EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑电场梯度的挠曲电纳米板弯曲性能分析

曹彩芹 陈晶博 李东波

曹彩芹, 陈晶博, 李东波. 考虑电场梯度的挠曲电纳米板弯曲性能分析. 力学学报, 2022, 54(11): 1-11 doi: 10.6052/0459-1879-22-282
引用本文: 曹彩芹, 陈晶博, 李东波. 考虑电场梯度的挠曲电纳米板弯曲性能分析. 力学学报, 2022, 54(11): 1-11 doi: 10.6052/0459-1879-22-282
Cao Caiqin, Chen Jingbo, Li Dongbo. Bending performance analysis of flexoelectric nanoplate considering electric field gradients. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 1-11 doi: 10.6052/0459-1879-22-282
Citation: Cao Caiqin, Chen Jingbo, Li Dongbo. Bending performance analysis of flexoelectric nanoplate considering electric field gradients. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 1-11 doi: 10.6052/0459-1879-22-282

考虑电场梯度的挠曲电纳米板弯曲性能分析

doi: 10.6052/0459-1879-22-282
基金项目: 国家自然科学基金资助项目(51878547)
详细信息
    作者简介:

    曹彩芹, 副教授, 主要研究方向: 基础板与地基相互作用. E-mail: 392869736@qq.com

  • 中图分类号: TB381

BENDING PERFORMANCE ANALYSIS OF FLEXOELECTRIC NANOPLATE CONSIDERING ELECTRIC FIELD GRADIENTS

  • 摘要: 具有尺度依赖的挠曲电效应在器件的设计中扮演着越来越关键的角色, 研究人员在微纳米尺度多物理场分析中进行了大量工作. 基于考虑挠曲电和电场梯度效应的弹性介电材料非经典理论, 以二维纳米板为例, 通过理论建模, 分析纳米板在弯曲问题中的力−电耦合行为. 根据Mindlin假设给出板的位移场和电势场的一阶截断, 选取板的材料为立方晶体(m3m点群), 将广义三维本构方程代入到高阶应力、高阶偶应力、高阶电位移和高阶电4极矩的表达式中得到相应的二维本构方程, 利用弹性电介质变分原理得到板的控制方程和边界上的线积分等式, 分别将二维本构方程和边界上外法线的方向余弦代入, 得到板的高阶弯曲方程、高阶电势方程以及对应的四边简支边界条件. 利用四边简支矩形板的高阶弯曲方程、高阶电势方程和相应的边界条件, 根据Navier解理论, 求解纳米板的电势场, 重点分析电场梯度对板内一阶电势的影响. 数值计算结果表明: 电场梯度对纳米板中由挠曲电效应产生的一阶电势有削弱作用, 且材料参数g11越大, 一阶电势受到的削弱越大; 同时电场梯度的存在消除了纳米板在受横向集中载荷作用时一阶电势的奇异性. 本文是对具有挠曲电效应和电场梯度效应的纳米板结构分析理论的一个扩展, 为微纳米尺度器件的结构设计提供参考.

     

  • 图  1  (a) Mindlin板中面上的直角坐标系, (b) 变形前和变形后板在x2 = 0平面上的几何形状

    Figure  1.  (a) Rectangular coordinate system on the midplane of Mindlin plate, (b) Geometry of the plate edge on the x2 = 0 plane before and after deformation

    图  2  四边简支板的边界

    Figure  2.  Boundary of a simply supported rectangular plate on four sides

    图  3  四边简支矩形板受集中载荷P作用

    Figure  3.  Four-sided simply supported rectangular plate subjected to concentrated loading P

    图  4  四边简支矩形板的一阶电势φ(1)分布

    Figure  4.  First-order electric potential φ(1) of the four-sided simply supported Mindlin plate

    图  5  不同的材料参数g11对四边简支矩形板在x2 = b/2处的一阶电势的影响

    Figure  5.  Influences of different material parameters g11 on the first-order electric potential of four-sided simply supported plate at x2 = b/2

    6  四边简支矩形板的电四极矩分量云图

    6.  Higher-order electric quadrupole of four-sided simply supported Mindlin plate

    6  四边简支矩形板的电四极矩分量云图(续)

