2}-\dfrac{{S}_{3}({U}_{i3}-{U}_{i2})}{{S}_{3}-{S}_{2}} $ $ \dfrac{{S}_{4} + {S}_{5}}{2} + \dfrac{{U}_{i5}-{U}_{i4}}{{S}_{5}-{S}_{4}} $ $ {U}_{i4}-\dfrac{{S}_{4}\mathrm{*}{S}_{5}}{2}-\dfrac{{S}_{4}({U}_{i5}-{U}_{i4})}{{S}_{5}-{S}_{4}} $ 2 多孔介质层速度场系数Pk表达式
2. Coefficient expressions Pk of velocity field in porous layers
n $ {P}_{1} $ $ {P}_{2} $ $ {P}_{3} $ $ {P}_{4} $ $ {P}_{5} $ $ {P}_{6} $ n = 1 $ \dfrac{Da{\text{(}\text{e}}^{NS}-{\text{e}}^{N}) + {U}_{i}{\text{e}}^{N}}{{\text{e}}^{N(1-S)}-{\text{e}}^{N(S-1)}} $ $ -\dfrac{Da{\text{(e}}^{-NS}-{\text{e}}^{-N}) + {U}_{i}{\text{e}}^{-N}}{{\text{e}}^{N(1-S)}-{\text{e}}^{N(S-1)}} $ — — — — n = 2 $ \dfrac{{U}_{i1}-Da}{{\text{e}}^{N{S}_{1}} + {\text{e}}^{-N{S}_{1}}} $ $ \dfrac{{U}_{i1}-Da}{{\text{e}}^{N{S}_{1}} + {\text{e}}^{-N{S}_{1}}} $ $\dfrac{\begin{array}{c}[Da{ {\rm{e} }^{N\left( { {S_2} + 1} \right)} }{ {\rm{e} }^{N{S_2} } } + \\{ {\rm{e} }^N}({U_{i2} } - Da)]\end{array} }{ { { { {\rm{e} }^{2N} }{ { - } }{ {\rm{e} }^{2N{S_2} } } } } }$ $ -\dfrac{Da{\text{e}}^{N} + {\text{e}}^{N{S}_{2}}\mathrm{*}({U}_{i2}-Da)}{{\text{e}}^{2 N}-{\text{e}}^{2 N{S}_{2}}} $ — — n = 3 $\dfrac{\begin{array}{c}[{U}_{i1}{\text{e} }^{N\left({S}_{2}-{S}_{1}\right)}-{U}_{i2}-\\ Da{\text{e} }^{N\left({S}_{2}-{S}_{1}\right)-1}]\end{array} }{{\text{e} }^{N\left({S}_{2}-2{S}_{1}\right)}-{\text{e} }^{-N{S}_{2} }}$ $\dfrac{\begin{array}{c}\left[\right({U}_{i1}-Da{\text{)e} }^{N\left({S}_{1}-{S}_{2}\right)}+\\ Da-{U}_{i2}]\end{array} }{ {\text{e} }^{N\left(2{S}_{1}-{S}_{2}\right)}{\rm{-e} }^{N{S}_{2} } }$ $ \dfrac{Da{\text{(1-e}}^{N\left({S}_{3}-1\right)})-{U}_{i3}}{{\text{e}}^{N\left({S}_{3}-2\right)}-{\text{e}}^{-N{S}_{3}}} $ $ \dfrac{{Da\rm{(1-e}}^{N\left(1-{S}_{3}\right)})-{U}_{i3}}{{\text{e}}^{N\left(2-{S}_{3}\right)}-{\text{e}}^{N{S}_{3}}} $ — — n = 4 $ \dfrac{{U}_{i1}-Da}{{\text{e}}^{N{S}_{1}} + {\text{e}}^{-N{S}_{1}}} $ $ \dfrac{{U}_{i1}-Da}{{\text{e}}^{N{S}_{1}} + {\text{e}}^{-N{S}_{1}}} $ $\dfrac{\begin{array}{c}[{U_{i3}} - {U_{i2}}{{\rm{e}}^{N\left( {{S_3} - {S_2}} \right)}} - \\Da(1 - {{\rm{e}}^{N\left( {{S_3} - {S_2}} \right)}})]\end{array}}{{{{\rm{e}}^{ - N{S_3}}} - {{\rm{e}}^{N\left( {{S_3} - 2{S_2}} \right)}}}}$ $\dfrac{\begin{array}{c}[{U}_{i3}-{U}_{i2}{\rm{e}}^{N\left({S}_{2}-{S}_{3}\right)}-\\ Da(1-{\rm{e}}^{N\left({S}_{2}-{S}_{3}\right)})]\end{array} }{ {\rm{e}}^{N{S}_{3} }-{\rm{e}}^{N\left(2{S}_{2}{-}{S}_{3}\right)} }$ $ \dfrac{-{U}_{i4}-Da({\rm{e}}^{N\left({S}_{4}-1\right)}-1)}{{\rm{e}}^{N({S}_{4}-2)}-{\rm{e}}^{-N{S}_{4}}} $ $ \dfrac{-{U}_{i4}-Da({\rm{e}}^{N\left(1-{S}_{4}\right)}-1)}{{\rm{e}}^{N(2-{S}_{4})}-{\rm{e}}^{N{S}_{4}}} $ n = 5 $\dfrac{\begin{array}{c}\Big[{U}_{i1}{\rm{e}}^{N\left({S}_{2}-{S}_{1}\right)}-{U}_{i2}-\\ Da\left({\rm{e}}^{N\left({S}_{2}-{S}_{1}\right)}{-1}\right)\Big]\end{array} }{ {\rm{e}}^{N\left({S}_{2}-2{S}_{1}\right)}-{\rm{e}}^{-N{S}_{2} } }$ $\dfrac{\begin{array}{c}\left[\right({U}_{i1}-Da{\text{)e} }^{N\left({S}_{1}-{S}_{2}\right)}+\\ Da-{U}_{i2}]\end{array} }{ {\text{e} }^{N\left(2{S}_{1}-{S}_{2}\right)}{\text{-e} }^{N{S}_{2} } }$ $\dfrac{\begin{array}{c}\Big[{U_{i4}}{{\rm{e}}^{N\left( {{S_3} - {S_4}} \right)}} - {U_{i3}} + \\Da\left( {{{\rm{e}}^{N\left( {{S_3} - {S_4}} \right)}}{{ - 1}}} \right)\Big]\end{array}}{{{{\rm{e}}^{N\left( {{S_3} - 2{S_4}} \right)}} - {{\rm{e}}^{ - N{S_3}}}}}$ $\dfrac{\begin{array}{c}[{U}_{i4}{\rm{e}}^{N\left({S}_{4}-{S}_{3}\right)}-{U}_{i3}-\\ Da({\rm{e}}^{N\left({S}_{4}-{S}_{3}\right)}-1)]\end{array} }{ {\rm{e}}^{N\left(2{S}_{4}-{S}_{3}\right)}-{\rm{e}}^{N{S}_{3} } }$ $ \dfrac{-{U}_{i5}-Da({\rm{e}}^{N\left({S}_{5}-1\right)}-1)}{{\rm{e}}^{N({S}_{5}-2)}-{\rm{e}}^{-N{S}_{5}}} $ $ \dfrac{-{U}_{i5}-Da({\rm{e}}^{N\left(1-{S}_{5}\right)}-1)}{{\rm{e}}^{N(2-{S}_{5})}-{\rm{e}}^{N{S}_{5}}} $ 3 裂隙层温度场系数Cj表达式
3. Coefficient expressions Cj of temperature field in fracture layers
n $ {C}_{1} $ $ {C}_{2} $ $ {C}_{3} $ $ {C}_{4} $ $ {C}_{5} $ $ {C}_{6} $ n = 1 $ 0 $ $ \dfrac{{F}{S}_{1}^{4}}{12}-\dfrac{{F}{L}_{1}{S}_{1}^{3}}{6}-{F}{L}_{2}{S}_{1}^{2} + {T}_{i1} $ — — — — n = 2 $ \dfrac{\begin{array}{c}[F\left({S}_{1}^{4}-{S}_{2}^{4}\right) + 2 F{L}_{1}\left({S}_{2}^{3}-{S}_{1}^{3}\right) + \\ 12 F{L}_{2}({S}_{2}^{2}-{S}_{1}^{2}) + 12({T}_{i1}-{T}_{i2})]\end{array}}{12\left({S}_{1}-{S}_{2}\right)} $ $ \dfrac{\begin{array}{c}[F{S}_{1}{S}_{2}\left({S}_{2}^{3}-{S}_{1}^{3}\right) + 2 F{L}_{1}{S}_{1}{S}_{2}\left({S}_{1}^{2}-{S}_{2}^{2}\right) + \\ 12 F{L}_{2}{S}_{1}{S}_{2}({S}_{1}-{S}_{2}) + 12({T}_{i2}{S}_{1}-{T}_{i1}{S}_{2})]\end{array}}{12\left({S}_{1}-{S}_{2}\right)} $ — — — — n = 3 $ 0 $ $ \dfrac{{F}{S}_{1}^{4}}{12}-\dfrac{{F}{L}_{1}{S}_{1}^{3}}{6}-{F}{L}_{2}{S}_{1}^{2} + {T}_{i1} $ $ \dfrac{\begin{array}{c}[F\left({S}_{2}^{4}-{S}_{3}^{4}\right) + 2 F{L}_{3}\left({S}_{3}^{3}-{S}_{2}^{3}\right) + \\ 12 F{L}_{4}({S}_{3}^{2}-{S}_{2}^{2}) + 12({T}_{i2}-{T}_{i3})]\end{array}}{12\left({S}_{2}-{S}_{3}\right)} $ $ \dfrac{\begin{array}{c}[F{S}_{2}{S}_{3}\left({S}_{3}^{3}-{S}_{2}^{3}\right) + 2 F{L}_{3}{S}_{2}{S}_{3}\left({S}_{2}^{2}-{S}_{3}^{2}\right) + \\ 12 F{L}_{4}{S}_{2}{S}_{3}({S}_{2}-{S}_{3}) + 12({T}_{i3}{S}_{2}-{T}_{i2}{S}_{3})]\end{array}}{12\left({S}_{2}-{S}_{3}\right)} $ — — n = 4 $ \dfrac{\begin{array}{c}[F\left({S}_{1}^{4}-{S}_{2}^{4}\right) + 2 F{L}_{1}\left({S}_{2}^{3}-{S}_{1}^{3}\right) + \\ 12 F{L}_{2}({S}_{2}^{2}-{S}_{1}^{2}) + 12({T}_{i1}-{T}_{i2})]\end{array}}{12\left({S}_{1}-{S}_{2}\right)} $ $ \dfrac{\begin{array}{c}[F{S}_{1}{S}_{2}\left({S}_{2}^{3}-{S}_{1}^{3}\right) + 2 F{L}_{1}{S}_{1}{S}_{2}\left({S}_{1}^{2}-{S}_{2}^{2}\right) + \\ 12 F{L}_{2}{S}_{1}{S}_{2}({S}_{1}-{S}_{2}) + 12({T}_{i2}{S}_{1}-{T}_{i1}{S}_{2})]\end{array}}{12\left({S}_{1}-{S}_{2}\right)} $ $ \dfrac{\begin{array}{c}[F\left({S}_{3}^{4}-{S}_{4}^{4}\right) + 2 F{L}_{3}\left({S}_{4}^{3}-{S}_{3}^{3}\right) + \\ 12 F{L}_{4}({S}_{4}^{2}-{S}_{3}^{2}) + 