EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

再论超高周疲劳裂纹萌生特征区

洪友士

洪友士. 再论超高周疲劳裂纹萌生特征区. 力学学报, 2022, 54(8): 1-18 doi: 10.6052/0459-1879-22-276
引用本文: 洪友士. 再论超高周疲劳裂纹萌生特征区. 力学学报, 2022, 54(8): 1-18 doi: 10.6052/0459-1879-22-276
Hong Youshi. Further exploration on characteristic region of crack initiation for very-high-cycle fatigue. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 1-18 doi: 10.6052/0459-1879-22-276
Citation: Hong Youshi. Further exploration on characteristic region of crack initiation for very-high-cycle fatigue. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 1-18 doi: 10.6052/0459-1879-22-276

再论超高周疲劳裂纹萌生特征区

doi: 10.6052/0459-1879-22-276
基金项目: 国家自然科学基金资助项目(11932020)
详细信息
    作者简介:

    洪友士, 研究员, 主要研究方向: 材料力学性能. E-mail: hongys@imech.ac.cn

  • 中图分类号: O34

FURTHER EXPLORATION ON CHARACTERISTIC REGION OF CRACK INITIATION FOR VERY-HIGH-CYCLE FATIGUE

  • 摘要: 关于合金材料超高周疲劳, 笔者提出了裂纹萌生特征区及特征参数的概念, 并提出了“大数往复挤压” 模型揭示裂纹萌生特征区形成机理. 对于高强钢, 该特征区为断裂面的细颗粒区; 对于钛合金, 该特征区为断裂面的粗糙区. 近年, 关于合金材料超高周疲劳裂纹萌生过程与机理受到疲劳领域广泛关注, 并有若干研究新进展. 对此, 有几个问题需要进一步论述, 包括: (1) 微结构细化并演化为纳米晶层的裂纹萌生特征区是发生在裂纹形成之前或之后? (2) 特征区的形成与加载应力比的关系? (3) 特征区纳米晶层的厚度、连续性和微结构细化程度? (4) 特征区的形成是否需要真空环境? 此外, 不同高强合金和不同加载方式的特征区形态也有新的进展. 本文将基于近年文献中的结果, 对这些问题进行综合论述. 本文还简要论述了裂纹萌生特征区概念和大数往复挤压模型的启示, 包括: 合金材料超高周疲劳特性的评估与预测、提高增材合金材料超高周疲劳性能的途径、制备纳米晶薄层材料的可能性. 在郑哲敏先生仙逝一周年之际, 以此文告慰我的导师郑先生.

     

  • 图  1  (a) 高强钢 (1% C, 1% Cr) 超高周疲劳 (R = −1, Nf = 1.79 × 107) 裂纹内部萌生的扫描电镜图像[1], (b) 超高周疲劳裂纹萌生特征区及其断裂面示意图

    Figure  1.  (a) SEM image of VHCF internal crack initiation (R = −1, Nf = 1.79 × 107) for a high-strength steel (1% C, 1% Cr)[1] and (b) schematic of VHCF crack initiation characteristic region together with fracture surface

    图  2  钛合金 (Ti-6Al-4V) 超高周疲劳 (R = 0.5, σm = 468 MPa, Nf = 4.61 × 108) 裂纹内部萌生的扫描电镜图像[8]: (a) 断裂面的RA形貌, (b) 箭头表示RA中的小刻面 (facet)

    Figure  2.  SEM image of VHCF internal crack initiation (R = 0.5, σm = 468 MPa, Nf = 4.61 × 108) for a titanium alloy (Ti-6Al-4V)[8]: (a) RA morphology of fracture surface and (b) arrows indicating facets in the RA region

    图  3  裂纹萌生寿命占疲劳总寿命的比例

    Figure  3.  Ratio of crack initiation life to total fatigue life

    图  4  超高周疲劳裂纹萌生特征区裂纹速率与疲劳寿命的关系

    Figure  4.  Crack growth rate in initiation characteristic region of VHCF as a function of fatigue life

