[1] |
Cary AW, Chawner J, Duque EP, et al. CFD Vision 2030 Road Map: Progress and Perspectives//AIAA Aviation 2021 Forum, 2021
|
[2] |
阎超. 航空 CFD 四十年的成就与困境. 航空学报, 2022, 43(10): 026490 (Yan Chao. On the achievements and predicaments of CFD in aeronautics for the past forty years. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 026490 (in Chinese)
|
[3] |
Li Y, Chen C, Ren YX. A class of high-order finite difference schemes with minimized dispersion and adaptive dissipation for solving compressible flows. Journal of Computational Physics, 2022, 448: 110770 doi: 10.1016/j.jcp.2021.110770
|
[4] |
孔令发, 董义道, 刘伟. 全局方向模板对非结构有限体积梯度与高阶导数重构的影响. 力学学报, 2020, 52(5): 1334-1349 (Kong Lingfa, Dong Yidao, Liu Wei. The influence of global-direction stencil on gradient and high-order derivatives of unstructured finite volume methods. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1334-1349 (in Chinese) doi: 10.6052/0459-1879-20-093
|
[5] |
陈林烽. 基于Navier-Stokes方程残差的隐式大涡模拟有限元模型. 力学学报, 2020, 52(5): 1314-1322 (Chen Linfeng. A residual-based unresolved-scale finite element modelling for implict large eddy simulation. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1314-1322 (in Chinese) doi: 10.6052/0459-1879-20-055
|
[6] |
Cockburn B, Shu CW. Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. Journal of Scientific Computing, 2001, 16(3): 173-261 doi: 10.1023/A:1012873910884
|
[7] |
Luo H, Luo L, Nourgaliev R, et al. A reconstructed discontinuous Galerkin method for the compressible Navier–Stokes equations on arbitrary grids. Journal of Computational Physics, 2010, 229(19): 6961-6978 doi: 10.1016/j.jcp.2010.05.033
|
[8] |
Yang X, Cheng J, Luo H, et al. A reconstructed direct discontinuous Galerkin method for simulating the compressible laminar and turbulent flows on hybrid grids. Computers & Fluids, 2018, 168: 216-231
|
[9] |
Wang ZJ. Spectral (finite) volume method for conservation laws on unstructured grids basic formulation. Journal of Computational Physics, 2002, 178(1): 210-251 doi: 10.1006/jcph.2002.7041
|
[10] |
Sun Y, Wang ZJ. High-order spectral volume method for the Navier-Stokes equations on unstructured grids//34th AIAA Fluid Dynamics Conference and Exhibit, 2004
|
[11] |
Liu Y, Vinokur M, Wang ZJ. Spectral difference method for unstructured grids I: Basic formulation. Journal of Computational Physics, 2006, 216(2): 780-801 doi: 10.1016/j.jcp.2006.01.024
|
[12] |
Lin Y, Chen Y, Deng X. A fifth-order nonlinear spectral difference scheme for hyperbolic conservation laws. Computers & Fluids, 2021, 221: 104928
|
[13] |
Blazek J. Computational Fluid Dynamics: Principles and Applications (second edition). Netherlands: Elsevier, 2005: 77-177
|
[14] |
任炯, 王刚. 一种在网格内部捕捉间断的 Walsh 函数有限体积方法. 力学学报, 2021, 53(3): 773-788 (Ren Jiong, Wang Gang. A finite volume method with Walsh basis functions to capture discontinuity inside grid. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 773-788 (in Chinese) doi: 10.6052/0459-1879-20-253
|
[15] |
Ren J, Wang G. A Walsh-function-based finite volume method to capture discontinuity inside grid cell//AIAA Aviation 2020 Forum, 2020
|
[16] |
Walsh JL. A closed set of normal orthogonal functions. American Journal of Mathematics, 1923, 45: 5-24 doi: 10.2307/2387224
|
[17] |
Gnoffo PA. Solutions of nonlinear differential equations with feature detection using fast Walsh transforms. Journal of Computational Physics, 2017, 338: 620-649 doi: 10.1016/j.jcp.2017.03.016