12({T}_{i3}-{T}_{i4})]\end{array}}{12\left({S}_{3}-{S}_{4}\right)} $ $ \dfrac{\begin{array}{c}[F{S}_{3}{S}_{4}\left({S}_{4}^{3}-{S}_{3}^{3}\right) + 2 F{L}_{3}{S}_{3}{S}_{4}\left({S}_{3}^{2}-{S}_{4}^{2}\right) + \\ 12 F{L}_{4}{S}_{3}{S}_{4}({S}_{3}-{S}_{4}) + 12({T}_{i4}{S}_{3}-{T}_{i3}{S}_{4})]\end{array}}{12\left({S}_{3}-{S}_{4}\right)} $ — — n = 5 $ 0 $ $ \dfrac{{F}{S}_{1}^{4}}{12}-\dfrac{{F}{L}_{1}{S}_{1}^{3}}{6}-{F}{L}_{2}{S}_{1}^{2} + {T}_{i1} $ $ \dfrac{\begin{array}{c}[F\left({S}_{2}^{4}-{S}_{3}^{4}\right) + 2 F{L}_{3}\left({S}_{3}^{3}-{S}_{2}^{3}\right) + \\ 12 F{L}_{4}({S}_{3}^{2}-{S}_{2}^{2}) + 12({T}_{i2}-{T}_{i3})]\end{array}}{12\left({S}_{2}-{S}_{3}\right)} $ $ \dfrac{\begin{array}{c}[F{S}_{2}{S}_{3}\left({S}_{3}^{3}-{S}_{2}^{3}\right) + 2 F{L}_{3}{S}_{2}{S}_{3}\left({S}_{2}^{2}-{S}_{3}^{2}\right) + \\ 12 F{L}_{4}{S}_{2}{S}_{3}({S}_{2}-{S}_{3}) + 12({T}_{i3}{S}_{2}-{T}_{i2}{S}_{3})]\end{array}}{12\left({S}_{2}-{S}_{3}\right)} $ $ \dfrac{\begin{array}{c}[F\left({S}_{4}^{4}-{S}_{3}^{4}\right) + 2 F{L}_{5}\left({S}_{5}^{3}-{S}_{4}^{3}\right) + \\ 12 F{L}_{6}({S}_{5}^{2}-{S}_{4}^{2}) + 12({T}_{i4}-{T}_{i5})]\end{array}}{12\left({S}_{4}-{S}_{5}\right)} $ $ \dfrac{\begin{array}{c}[F{S}_{4}{S}_{5}\left({S}_{5}^{3}-{S}_{4}^{3}\right) + 2 F{L}_{5}{S}_{4}{S}_{5}\left({S}_{4}^{2}-{S}_{5}^{2}\right) + \\ 12 F{L}_{6}{S}_{4}{S}_{5}({S}_{4}-{S}_{5}) + 12({T}_{i5}{S}_{4}-{T}_{i4}{S}_{5})]\end{array}}{12\left({S}_{4}-{S}_{5}\right)} $ 4 多孔介质层温度场系数Zk表达式
4. Coefficient expressions Zk of temperature field in porous layers
n $ {Z}_{1} $ $ {Z}_{2} $ $ {Z}_{3} $ $ {Z}_{4} $ $ {Z}_{5} $ $ {Z}_{6} $ n = 1 $ \dfrac{\begin{array}{c}[Da{{N}}^{2}\left(1-{{S}}_{1}^{2}\right) + 2{{P}}_{2}\left({\rm{e}}^{{N}}-{\rm{e}}^{{N}{{S}}_{1}}\right)+ \\ 2{{P}}_{1}({\rm{e}}^{-{N}}-{\rm{e}}^{-{N}{{S}}_{1}}) + 2 L{{N}}^{2}{T}_{i}]\end{array}}{2{L}{{N}}^{2}\left({S}_{1}-1\right)} $ $ -\dfrac{\begin{array}{c}[Da{{N}}^{2}{{S}}_{1}\left(1-{{S}}_{1}\right) + 2{{P}}_{2}({{S}}_{1}{\rm{e}}^{{N}}-{\rm{e}}^{{N}{{S}}_{1}})+ \\ 2{{P}}_{1}({{S}}_{1}{\rm{e}}^{-{N}}-{\rm{e}}^{-{N}{{S}}_{1}}) + 2 L{{N}}^{2}{T}_{i}]\end{array}}{2{L}{{N}}^{2}\left({S}_{1}-1\right)} $ — — — — n = 2 $ \dfrac{{P}1-{P}2}{{L}{N}} $ $ -\dfrac{\begin{array}{c}[2\left({P}_{1}{\rm{e}}^{-N{S}_{1}} + {P}_{2}{\rm{e}}^{N{S}_{1}}\right)-2 L{N}^{2}{T}_{i1}+ \\ 2 N{S}_{1}\left({P}_{1}-{P}_{2}\right) + Da{N}^{2}{S}_{1}^{2}]\end{array}}{2{L}{N}^{2}} $ $ \dfrac{\begin{array}{c}[2{P}_{4}\left({\rm{e}}^{N}-{\rm{e}}^{N{S}_{2}}\right) + Da{N}^{2}{(1-S}_{2}^{2})+ \\ 2{P}_{3}\left({\rm{e}}^{-N}-{\rm{e}}^{-N{S}_{2}}\right) + 2 L{N}^{2}{T}_{i2}]\end{array}}{2{L}{N}^{2}\left({S}_{2}-1\right)} $ $ -\dfrac{\begin{array}{c}[2{P}_{4}\left({S}_{2}{\rm{e}}^{N}-{\rm{e}}^{N{S}_{2}}\right) + Da{N}^{2}{({S}_{2}-S}_{2}^{2})+ \\ 2{P}_{3}\left({S}_{2}{\rm{e}}^{-N}-{\rm{e}}^{-N{S}_{2}}\right) + 2 L{N}^{2}{T}_{i2}]\end{array}}{2{L}{N}^{2}\left({S}_{2}-1\right)} $ — — n = 3 $\dfrac{{\begin{array}{*{20}{c}}{ - [Da{{{N}}^2}\left( {S_1^2 - S_2^2} \right) + 2{P_2}\left( {{{\rm{e}}^{N{{{S}}_1}}} - {{\rm{e}}^{N{{{S}}_2}}}} \right) + }\\\begin{array}{l}2{P_1}({{\rm{e}}^{ - N{{{S}}_1}}} - {{\rm{e}}^{ - N{{{S}}_2}}}) + \\2L{{{N}}^2}({T_{i2}} - {T_{i1}})]\end{array}\end{array}}}{{2{{L}}{{{N}}^2}\left( {{S_1} - {{{S}}_2}} \right)}}$ $\dfrac{{\begin{array}{*{20}{c}}{ - \Big[Da{{{N}}^2}{{{S}}_1}{{{S}}_2}\left( {{{{S}}_2} - {{{S}}_1}} \right) + 2{P_2}\left( {{{{S}}_1}{{\rm{e}}^{N{{{S}}_2}}} - {{{S}}_2}{{\rm{e}}^{N{{{S}}_1}}}} \right) + }\\\begin{array}{l}2{P_1}({{{S}}_1}{{\rm{e}}^{ - N{{{S}}_2}}} - {{{S}}_2}{{\rm{e}}^{ - N{{{S}}_1}}}) + \\2L{{{N}}^2}({{{S}}_2}{T_{i1}} - {{{S}}_1}{T_{i2}})\Big]\end{array}\end{array}}}{{2{{L}}{{{N}}^2}\left( {{S_1} - {{{S}}_2}} \right)}}$ $ \dfrac{\begin{array}{c}\Big[2{P}_{4}\left({\rm{e}}^{N}-{\rm{e}}^{N{S}_{3}}\right) + Da{N}^{2}{(1-S}_{3}^{2})+ \\ 2{P}_{3}\left({\rm{e}}^{-N}-{\rm{e}}^{-N{S}_{3}}\right) + 2 L{N}^{2}{T}_{i3}\Big]\end{array}}{2{L}{N}^{2}\left({S}_{3}-1\right)} $ $ -\dfrac{\begin{array}{c}[2{P}_{4}\left({S}_{3}{\rm{e}}^{N}-{\rm{e}}^{N{S}_{3}}\right) + Da{N}^{2}{({S}_{3}-S}_{3}^{2})+ \\ 2{P}_{3}\left({S}_{3}{\rm{e}}^{-N}-{\rm{e}}^{-N{S}_{3}}\right) + 2 L{N}^{2}{T}_{i3}]\end{array}}{2{L}{N}^{2}\left({S}_{3}-1\right)} $ — — n = 4 $ \dfrac{{P}1-{P}2}{{L}{N}} $ $ -\dfrac{\begin{array}{c}\Big[2\left({P}_{1}{\rm{e}}^{-N{S}_{1}} + {P}_{2}{\rm{e}}^{N{S}_{1}}\right)-2 L{N}^{2}{T}_{i1}+ \\ 2 N{S}_{1}\left({P}_{1}-{P}_{2}\right) + Da{N}^{2}{S}_{1}^{2}\Big]\end{array}}{2{L}{N}^{2}} $ $ \dfrac{\begin{array}{c}-\Big[2{P}_{4}\left({\rm{e}}^{N{S}_{2}}-{\rm{e}}^{N{S}_{3}}\right) + {D}{a}{N}^{2}{(S}_{2}^{2}{-S}_{3}^{2}) + \\ 2{P}_{3}\left({\rm{e}}^{-N{S}_{2}}-{\rm{e}}^{-N{S}_{3}}\right) + 2 L{N}^{2}({T}_{i3}-{T}_{i2})\Big]\end{array}}{2{L}{N}^{2}\left({S}_{2}-{S}_{3}\right)} $ $\dfrac{{\begin{array}{*{20}{c}}\begin{array}{l} - \Big[ {2{P_4}\left( {{S_2}{{\rm{e}}^{N{S_3}}} - {S_3}{{\rm{e}}^{N{S_2}}}} \right)} + \\\left. {{{Da}}{N^2}({S_2}S_3^2 - {S_3}S_2^2} \right) + \end{array}\\\begin{array}{l}2{P_3}\left( {{S_2}{{\rm{e}}^{ - N{S_3}}} - {S_3}{{\rm{e}}^{ - N{S_2}}}} \right) + \\2L{N^2}({S_3}{T_{i2}} - {S_2}{T_{i3}})\Big]\end{array}\end{array}}}{{2{{L}}{N^2}\left( {{S_2} - {S_3}} \right)}}$ ${\dfrac{{\begin{array}{*{20}{l}}{\Big[2{P_6}\left( {{{\rm{e}}^N} - {{\rm{e}}^{N{S_4}}}} \right) + }\\{Da{N^2}(1 - S_4^2) + }\\{2{P_3}\left( {{{\rm{e}}^{ - N}} - {{\rm{e}}^{ - N{S_4}}}} \right) + }\\{2L{N^2}{T_{i4}}\Big]}\end{array}}}{{2L{N^2}\left( {{S_4} - 1} \right)}}}$ $\dfrac{ {\begin{array}{*{20}{c} }\begin{array}{l} - \Big[2{P_6}\left( { {S_4}{{\rm{e}}^N} - {{\rm{e}}^{N{S_4} } } } \right) + \\Da{N^2}({S_4} - S_4^2) + \end{array}\\\begin{array}{l}2{P_5}\left( { {S_4}{{\rm{e}}^{ - N} } - {{\rm{e}}^{ - N{S_4} } } } \right) + \\2L{N^2}{T_{i4} }\Big]\end{array}\end{array} } }{ {2{{L} }{N^2}\left( { {S_4} - 1} \right)} }$ n = 5 $\dfrac{{\begin{array}{*{20}{c}}{ - \Big[Da{{{N}}^2}\left( {S_1^2 - S_2^2} \right) + 2{P_2}\left( {{{\rm{e}}^{N{{{S}}_1}}} - {{\rm{e}}^{N{{{S}}_2}}}} \right) + }\\\begin{array}{l}2{P_1}({{\rm{e}}^{ - N{{{S}}_1}}} - {{\rm{e}}^{ - N{{{S}}_2}}}) + 2L{{{N}}^2}({T_{i2}} - {T_{i1}})\Big]\end{array}\end{array}}}{{2{{L}}{{{N}}^2}\left( {{S_1} - {{{S}}_2}} \right)}}$ $ \dfrac{\begin{array}{c}-\Big[Da{{N}}^{2}{{S}}_{1}{{S}}_{2}\left({{S}}_{2}-{{S}}_{1}\right) + 2{P}_{2}\left({{S}}_{1}{\rm{e}}^{N{{S}}_{2}}-{{S}}_{2}{\rm{e}}^{N{{S}}_{1}}\right) + \\ 2{P}_{1}({{S}}_{1}{\rm{e}}^{-N{{S}}_{2}}-{{S}}_{2}{\rm{e}}^{-N{{S}}_{1}}) + 2 L{{N}}^{2}({{S}}_{2}{T}_{i1}-{{S}}_{1}{T}_{i2})\Big]\end{array}}{2{L}{{N}}^{2}\left({S}_{1}-{{S}}_{2}\right)} $ $ \dfrac{\begin{array}{c}-\Big[Da{{N}}^{2}\left({S}_{3}^{2}-{S}_{4}^{2}\right) + 2{P}_{4}\left({\rm{e}}^{N{{S}}_{3}}-{\rm{e}}^{N{{S}}_{4}}\right) + \\ 2{P}_{3}({\rm{e}}^{-N{{S}}_{3}}-{\rm{e}}^{-N{{S}}_{4}}) + 2 L{{N}}^{2}({T}_{i4}-{T}_{i3})\Big]\end{array}}{2{L}{{N}}^{2}\left({S}_{3}-{{S}}_{4}\right)} $ $\dfrac{ {\begin{array}{*{20}{c} }\begin{array}{l} - \Big[Da{ {{N} }^2}{ {{S} }_3}{ {{S} }_4}\left( { { {{S} }_4} - { {{S} }_3} } \right) + \\2{P_4}\left( { { {{S} }_3}{{\rm{e}}^{N{ {{S} }_4} } } - { {{S} }_4}{{\rm{e}}^{N{ {{S} }_3} } } } \right) + \end{array}\\\begin{array}{l}2{P_3}({ {{S} }_3}{{\rm{e}}^{ - N{ {{S} }_4} } } - { {{S} }_4}{{\rm{e}}^{ - N{ {{S} }_3} } }) + \\2L{ {{N} }^2}({ {{S} }_4}{T_{i3} } - { {{S} }_3}{T_{i4} })\Big]\end{array}\end{array} } }{ {2{{L} }{ {{N} }^2}\left( { {S_3} - { {{S} }_4} } \right)} }$ $\dfrac{{\begin{array}{*{20}{c}}\begin{array}{l}\Big[2{P_6}\left( {{{\rm{e}}^N} - {{\rm{e}}^{N{S_5}}}} \right) + \\Da{N^2}(1 - S_5^2) + \end{array}\\\begin{array}{l}2{P_5}\left( {{{\rm{e}}^{ - N}} - {{\rm{e}}^{ - N{S_5}}}} \right) + \\2L{N^2}{T_{i5}}\Big]\end{array}\end{array}}}{{2{{L}}{N^2}\left( {{S_5} - 1} \right)}}$ $\dfrac{{\begin{array}{*{20}{c}}\begin{array}{l} - \Big[2{P_6}\left( {{S_5}{{\rm{e}}^N} - {{\rm{e}}^{N{S_5}}}} \right) + \\Da{N^2}({S_5} - S_5^2) + \end{array}\\\begin{array}{l}2{P_5}\left( {{S_5}{{\rm{e}}^{ - N}} - {{\rm{e}}^{ - N{S_5}}}} \right) + \\2L{N^2}{T_{i5}}\Big]\end{array}\end{array}}}{{2{{L}}{N^2}\left( {{S_5} - 1} \right)}}$ -
[1] Nteld DA, Kuznetsov AV, Xiong M. Thermally developing forced convection in a porous medium: parallel plate channel with walls at uniform temperature, with axial conduction and viscous dissipation effects. International Journal of Heat and Mass Transfer, 2003, 46(4): 643-651 doi: 10.1016/S0017-9310(02)00327-7 [2] Hooman K. A perturbation solution for forced convection in a porous-saturated duct. Journal of Computational and Applied Mathematics, 2006, 211(1): 57-66 [3] Li HY, Leong KC, Jin LW, et al. Transient two-phase flow and heat transfer with localized heating in porous media. International Journal of Thermal Sciences, 2010, 49(7): 1115-1127 doi: 