    图  5  高强钢 (GCr15) 变幅循环加载超高周疲劳 (R = −1, Nf = 1.3 × 108) 裂纹萌生特征区扫描电镜图像[13]: (a) 包含裂纹扩展痕迹的FGA区域特征, (b) 局部图像显示裂纹扩展痕迹宽度 (双箭头线段)

    Figure  5.  SEM images for a high-strength steel (GCr15) specimen under variable amplitude cycling (CGD: crack growth direction) (R = −1, Nf = 1.3 × 108) [13]: (a) crack growth traces in FGA region, (b) enlargement of crack growth traces in (a), and double arrow bars indicating trace width

    图  6  图中为我们获得的FGA裂纹速率[13], 为文献[16]获得的FGA之外裂纹速率, 为文献[18]获得的FGA之外裂纹速率

    Figure  6.  Symbols representing FGA crack growth rate[13], representing crack growth rate outside FGA[16], representing crack growth rate outside FGA[18]

    图  7  大数往复挤压模型示意图

    Figure  7.  Schematic of NCP model

    图  8  裂纹萌生阶段裂纹面最大接触应力分布随裂纹长度和加载应力比的变化[24]

    Figure  8.  Variation of the maximum contact stress between crack surfaces in initiation stage with crack size and stress ratio[24]

    图  9  一种马氏体不锈钢超高周疲劳裂纹萌生区[24]: (a) σa = 530 MPa, Nf = 2.68 × 107, R = −1, (b) 图(a)小方条位置的特征区剖面微结构细化的纳米晶层, (c) σa = 264 MPa, Nf = 5.42 × 108, R = 0.5, (d) 图(c)小方条位置的裂纹萌生区剖面微结构未细化

    Figure  9.  VHCF crack initiation region of a martensitic stainless steel[24]: (a) σa = 530 MPa, Nf = 2.68 × 107, R = −1, (b) profile section of rectangular bar in (a) showing characteristic region of nanograin layer, (c) σa = 264 MPa, Nf = 5.42 × 108, R = 0.5, (d) profile section of rectangular bar in (c) showing no evidence of microstructure refinement in crack initiation region

    图  10  (a) 一种马氏体不锈钢超高周疲劳 (σa = 388 MPa, Nf = 1.92 × 109, R = 0.1) 裂纹萌生区断面形貌[24], (b) 图(a)小方条剖面的局部位置呈现微结构细化的纳米晶层

    Figure  10.  (a) VHCF crack initiation region of a martensitic stainless steel (σa = 388 MPa, Nf = 1.92 × 109, R = 0.1)[24] and (b) profile section of rectangular bar in (a) showing nanograin layer in localized domain

    图  11  (a) 一种增材钛合金超高周疲劳裂纹萌生区断裂面特征[27], (b) 图(a)小方条剖面的局部位置呈现微结构细化的纳米晶层

    Figure  11.  (a) Fracture surface morphology of VHCF crack initiation region for an additively made titanium alloy[27] and (b) profile section of rectangular bar in (a) showing nanograin layer in localized domain

    图  12  一种钛合金在R = 0超高周疲劳裂纹萌生区断裂面形貌(σa = 207 MPa, Nf = 8.633 × 108)[22]

    Figure  12.  Fracture surface morphology of VHCF crack initiation region at R = 0 for a titanium alloy (σa = 207 MPa, Nf = 8.633 × 108)[22]

    图  13  (a) 图12中B1处截取透射电镜样品显示的剖面特征, (b-e) 选区电子衍射斑图为孤立衍射点, 表明微结构未细化[22], 电子衍射直径200 nm

    Figure  13.  (a) TEM image of profile sample from location B1 shown in Fig. 12 and (b-e) isolated spots of selective electron area diffraction (SAD) indicating no evidence of microstructure refinement[22], SAD diameter 200 nm