    6.  Higher-order electric quadrupole of four-sided simply supported Mindlin plate(continued)

  • [1] Deng Q, Kammoun M, Erturk A, et al. Nanoscale flexoelectric energy harvesting. International Journal of Solids and Structures, 2014, 51: 3218-3225 doi: 10.1016/j.ijsolstr.2014.05.018
    [2] 陈春林, 李肇奇, 梁旭等. 悬臂梁挠曲电俘能器的力电耦合模型及性能分析. 固体力学学报, 2020, 41(2): 159-169

    Chen Chunlin, Li Zhaoqi, Liang Xu, et al. Electromechanical coupling model and performance analysis of the unimorph cantilever beam-based flexoelectric energy harvester. Chinese Journal of Solid Mechanics, 2020, 41(2): 159-169 (in Chinese)
    [3] 李鹏. 压电复合结构中弹性波传播特性分析及其在高性能声波器件中的应用研究. [博士论文]. 西安: 西安交通大学, 2017

    Li Peng. Investigation of elastic waves propagation properties in piezoelectric composite structures and applications for acoustic wave devices with high performance. [PhD Thesis]. Xi’an: Xi’an Jiaotong University, 2017 (in Chinese)
    [4] Pan E. Exact solution for simply supported and multilayered magneto-electro-elastic plates. Journal of Applied Mechanics, 2001, 68: 608-618 doi: 10.1115/1.1380385
    [5] Ho CM, Tai YC. Micro-electro-mechanical-systems (MEMS) and fluid flows. Annual Review of Fluid Mechanics, 1998, 30: 579-612 doi: 10.1146/annurev.fluid.30.1.579
    [6] 张乐乐, 刘响林, 刘金喜. 压电纳米板中SH型导波的传播特性. 力学学报, 2019, 51(2): 503-511

    Zhang Lele, Liu Xianglin, Liu Jinxi. Propagation characteristics of SH guided waves in a piezoelectric nanoplate. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 503-511 (in Chinese)
    [7] 孟莹, 丁虎, 陈立群. 带附加质量块的压电圆板能量采集器振动分析. 力学学报, 2021, 53(11): 2950-2960

    Meng Ying, Ding Hu, Chen Liqun. Vibration analysis of a piezoelectric circular plate energy harvester considering a proof mass. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2950-2960 (in Chinese)
    [8] 李世荣. 功能梯度材料明德林矩形微板的热弹性阻尼. 力学学报, 2022, 54: 1-12