10.1016/j.ijthermalsci.2010.01.024 [4] Al-Farhany K, Turan A. Non-Darcy effects on conjugate double-diffusive natural convection in a variable porous layer sandwiched by finite thickness walls. International Journal of Heat and Mass Transfer, 2011, 54(13-14): 2868-2879 doi: 10.1016/j.ijheatmasstransfer.2011.03.012 [5] Dehghan M, Mahmoudi Y, Valipour MS, et al. Combined conduction–convection–radiation heat transfer of slip flow inside a micro-channel filled with a porous material. Transport in Porous Media, 2015, 108(2): 413-436 doi: 10.1007/s11242-015-0483-z [6] Celli M, Rees DAS, Barletta A. The effect of local thermal non-equilibrium on forced convection boundary layer flow from a heated surface in porous media. International Journal of Heat and Mass Transfer, 2010, 53(17-18): 3533-3539 doi: 10.1016/j.ijheatmasstransfer.2010.04.014 [7] Vadasz P. Basic natural convection in a vertical porous layer differentially heated from its sidewalls subject to lack of local thermal equilibrium. International Journal of Heat and Mass Transfer, 2011, 54(11-12): 2387-2396 doi: 10.1016/j.ijheatmasstransfer.2011.02.023 [8] Alomar OR. Analysis of variable porosity, thermal dispersion, and local thermal non-equilibrium on two-phase flow inside porous media. Applied Thermal Engineering, 2019, 154: 263-283 doi: 10.1016/j.applthermaleng.2019.03.069 [9] Parhizi M, Torabi M, Jain A. Local thermal non-equilibrium (LTNE) model for developed flow in porous media with spatially-varying Biot number. International Journal of Heat and Mass Transfer, 2021, 164: 120538 doi: 10.1016/j.ijheatmasstransfer.2020.120538 [10] Abbasbandy S, Shivanian E, Hashim I. Exact analytical solution of forced convection in a porous-saturated duct. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(10): 3981-3989 doi: 10.1016/j.cnsns.2011.01.009 [11] Hashemi SMH, Fazeli SA, Shokouhmand H. Fully developed non-Darcian forced convection slip-flow in a micro-annulus filled with a porous medium: analytical solution. Energy Conversion and Management, 2011, 52(2): 1054-1060 doi: 10.1016/j.enconman.2010.08.034 [12] Lisboa KM, Cotta RM. Hybrid integral transforms for flow development in ducts partially filled with porous media. Proceedings of The Royal Society A: Mathematical Physical and Engineering Sciences, 2018, 474(2209): 20170637 doi: 10.1098/rspa.2017.0637 [13] Torabi M, Karimi N, Zhang K. Heat transfer and second law analyses of forced convection in a channel partially filled by porous media and featuring internal heat sources. Energy, 2015, 93: 106-127 doi: 10.1016/j.energy.2015.09.010 [14] Li Q, Hu PF. Analytical solutions of fluid flow and heat transfer in a partial porous channel with stress jump and continuity interface conditions using LTNE model. International Journal of Heat and Mass Transfer, 2019, 128: 1280-1295 doi: 10.1016/j.ijheatmasstransfer.2018.08.132 [15] Li Q, Zhang RM, Hu PF. Effect of