    图  14  超高周疲劳裂纹萌生特征区纳米晶层晶粒尺度分布[28]: (a) 高强钢A1 (R = –1, σa = 775 MPa, Nf = 2.40 × 107), B1 (R = –1, σa = 989 MPa, Nf = 1.11 × 108), B2 (R = –0.5, σa = 633 MPa, Nf = 4.81 × 108), (b) 双态组织钛合金D1 (R = –1, σa = 550 MPa, Nf = 4.52 × 107),D2 (R = –1, σa = 450 MPa, Nf = 1.79 × 109), (c) 等轴组织钛合金E1 (R = –1, σa = 444 MPa, Nf = 1.06 × 108), E2 (R = –1, σa = 434 MPa,Nf = 4.51 × 108)

    Figure  14.  Grain size distribution of nanograin layer in crack initiation characteristic region of VHCF[28], (a) high-strength steels, A1 (R = –1, σa = 775 MPa, Nf = 2.40 × 107), B1 (R = –1, σa = 989 MPa, Nf = 1.11 × 108), B2 (R = –0.5, σa = 633 MPa, Nf = 4.81 × 108), (b) titanium alloys with duplex microstructure, D1 (R = –1, σa = 550 MPa, Nf = 4.52 × 107), D2 (R = –1, σa = 450 MPa, Nf = 1.79 × 109), (c) titanium alloys with equiaxed microstructure, E1 (R = –1, σa = 444 MPa, Nf = 1.06 × 108), E2 (R = –1, σa = 434 MPa, Nf = 4.51 × 108)

    图  15  超高周疲劳裂纹萌生特征区纳米晶层厚度随离开裂纹源的变化[28]: (a) 高强钢, (b) 钛合金

    Figure  15.  Variations of nanograin layer thickness of VHCF crack initiation characteristic region with the distance away from crack origin [28]: (a) high-strength steels and (b) titanium alloys

    图  16  (a) SAD 断续衍射环, (b) SAD连续衍射环, 表明(a)对应的微结构晶粒尺度大于(b)对应的微结构晶粒尺度[29]

    Figure  16.  (a) Discrete diffraction rings of SAD and (b) continuous diffraction rings of SAD, indicating grain size related with (a) larger than that related with (b)[29]

    图  17  无量纲晶粒尺度$ {d^ * } $描述超高周疲劳裂纹萌生特征区的晶粒尺度变化[28]: (a) 高强钢$ {d^ * } $沿裂纹发展路径的变化, (b) 钛合金$ {d^ * } $沿裂纹面深度的变化, (c) 钛合金$ {d^ * } $沿裂纹发展路径的变化

    Figure  17.  Distribution of normalized quantity d* describing the variation of grain size in VHCF crack initiation characteristic region[28]: (a) d* versus crack growth path for high-strength steels, (b) d* versus crack depth for titanium alloys and (c) d* versus crack growth path for titanium alloys

    图  18  一种钛合金超高周疲劳裂纹萌生区断裂面形貌 (R = –1, σa = 444 MPa, Nf = 1.508 × 108), 图中小方条为剖面样品截取位置[22]

    Figure  18.  Fracture surface morphology of VHCF crack initiation region for a titanium alloy (R = –1, σa = 444 MPa, Nf = 1.508 × 108), rectangular bar being location for profile sampling[22]

    图  19  (a) 图18中A1位置剖面样品的透射电镜图像, (b-e) 选区电子衍射斑图显示RA区表层为纳米晶, (f, g) SAD斑图显示离开断裂面为粗晶微结构[22], SAD 直径170 nm

    Figure  19.  (a) TEM image of sample A1 shown in Fig. 18 (R = –1, σa = 444 MPa, Nf = 1.508 × 108), (b-e) SAD pattern showing nanograins in fracture surface layer and (f, g) SAD pattern showing coarse grain microstructure away from fracture surface[22], SAD diameter 170 nm

    图  20  一种结构钢 R = –1超高周疲劳裂纹萌生特征区SEM图像[21]: (a) σmax = 900 MPa, Nf = 2.1 × 107, (b) σmax = 825 MPa, Nf = 1.6 × 108

    Figure  20.  SEM image of VHCF crack initiation characteristic region at R = –1 for a structural steel[21]: (a) σmax = 900 MPa, Nf = 2.1 × 107 and (b) σmax = 825 MPa, Nf = 1.6 × 108

