EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Walsh函数有限体积法的多重网格特征研究

王刚 干源 任炯

王刚, 干源, 任炯. Walsh函数有限体积法的多重网格特征研究. 力学学报, 2022, 54(12): 3418-3429 doi: 10.6052/0459-1879-22-281
引用本文: 王刚, 干源, 任炯. Walsh函数有限体积法的多重网格特征研究. 力学学报, 2022, 54(12): 3418-3429 doi: 10.6052/0459-1879-22-281
Wang Gang, Gan Yuan, Ren Jiong. Investigation on multigrid features of the finite volume method with Walsh basis function. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(12): 3418-3429 doi: 10.6052/0459-1879-22-281
Citation: Wang Gang, Gan Yuan, Ren Jiong. Investigation on multigrid features of the finite volume method with Walsh basis function. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(12): 3418-3429 doi: 10.6052/0459-1879-22-281

Walsh函数有限体积法的多重网格特征研究

doi: 10.6052/0459-1879-22-281
基金项目: 国家自然科学基金资助项目(92052109)
详细信息
    作者简介:

    王刚, 教授, 主要研究方向: 计算流体力学. E-mail: wanggang@nwpu.edu.cn

  • 中图分类号: V211.3

INVESTIGATION ON MULTIGRID FEATURES OF THE FINITE VOLUME METHOD WITH WALSH BASIS FUNCTION

  • 摘要: Walsh函数有限体积法(FVM-WBF)是一种能够在网格内部捕捉间断的新型数值方法. 持续增加Walsh基函数数目能够稳步提高FVM-WBF方法的求解分辨率, 但计算量暴发式增长和收敛速度下降的问题也会同步出现. 针对Walsh基函数数目增加而引起的计算效率问题, 本文分析了Walsh基函数及其系数所能影响的网格单元局部均值区域尺度, 发现其中隐含类似多重网格的尺度特征, 据此提出一种结合多重网格策略的FVM-WBF方法. 在定常流场计算中根据各级Walsh基函数影响尺度的不同, 对每级Walsh基函数设置满足其稳定性约束的时间步长, 在时间推进求解的过程中快速消除不同波长的数值误差, 实现多重网格的加速收敛效果. 选取NACA0012翼型和二维圆柱的定常无黏绕流问题作为算例, 对引入多重网格策略的FVM-WBF方法和不考虑多重网格策略的FVM-WBF方法进行对比测试. 数值结果证实: 新发展的FVM-WBF方法具备多重网格的关键特征, 在不增加任何特殊处理和计算量的情况下, 只需通过时间步长的调整, 就能够达到多重网格的加速效果, 显著提升计算效率.

     

  • 图  1  单位正方形上二维Walsh基函数示意图

    Figure  1.  Schematic diagram of the two-dimensional Walsh basis function on the unit square

    图  2  FVM-WBF方法对单位正方形区域上的变量$Q(x,y) = - {(x - 0.4)^2} - {(y - 0.6)^2} + 0.1 x\sin (2 y) + 1$拟合数值结果

    Figure  2.  The numerical results of two-dimensional variable $Q(x,y) = - {(x - 0.4)^2} - {(y - 0.6)^2} + 0.1 x\sin (2 y) + 1$ simulated by the FVM-WBF method on unit square area

    图  3  四边形网格的Walsh基函数级数子区域划分示意图

    Figure  3.  Subdivision of a quadrilateral grid according to Walsh basis function series

    图  4  不同级别的基函数所对应的时间步长

    Figure  4.  Correspondence between different levels of basis functions and time steps

    图  5  二维圆柱的计算网格

    Figure  5.  The computational grid of the two-dimensional cylinder

    图  6  圆柱绕流马赫数云图

    Figure  6.  Mach number contours of the low speed flow over cylinder

    图  7  圆柱表面压力系数对比图

    Figure  7.  Comparison of pressure coefficients on cylinder surface

    图  8  FVM-WBF_MG方法在圆柱低速绕流计算中的加速效果

    Figure  8.  Effect of FVM-WBF_MG method in the calculation of the low speed flow over cylinder

    图  9  NACA0012翼型计算网格

    Figure  9.  The computational grid of the NACA0012 airfoil

    图  10  NACA0012翼型低速绕流马赫数云图

    Figure  10.  Mach number contours of the low speed flow over NACA0012 airfoil

    图  11  FVM-WBF_MG方法在NACA0012翼型低速绕流计算中的加速效果

    Figure  11.  Effect of FVM-WBF_MG method in the calculation of the low speed flow over NACA0012 airfoil