thermal boundary conditions on forced convection under LTNE model with no-slip porous-fluid interface condition. International Journal of Heat and Mass Transfer, 2021, 167: 120803 doi: 10.1016/j.ijheatmasstransfer.2020.120803 [16] Ucar E, Mobedi M, Pop I. Effect of an inserted porous layer located at a wall of a parallel plate channel on forced convection heat transfer. Transport in Porous Media, 2013, 98(1): 35-57 doi: 10.1007/s11242-013-0131-4 [17] Kuznetsov AV, Nield DA. Forced convection in a channel partly occupied by a bidisperse porous medium: asymmetric case. International Journal of Heat and Mass Transfer, 2010, 53(23-24): 5167-5175 doi: 10.1016/j.ijheatmasstransfer.2010.07.046 [18] 李琪, 赵一远, 胡鹏飞. 多孔介质−自由流界面应力跳跃条件下流动特性解析解. 力学学报, 2018, 50(2): 415-426 (Li Qi, Zhao Yiyuan, Hu Pengfei. Analytical solution for porous-fluid flowcharacteristics with stress jump interfacial condition. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 415-426 (in Chinese) [19] 李琪, 张容铭, 胡鹏飞. LTNE条件下界面对流传热系数对部分填充多孔介质通道传热特性的影响. 化工学报, 2021, 72(8): 4121-4133 (Li Qi, Zhang Rongming, Hu Pengfei. Influence of interfacial convective heat transfer coefficient on heat transfer in partially filled porous channel under LTNE condition. Ciesc Journal, 2021, 72(8): 4121-4133 (in Chinese) [20] Satyamurty VV, Bhargavi D. Forced convection in thermally developing region of a channel partially filled with a porous material and optimal porous fraction. International Journal of Thermal Sciences, 2010, 49(2): 319-332 doi: 10.1016/j.ijthermalsci.2009.07.023 [21] Mahmoudi Y, Maerefat M. Analytical investigation of heat transfer enhancement in a channel partially filled with a porous material under local thermal non-equilibrium condition. International Journal of Thermal Sciences, 2011, 50(12): 2386-2401 doi: 10.1016/j.ijthermalsci.2011.07.008 [22] Yang K, Vafai K. Restrictions on the validity of the thermal conditions at the porous-fluid interface-an exact solution. Journal of Heat Transfer, 2011, 133(11): 112601 doi: 10.1115/1.4004350 [23] Cekmer O, Mobedi M, Ozerdem B, et al. Fully developed forced convection in a parallel plate channel with a centered porous layer. Transport in Porous Media, 2012, 93(1): 179-201 doi: 10.1007/s11242-012-9951-x [24] Mahmoudi Y, Karimi N. Numerical investigation of heat transfer enhancement in a pipe partially filled with a porous material under local thermal non-equilibrium condition. International Journal of Heat and Mass Transfer, 2014, 68: 161-173 doi: 10.1016/j.ijheatmasstransfer.2013.09.020 [25] Teamah MA, El-Maghlany WM, Dawood MMK. Numerical simulation of laminar forced convection in horizontal pipe partially or completely filled with porous material. International Journal of Thermal Sciences, 2011, 50(8): 1512-1522 doi: 10.1016/j.ijthermalsci.2011.03.003 [26] Choo J, Borja RI. Stabilized mixed finite elements for deformable porous media with double