    图  21  图20(b) 中裂纹萌生区小方条位置截取样品的TEM图像及SAD斑图[21], SAD 直径200 nm

    Figure  21.  TEM image of the sample at the location of rectangular bar shown in Fig 20(b) and related SAD patterns[21], SAD diameter 200 nm

    图  22  (a) 一种高强钢变幅循环加载超高周疲劳 (R = −1, σHM = 950 MPa, σLM = 750 MPa, Nf = 1.6 × 107, nH = 1 × 104, nL = 5 × 105) 裂纹萌生区SEM图像, (b) 图(a)小方条位置截取样品的TEM图像, (c,d) 紧靠裂纹面位置SAD 断续环意指纳米晶, (e) 离开裂纹面位置SAD 孤立斑点意指微结构未细化[13], SAD 直径280 nm

    Figure  22.  (a) SEM image of VHCF crack initiation characteristic region for a high-strength steel under variable amplitude loading (R = −1, ${\sigma }_{{\rm{HM}}}$= 950 MPa, ${\sigma }_{\mathrm{LM}}$= 750 MPa, Nf = 1.6 × 107, nH = 1 × 104, nL = 5 × 105), (b) TEM image of the sample from the location of dashed rectangle in (a), (c,d) discontinuous diffraction rings of SAD at the location just underneath fracture surface indicating nanograins and (e) SAD pattern of isolated spots away from fracture surface indicating no evidence of microstructure refinement[13], SAD diameter 280 nm

    图  23  一种钛合金超高周疲劳 (R = ‒1, σa = 550 MPa, Nf = 4.52 × 107) 裂纹萌生特征区图像[10], 断裂面表层原始组织为等轴α相,SAD 直径250 nm

    Figure  23.  Morphology of VHCF crack initiation characteristic region of a titanium alloy (R = ‒1, σa = 550 MPa, Nf = 4.52 × 107)[10], original microstructure of equiaxed α phase at fracture surface layer, SAD diameter 250 nm

    图  24  一种钛合金超高周疲劳 (R = ‒1, σa = 450 MPa, Nf = 1.79 × 109) 裂纹萌生特征区图像[10], 断裂面表层原始组织为片层形态,SAD 直径250 nm

    Figure  24.  Morphology of VHCF crack initiation characteristic region of a titanium alloy (R = ‒1, σa = 450 MPa, Nf = 1.79 × 109)[10], original lamellar microstructure at fracture surface layer, SAD diameter 250 nm

    图  25  一种双态组织钛合金超高周疲劳 (R = –1, σa = 400 MPa, Nf = 2.84 × 108) 裂纹萌生特征区形貌[23]: (a)裂纹萌生区断裂面SEM图像, (b) 图(a)中01位置截取FIB样品的TEM图像, (c) 图(a)中02位置截取FIB样品的TEM图像

    Figure  25.  Morphology of VHCF crack initiation characteristic region of a bimodal titanium alloy (R = –1, σa = 400 MPa, Nf = 2.84 × 108)[23]: (a) SEM image of facture surface of crack initiation region, (b) TEM image of FIB sample at 01 location in (a) and (c) TEM image of FIB sample at 02 location in (a)

    图  26  一种钛合金超高周疲劳 (R = 0.5, σa = 240 MPa, Nf = 4.30 × 107) 裂纹萌生特征区图像[10]: (a) 裂纹萌生区断裂面SEM图像, 虚线环为RA区, (b) 图(a)中小方条位置FIB样品的剖面TEM 图像, (c,d) SAD斑图, SAD 直径250 nm

    Figure  26.  Morphology of VHCF crack initiation characteristic region of a titanium alloy (R = 0.5, σa = 240 MPa, Nf = 4.30 × 107)[10]: (a) SEM image of fracture surface of crack initiation region, dashed loop being RA region, (b) TEM image of FIB sample from the location of the rectangle in (a) and (c,d) SAD pattern, SAD diameter 250 nm