    图  12  NACA0012翼型跨声速绕流密度云图

    Figure  12.  Density contours of the transonic flow over NACA0012 airfoil

    图  13  NACA0012翼型表面压力系数对比图

    Figure  13.  Comparison of pressure coefficients on NACA0012 airfoil surface

    图  14  FVM-WBF_MG方法在NACA0012翼型跨声速绕流计算中的加速效果

    Figure  14.  Effect of FVM-WBF_MG method in the calculation of the transonic flow over NACA0012 airfoil

    图  15  NACA0012翼型超声速绕流密度云图

    Figure  15.  Density contours of the supersonic flow over NACA0012 airfoil

    图  16  FVM-WBF_MG方法在NACA0012翼型超声速绕流计算中的加速效果

    Figure  16.  Effect of FVM-WBF_MG in the calculation of the supersonic flow over NACA0012 airfoil

  • [1] Cary AW, Chawner J, Duque EP, et al. CFD Vision 2030 Road Map: Progress and Perspectives//AIAA Aviation 2021 Forum, 2021
    [2] 阎超. 航空 CFD 四十年的成就与困境. 航空学报, 2022, 43(10): 026490 (Yan Chao. On the achievements and predicaments of CFD in aeronautics for the past forty years. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 026490 (in Chinese)
    [3] Li Y, Chen C, Ren YX. A class of high-order finite difference schemes with minimized dispersion and adaptive dissipation for solving compressible flows. Journal of Computational Physics, 2022, 448: 110770 doi: 10.1016/j.jcp.2021.110770
    [4] 孔令发, 董义道, 刘伟. 全局方向模板对非结构有限体积梯度与高阶导数重构的影响. 力学学报, 2020, 52(5): 1334-1349 (Kong Lingfa, Dong Yidao, Liu Wei. The influence of global-direction stencil on gradient and high-order derivatives of unstructured finite volume methods. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1334-1349 (in Chinese) doi: 10.6052/0459-1879-20-093
    [5] 陈林烽. 基于Navier-Stokes方程残差的隐式大涡模拟有限元模型. 力学学报, 2020, 52(5): 1314-1322 (Chen Linfeng. A residual-based unresolved-scale finite element modelling for implict large eddy simulation. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1314-1322 (in Chinese) doi: 10.6052/0459-1879-20-055
    [6] Cockburn B, Shu CW. Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. Journal of Scientific Computing, 2001, 16(3): 173-261 doi: 10.1023/A:1012873910884
    [7] Luo H, Luo L, Nourgaliev R, et al. A reconstructed discontinuous Galerkin method for the compressible Navier–Stokes equations on arbitrary grids. Journal of Computational Physics, 2010, 229(19): 6961-6978 doi: 10.1016/j.jcp.2010.05.033
    [8] Yang X, Cheng J, Luo H, et al. A reconstructed direct discontinuous Galerkin method for simulating the compressible laminar and turbulent flows on hybrid grids. Computers & Fluids, 2018, 168: 216-231
    [9] Wang ZJ. Spectral (finite) volume method for conservation laws on unstructured grids basic formulation. Journal of Computational Physics, 2002, 178(1): 210-251 doi: 10.1006/jcph.2002.7041
    [10] Sun Y, Wang ZJ. High-order spectral volume method for the Navier-Stokes equations on unstructured grids//34th AIAA Fluid Dynamics Conference and Exhibit, 2004
    [11] Liu Y, Vinokur M, Wang ZJ. Spectral difference method for unstructured grids I: Basic formulation. Journal of Computational Physics, 2006, 216(2): 780-801 doi: 10.1016/j.jcp.2006.01.024
    [12] Lin Y, Chen Y, Deng X. A fifth-order nonlinear spectral difference scheme for hyperbolic conservation laws. Computers & Fluids, 2021, 221: 104928
    [13] Blazek J. Computational Fluid Dynamics: Principles and Applications (second edition). Netherlands: Elsevier, 2005: 77-177
    [14] 任炯, 王刚. 一种在网格内部捕捉间断的 Walsh 函数有限体积方法. 力学学报, 2021, 53(3): 773-788 (Ren Jiong, Wang Gang. A finite volume method with Walsh basis functions to capture discontinuity inside grid. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 773-788 (in Chinese) doi: 10.6052/0459-1879-20-253
    [15] Ren J, Wang G. A Walsh-function-based finite volume method to capture discontinuity inside grid cell//AIAA Aviation 2020 Forum, 2020
    [16] Walsh JL. A closed set of normal orthogonal functions. American Journal of Mathematics, 1923, 45: 5-24 doi: 10.2307/2387224