porosity. Computer Methods in Applied Mechanics and Engineering, 2015, 293: 131-154 doi: 10.1016/j.cma.2015.03.023 [27] Torabi M, Peterson GP, Torabi M, et al. A thermodynamic analysis of forced convection through porous media using pore scale modeling. International Journal of Heat and Mass Transfer, 2016, 99: 303-316 doi: 10.1016/j.ijheatmasstransfer.2016.03.127 [28] Kundu P, Kumar V, Mishra IM. Experimental and numerical investigation of fluid flow hydrodynamics in porous media: Characterization of pre-Darcy, Darcy and non-Darcy flow regimes. Powder Technology, 2016, 303: 278-291 doi: 10.1016/j.powtec.2016.09.037 [29] Suzuki A, Fomin SA, Chugunov VA, et al. Fractional diffusion modeling of heat transfer in porous and fractured media. International Journal of Heat and Mass Transfer, 2016, 103: 611-618 doi: 10.1016/j.ijheatmasstransfer.2016.08.002 [30] Berrone S, Pieraccini S, Scialo S. Flow simulations in porous media with immersed intersecting fractures. Journal of Computational Physics, 2017, 345: 768-791 doi: 10.1016/j.jcp.2017.05.049 [31] Baragh S, Shokouhmand H, Ajarostaghi SSM, et al. An experimental investigation on forced convection heat transfer of single-phase flow in a channel with different arrangements of porous media. International Journal of Thermal Sciences, 2018, 134: 370-379 doi: 10.1016/j.ijthermalsci.2018.04.030 [32] Kacur J, Mihala P, Toth M. Numerical modeling of heat exchange and unsaturated–saturated flow in porous media. Computers and Mathematics with Applications, 2019, 77(6): 1668-1680 doi: 10.1016/j.camwa.2018.06.009 [33] Morales FA, Showalter RE. A Darcy–Brinkman model of fractures in porous media. Journal of Mathematical Analysis and Applications, 2017, 452(2): 1332-1358 doi: 10.1016/j.jmaa.2017.03.063 [34] 孟旭辉, 王亮, 郭照立. 多孔介质中流固作用力的动量交换计算. 力学学报, 2014, 46(4): 525-532 (Meng Xuhui, Wang Liang, Guo Zhaoli. Forced evaluation using momentum-exchange method in porous medi. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(4): 525-532 (in Chinese) doi: 10.6052/0459-1879-13-359 [35] 侯晓萍, 陈胜宏. 采用复合单元法模拟裂隙多孔介质变饱和流动. 岩土力学, 2020, 41(4): 1437-1446 (Hou Xiaoping, Chen Shenghong. Simulation of variably-saturated flow in fractured porous media using composite element method. Rock and Soil Mechanics, 2020, 41(4): 1437-1446 (in Chinese) doi: 10.16285/j.rsm.2019.0840 [36] Ochoa-tapia JA, Whitaker S. Momentum transfer at the boundary between a porous medium and a homogeneous fluid(I): Theoretical development. International Journal of Heat and Mass Transfer, 1995, 38(14): 2635-2646 doi: 10.1016/0017-9310(94)00346-W [37] Ochoa-tapia JA, Whitaker S. Momentum transfer at the boundary between a porous medium and a homogeneous fluid(II): Comparison with experiment. International Journal of Heat and Mass Transfer, 1995, 38(14): 2647-2655 doi: 10.1016/0017-9310(94)00347-X [38] Rohsenow WM, Hartnett JP. Handbook of Heat Transfer. Osborne McGraw-Hill, 1973 -