    图  27  一种钛合金超高周疲劳 (R = 0.1, σa = 350 MPa, Nf = 2.03 × 107) 裂纹萌生特征区图像[33]

    Figure  27.  Morphology of VHCF crack initiation characteristic region of a titanium alloy (R = 0.1, σa = 350 MPa, Nf = 2.03 × 107)[33]

    图  28  (a) 高强钢 (GCr15) 试样超高周疲劳 (R = –1, σmax = 890 MPa, Nf = 2.97 × 108) 断裂面整体形貌, (b) 图(a)中裂纹萌生区局部放大[34]

    Figure  28.  (a) Whole morphology of VHCF fracture surface of a high-strength steel (GCr15) specimen (R = –1, σmax = 890 MPa, Nf = 2.97 × 108) and (b) enlargement of crack initiation region in (a)[34]

    图  29  (a) 常规铸造钛合金试样超高周疲劳 (σa = 400 MPa, Nf =2.84 × 108, R = –1) 断裂面整体形貌[23], (b) 图(a)中裂纹萌生区局部放大, (c) 增材钛合金试样超高周疲劳 (R = –1, σa = 233 MPa, Nf = 6.59 × 108) 断裂面形貌[32], (d) 图(c)中裂纹萌生区局部放大

    Figure  29.  Whole morphology of VHCF fracture surface of a conventionally made titanium alloy specimen (σa = 400 MPa, Nf = 2.84 × 108, R = –1)[23], (b) enlargement of crack initiation region in (a), (c) whole morphology of VHCF fracture surface of an additively made titanium alloy specimen (R = –1, σa = 233 MPa, Nf = 6.59 × 108)[32] and (d) enlargement of crack initiation region in (c)

    图  30  (a) 图29(d) P2位置截取样品的TEM图像, 图中gh 处的SAD断续衍射环意指纳米晶层[32]; (b) 图29(d) P3位置截取样品的TEM图像, 图中kl处 SAD孤立衍射斑点意指微结构未细化[32], SAD直径200 nm

    Figure  30.  (a) TEM image of the sample at P2 location shown in Fig. 29(d), SAD patterns of discrete rings at g and h indicating nanograin layer[32] and (b) TEM image of the sample at P3 location shown in Fig. 29(d), SAD patterns of isolated spots at k and l indicating no evidence of microstructure refinement[32], SAD diameter 200 nm

    图  31  增材钛合金试样R = 0.5超高周疲劳 (σa = 90 MPa, Nf = 1.26 × 108) 裂纹内部萌生断裂面形貌[32]: (a) 断裂面整体形貌, (b) 裂纹萌生区形貌, (c) 萌生区高倍图像, 其中P4为在小刻面截取FIB样品位置, P5为在微结构截取FIB样品位置

    Figure  31.  Fracture surface morphology of internal crack initiation for an additively made titanium alloy specimen experienced VHCF (R = 0.5, σa = 90 MPa, Nf = 1.26 × 108)[32]: (a) whole fracture surface morphology, (b) crack initiation region morphology and (c) enlargement of crack initiation region, P4 being the facet location for FIB sampling and P5 being the location outside facet for FIB sampling

    图  32  增材钛合金R = 0.5超高周疲劳 (σa = 90 MPa, Nf = 1.26 × 108) 裂纹萌生区微结构形貌[32]: (a) 图31(c) P4位置截取样品的TEM图像, 图中gh处的SAD孤立衍射斑点意指微结构未细化; (b)图31(c) P5位置截取样品的TEM图像, 图中kl 处的SAD孤立衍射斑点意指微结构未细化, SAD直径200 nm

    Figure  32.  Morphology of VHCF crack initiation region of an additively made titanium alloy for R = 0.5 (σa = 90 MPa, Nf = 1.26 × 108)[32]: (a) TEM image of the sample at P4 location shown in Fig. 31(c), SAD patterns of isolated spots at g and h indicating no evidence of microstructure refinement and (b) TEM image of the sample at P5 location shown in Fig. 31(c), SAD patterns of isolated spots at k and l indicating no evidence of microstructure refinement, SAD diameter 200 nm