    Li Shirong. Thermoelastic damping in functionally graded Mindlin rectangular micro plates. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1601-1612 (in Chinese)
    [9] Yang J. An Introduction to the Theory of Piezoelectricity. New York: Springer, 2005
    [10] Wang B, Gu Y, Zhang S, et al. Flexoelectricity in solids: progress, challenges, and perspectives. Progress in Materials Science, 2019, 106: 100570 doi: 10.1016/j.pmatsci.2019.05.003
    [11] Bhaskar UK, Banerjee N, Abdollahi A, et al. A flexoelectric microelectromechanical system on silicon. Nature Nanotechnology, 2016, 11(3): 263-266 doi: 10.1038/nnano.2015.260
    [12] Deng Q, Lv S, Li Z, et al. The impact of flexoelectricity on materials, devices, and physics. Journal of Applied Physics, 2020, 128: 080902 doi: 10.1063/5.0015987
    [13] Qu YL, Jin F, Yang JS. Effects of mechanical fields on mobile charges in a composite beam of flexoelectric dielectrics and semiconductors. Journal of Applied Physics, 2020, 127: 194502 doi: 10.1063/5.0005124
    [14] Quang HL, He QC. The number and types of all possible rotational symmetries for flexoelectric tensors. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011, 467(2132): 2369-2386 doi: 10.1098/rspa.2010.0521
    [15] Shen S, Hu S. A theory of flexoelectricity with surface effect for elastic dielectrics. Journal of the Mechanics and Physics of Solids, 2010, 58: 665-677 doi: 10.1016/j.jmps.2010.03.001
    [16] Shu L, Wei X, Pang T, et al. Symmetry of flexoelectric coefficients in crystalline medium. Journal of Applied Physics, 2011, 110(10): 104106 doi: 10.1063/1.3662196
    [17] Maranganti R, Sharma ND, Sharma P. Electromechanical coupling in nonpiezoelectric materials due to nanoscale nonlocal size effects: Green’s function solutions and embedded inclusions. Physical Review B, 2006, 74: 014110 doi: 10.1103/PhysRevB.74.014110
    [18] El Dhaba AR, Gabr ME. Flexoelectric effect induced in an anisotropic bar with cubic symmetry under torsion. Mathematics and Mechanics of Solids, 2020, 25(3): 820-837 doi: 10.1177/1081286519895569
    [19] Qu YL, Jin F, Yang JS. Magnetically induced charge redistribution in the bending of a composite beam with flexoelectric semiconductor and piezomagnetic dielectric layers. Journal of Applied Physics, 2021, 129: 064503 doi: 10.1063/5.0039686
    [20] Qu YL, Jin F, Yang JS. Flexoelectric effects in second-order extension of rods. Mechanics Research Communications, 2021, 111: 103625 doi: 10.1016/j.mechrescom.2020.103625
    [21] Qu Y, Jin F, Yang J. Torsion of a flexoelectric semiconductor rod with a rectangular cross section. Archive of Applied Mechanics, 2021, 91(5): 2027-2038 doi: 10.1007/s00419-020-01867-0
    [22] Li A, Zhou S, Qi L, et al. A flexoelectric theory with rotation gradient effects for elastic dielectrics. Modelling and Simulation in Materials Science and Engineering, 2016, 24: 015009 doi: 10.1088/0965-0393/24/1/015009
    [23] Qu YL, Zhang GY, Fan YM, et al. A non-classical theory of elastic dielectrics incorporating couple stress and quadrupole effects: part I–reconsideration of curvature-based flexoelectricity theory. Mathematics and Mechanics of Solids, 2021, 26(11): 1647-1659 doi: 10.1177/10812865211001533
    [24] Gao XL, Zhang GY. A non-classical Mindlin plate model incorporating microstructure, surface energy and foundation effects. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472: 20160275 doi: 10.1098/rspa.2016.0275
    [25] Li YS, Pan E. Static bending and free vibration of a functionally graded piezoelectric microplate based on the modified couple-stress theory. International Journal of Engineering Science, 2015, 97: 40-59 doi: 10.1016/j.ijengsci.2015.08.009
    [26] Yang J. The Mechanics of Piezoelectric Structures. Singapore: World Scientific, 2006
    [27] Mindlin RD. An Introduction to the Mathematical Theory of Vibrations of Elastic Plates. Singapore: World Scientific, 2006
    [28] Yang J. Mechanics of Piezoelectric Structures. Singapore: World Scientific, 2020
    [29] Koiter WT. Couple-stresses in the theory of elasticity. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen B, 1964, 67: 17-44
    [30] Mindlin RD. Influence of couple-stresses on stress concentrations. Experimental Mechanics, 1963, 3(1): 1-7 doi: 10.1007/BF02327219
    [31] Zhang GY, Gao XL, Guo ZY. A non-classical model for an orthotropic Kirchhoff plate embedded in a viscoelastic medium. Acta Mechanica, 2017, 228: 3811-3825 doi: 10.1007/s00707-017-1906-4
    [32] Mindlin RD. High frequency vibrations of piezoelectric crystal plates. International Journal of Solids and Structures, 1972, 8: 895-906 doi: 10.1016/0020-7683(72)90004-2
    [33] Mindlin RD. Polarization gradient in elastic dielectrics. International Journal of Solids and Structures, 1968, 4: 637-642 doi: 10.1016/0020-7683(68)90079-6
    [34] 胡淑玲, 申胜平. 具有挠曲电效应的纳米电介质变分原理及控制方程. 中国科学: G辑, 2009, 39(12): 1762-1769

    Hu Shuling, Shen Shengping. Variational principles and governing equations in nano-dielectrics with the flexoelectric effect. Science China Physics, Mechanics & Astronomy, 2009, 39(12): 1762-1769 (in Chinese)
    [35] Gao XL, Mall S. Variational solution for a cracked mosaic model of woven fabric composites. International Journal of Solids and Structures, 2001, 38: 855-874 doi: 10.1016/S0020-7683(00)00047-0
    [36] Wang L, Liu S, Feng X, et al. Flexoelectronics of centrosymmetric semiconductors. Nature Nanotechnology, 2020, 15: 661-667 doi: 10.1038/s41565-020-0700-y
    [37] Yang XM, Hu YT, Yang J. Electric field gradient effects in anti-plane problems of polarized ceramics. International Journal of Solids and Structures, 2004, 41(24-25): 6801-6811 doi: 10.1016/j.ijsolstr.2004.05.018
  • 加载中
图(7)
计量
  • 文章访问数:  96
  • HTML全文浏览量:  18
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 网络出版日期:  2022-09-09

目录

    /

    返回文章
    返回