|
[18] |
Gnoffo PA. Global series solutions of nonlinear differential equations with shocks using Walsh functions. Journal of Computational Physics, 2014, 258: 650-688 doi: 10.1016/j.jcp.2013.10.054
|
[19] |
Jameson A, Yoon S. Multigrid solution of the Euler equations using implicit schemes. AIAA Journal, 1986, 24(11): 1737-1743 doi: 10.2514/3.9518
|
[20] |
Chen HT, Xie HH, Xu F. A full multigrid method for eigenvalue problems. Journal of Computational Physics, 2016, 322: 747-759 doi: 10.1016/j.jcp.2016.07.009
|
[21] |
Tan S, Liu Y, Kou J, et al. Improved mode multigrid method for accelerating turbulence flows. AIAA Journal, 2021, 59: 1-13
|
[22] |
Venkatakrishnan V, Mavriplis DJ. Agglomeration multigrid for the three-dimensional Euler equations. AIAA Journal, 1995, 33(4): 633-640 doi: 10.2514/3.12625
|
[23] |
Shitrit S, Sidilkover D, Gelfgat A. An algebraic multigrid solver for transonic flow problems. Journal of Computational Physics, 2011, 230(4): 1707-1729 doi: 10.1016/j.jcp.2010.11.034
|
[24] |
Pan Y, Persson PO. Agglomeration-based geometric multigrid solvers for compact discontinuous Galerkin discretizations on unstructured meshes. Journal of Computational Physics, 2022, 449: 110775 doi: 10.1016/j.jcp.2021.110775
|
[25] |
Langer S. Agglomeration multigrid methods with implicit Runge–Kutta smoothers applied to aerodynamic simulations on unstructured grids. Journal of Computational Physics, 2014, 277: 72-100 doi: 10.1016/j.jcp.2014.07.050
|
[26] |
Olson LN, Schroder JB. Smoothed aggregation multigrid solvers for high-order discontinuous Galerkin methods for elliptic problems. Journal of Computational Physics, 2011, 230(18): 6959-6976
|
[27] |
Wu JP, Guo PM, Yin FK, et al. A new aggregation algorithm based on coordinates partitioning recursively for algebraic multigrid method. Journal of Computational and Applied Mathematics, 2019, 345: 184-195 doi: 10.1016/j.cam.2018.05.052
|
[28] |
Weiss JM, Maruszewski JP, Smith WA. Implicit solution of preconditioned Navier-Stokes equations using algebraic multigrid. AIAA Journal, 1999, 37(1): 29-36 doi: 10.2514/2.689
|
[29] |
Ye S, Xu X, An H, et al. A supplementary strategy for coarsening in algebraic multigrid. Applied Mathematics and Computation, 2021, 394: 125795 doi: 10.1016/j.amc.2020.125795
|
[30] |
Cleary AJ, Falgout RD, Henson VE, et al. Robustness and scalability of algebraic multigrid. SIAM Journal on Scientific Computing, 2000, 21(5): 1886-1908 doi: 10.1137/S1064827598339402
|
[31] |
Mastyło M. Bilinear interpolation theorems and applications. Journal of Functional Analysis, 2013, 265(2): 185-207 doi: 10.1016/j.jfa.2013.05.001
|
[32] |
Gottlieb S, Ketcheson D, Shu CW. High order strong stability preserving time discretizations. Journal of Scientific Computing, 2009, 38: 251-289 doi: 10.1007/s10915-008-9239-z
|
[33] |
Ismail F, Roe PL. Affordable, entropy-consistent Euler flux functions II: Entropy production at shocks. Journal of Computational Physics, 2009, 228(15): 5410-5436 doi: 10.1016/j.jcp.2009.04.021
|
[34] |
Ren J, Wang G, Ma B. multidimensional extension and application of entropy-consistent scheme for Navier-Stokes equations on unstructured grids//23rd AIAA Computational Fluid Dynamics Conference, 2017
|
[35] |
Liu Y, Zhang W, Zheng X. An accuracy preserving limiter for the high-order discontinuous Galerkin method on unstructured grids. Computers & Fluids, 2019, 192: 104253
|