    图  33  (a) 增材钛合金107周次疲劳强度 (σw7) 和108周次疲劳强度 (σw8) 与孔隙率的关系, (b) 不同孔隙率试样组的高周和超高周疲劳S-N数据[36]

    Figure  33.  (a) Fatigue strength at 107 (σw7) and 108 (σw8) cycles as a function of porosity for an additively made titanium alloy and (b) S-N data of test groups with different values of porosity[36]

  • [1] Hong Y, Lei Z, Sun C, et al. Propensities of crack interior initiation and early growth for very-high-cycle fatigue of high strength steels. International Journal of Fatigue, 2014, 58: 144-151 doi: 10.1016/j.ijfatigue.2013.02.023
    [2] Zhao A, Xie J, Sun C, et al. Prediction of threshold value for FGA formation. Materials Science & Engineering A, 2011, 528: 6872-6877
    [3] Hong Y, Liu X, Lei Z, et al. The formation mechanism of characteristic region at crack initiation for very-high-cycle fatigue of high-strength steels. International Journal of Fatigue, 2016, 89: 108-118 doi: 10.1016/j.ijfatigue.2015.11.029
    [4] Hong Y, Zhao A, Qian G, et al. Fatigue strength and crack initiation mechanism of very-high-cycle fatigue for low alloy steels. Metallurgical and Materials Transactions A, 2012, 43: 2753-2762 doi: 10.1007/s11661-011-0816-7
    [5] Sakai T, Takeda M, Shiozawa K, et al. Experimental reconfirmation of characteristic S-N property for high carbon chromium bearing steel in wide life region in rotating bending. Journal of the Society of Materials Science, Japan, 2000, 49(7): 779-785
    [6] Murakami Yu, Nomoto T, Ueda T, et al. On the mechanism of fatigue failure in the superlong life regime (N > 107 cycles), Part I: influence of hydrogen trapped by inclusions. Fatigue & Fracture of Engineering Materials & Structures, 2000, 23: 893-902
    [7] Shiozawa K, Lu L, Ishihara S. S–N curve characteristics and subsurface crack initiation behaviour in ultra-long life fatigue of a high carbon–chromium bearing steel. Fatigue & Fracture of Engineering Materials & Structures, 2001, 24: 781-790
    [8] Pan X, Hong Y. High-cycle and very-high-cycle fatigue behavior of a titanium alloy with equiaxed microstructure under different mean stresses. Fatigue & Fracture of Engineering Materials & Structures, 2019, 42: 1950-1964
    [9] Liu X, Sun C, Hong Y. 2015. Effects of stress ratio on high-cycle and very-high-cycle fatigue behavior of a Ti–6Al–4V alloy. Materials Science & Engineering A, 622: 228–235
    [10] Su H, Liu X, Sun C, et al. Nanograin layer formation at crack initiation region for very-high-cycle fatigue of a Ti-6Al-4V alloy. Fatigue & Fracture of Engineering Materials & Structures, 2017, 40: 979-993
    [11] Hertzberg RW, Vinci RP, Hertzberg JL. Deformation and Fracture Mechanics of Engineering Materials. 5th ed. New York: Wiley, 2012
    [12] Nix WD, Gao HJ. Indentation size effects in crystalline materials: A law for strain gradient plasticity. Journal of the Mechanics and Physics of Solids, 1998, 46: 411-425 doi: 10.1016/S0022-5096(97)00086-0
    [13] Hu Y, Sun C, Hong Y. Crack growth rates and microstructure feature of initiation region for very-high-cycle fatigue of a high-strength steel. Fatigue & Fracture of Engineering Materials & Structures, 2018, 41: 1717-1732
    [14] Stanzl-Tschegg SE, Schonbauer B. Near-threshold crack propagation and internal cracks in steel. Procedia Engineering, 2010, 2: 1547-1555 doi: 10.1016/j.proeng.2010.03.167
    [15] Ishida W, Yamamoto T, Kaneda S, et al. Fatigue strength and internal crack growth behavior of high strength steel under variable amplitude stressing in very high cycle regime. Transaction of Japan Society of Mechanical Engineers A, 2012, 78(785): 23-33 doi: 10.1299/kikaia.78.23