    [17] Gnoffo PA. Solutions of nonlinear differential equations with feature detection using fast Walsh transforms. Journal of Computational Physics, 2017, 338: 620-649 doi: 10.1016/j.jcp.2017.03.016
    [18] Gnoffo PA. Global series solutions of nonlinear differential equations with shocks using Walsh functions. Journal of Computational Physics, 2014, 258: 650-688 doi: 10.1016/j.jcp.2013.10.054
    [19] Jameson A, Yoon S. Multigrid solution of the Euler equations using implicit schemes. AIAA Journal, 1986, 24(11): 1737-1743 doi: 10.2514/3.9518
    [20] Chen HT, Xie HH, Xu F. A full multigrid method for eigenvalue problems. Journal of Computational Physics, 2016, 322: 747-759 doi: 10.1016/j.jcp.2016.07.009
    [21] Tan S, Liu Y, Kou J, et al. Improved mode multigrid method for accelerating turbulence flows. AIAA Journal, 2021, 59: 1-13
    [22] Venkatakrishnan V, Mavriplis DJ. Agglomeration multigrid for the three-dimensional Euler equations. AIAA Journal, 1995, 33(4): 633-640 doi: 10.2514/3.12625
    [23] Shitrit S, Sidilkover D, Gelfgat A. An algebraic multigrid solver for transonic flow problems. Journal of Computational Physics, 2011, 230(4): 1707-1729 doi: 10.1016/j.jcp.2010.11.034
    [24] Pan Y, Persson PO. Agglomeration-based geometric multigrid solvers for compact discontinuous Galerkin discretizations on unstructured meshes. Journal of Computational Physics, 2022, 449: 110775 doi: 10.1016/j.jcp.2021.110775
    [25] Langer S. Agglomeration multigrid methods with implicit Runge–Kutta smoothers applied to aerodynamic simulations on unstructured grids. Journal of Computational Physics, 2014, 277: 72-100 doi: 10.1016/j.jcp.2014.07.050
    [26] Olson LN, Schroder JB. Smoothed aggregation multigrid solvers for high-order discontinuous Galerkin methods for elliptic problems. Journal of Computational Physics, 2011, 230(18): 6959-6976
    [27] Wu JP, Guo PM, Yin FK, et al. A new aggregation algorithm based on coordinates partitioning recursively for algebraic multigrid method. Journal of Computational and Applied Mathematics, 2019, 345: 184-195 doi: 10.1016/j.cam.2018.05.052
    [28] Weiss JM, Maruszewski JP, Smith WA. Implicit solution of preconditioned Navier-Stokes equations using algebraic multigrid. AIAA Journal, 1999, 37(1): 29-36 doi: 10.2514/2.689
    [29] Ye S, Xu X, An H, et al. A supplementary strategy for coarsening in algebraic multigrid. Applied Mathematics and Computation, 2021, 394: 125795 doi: 10.1016/j.amc.2020.125795
    [30] Cleary AJ, Falgout RD, Henson VE, et al. Robustness and scalability of algebraic multigrid. SIAM Journal on Scientific Computing, 2000, 21(5): 1886-1908 doi: 10.1137/S1064827598339402
    [31] Mastyło M. Bilinear interpolation theorems and applications. Journal of Functional Analysis, 2013, 265(2): 185-207 doi: 10.1016/j.jfa.2013.05.001
    [32] Gottlieb S, Ketcheson D, Shu CW. High order strong stability preserving time discretizations. Journal of Scientific Computing, 2009, 38: 251-289 doi: 10.1007/s10915-008-9239-z
    [33] Ismail F, Roe PL. Affordable, entropy-consistent Euler flux functions II: Entropy production at shocks. Journal of Computational Physics, 2009, 228(15): 5410-5436 doi: 10.1016/j.jcp.2009.04.021
    [34] Ren J, Wang G, Ma B. multidimensional extension and application of entropy-consistent scheme for Navier-Stokes equations on unstructured grids//23rd AIAA Computational Fluid Dynamics Conference, 2017
    [35] Liu Y, Zhang W, Zheng X. An accuracy preserving limiter for the high-order discontinuous Galerkin method on unstructured grids. Computers & Fluids, 2019, 192: 104253
  • 加载中
图(16)
计量
  • 文章访问数:  339
  • HTML全文浏览量:  81
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-20
  • 录用日期:  2022-10-30
  • 网络出版日期:  2022-10-31
  • 刊出日期:  2022-12-15

目录

    /

    返回文章
    返回