    [16] Ogawa T, Stanzl-Tschegg S, Schonbauer B. A fracture mechanics approach to interior fatigue crack growth in the very high cycle regime. Engineering Fracture Mechanics, 2014, 115: 241-254 doi: 10.1016/j.engfracmech.2013.11.007
    [17] Sander M, Müller T, Lebahn J. Influence of mean stress and variable amplitude loading on the fatigue behaviour of a high-strength steel in VHCF regime. International Journal of Fatigue, 2014, 62: 10-20 doi: 10.1016/j.ijfatigue.2013.04.015
    [18] Sander M, Müller T, Stäcker C. Very high cycle fatigue behavior under constant and variable amplitude loading. Procedia Structural Integrity, 2016, 2: 34-41 doi: 10.1016/j.prostr.2016.06.005
    [19] Sun C, Song Q, Zhou L, et al. The formation of discontinuous gradient regimes during crack initiation in high strength steels under very high cycle fatigue. International Journal of Fatigue, 2019, 124: 483-492 doi: 10.1016/j.ijfatigue.2019.03.026
    [20] Murakami Y, Kodama S, Konuma S. Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steels. I:Basic fatigue mechanism and evaluation of correlation between the fatigue fracture stress and the size and location of non-metallic inclusions. International Journal of Fatigue, 1989, 11: 291-298
    [21] Jiang Q, Sun C, Liu X, et al. Very-high-cycle fatigue behavior of a structural steel with and without induced surface defects. International Journal of Fatigue, 2016, 93: 352-362 doi: 10.1016/j.ijfatigue.2016.05.032
    [22] Pan X, Su H, Sun C, et al. The behavior of crack initiation and early growth in high-cycle and very-high-cycle fatigue regimes for a titanium alloy. International Journal of Fatigue, 2018, 115: 67-78 doi: 10.1016/j.ijfatigue.2018.03.021
    [23] Pan X, Xu S, Qian G, et al. The mechanism of internal fatigue-crack initiation and early growth in a titanium alloy with lamellar and equiaxed microstructure. Materials Science & Engineering A, 2020, 798: 140110
    [24] Ritz F, Stäcker C, Beck T, et al. FGA formation mechanism for X10CrNiMoV12-2-2 and 34CrNiMo6 for constant and variable amplitude tests under the influence of applied mean loads. Fatigue & Fracture of Engineering Materials & Structures, 2018, 41: 1576-1587
    [25] Sakai T. Review and prospects for current studies on very high cycle fatigue of metallic materials for machine structural use. Journal of Solid Mechanics and Materials Engineering, 2009, 3: 425-439 doi: 10.1299/jmmp.3.425
    [26] Grad P, Reuscher B, Brodyanski A, et al. Mechanism of fatigue crack initiation and propagation in the very high cycle fatigue regime of high-strength steels. Scripta Materialia, 2012, 67: 838-841 doi: 10.1016/j.scriptamat.2012.07.049
    [27] Fu R, Zheng L, Ling C, et al. An experimental investigation of fatigue performance and crack initiation characteristics for an SLMed Ti-6Al-4V under different stress ratios up to very-high-cycle regime. International Journal of Fatigue, 2022, 164: 107119 doi: 10.1016/j.ijfatigue.2022.107119
    [28] Chang Y, Pan X, Zheng L, et al. Microstructure refinement and grain size distribution in crack initiation region of very-high-cycle fatigue regime for high-strength alloys. International Journal of Fatigue, 2020, 134: 105473 doi: 10.1016/j.ijfatigue.2020.105473
    [29] Williams DB, Carter CB. Transmission Electron Microscopy: A Textbook for Materials Science, 2nd ed. New York: Springer, 2009
    [30] Oguma H, Nakamura T. Fatigue crack propagation properties of Ti-6Al-4V in vacuum environments. International Journal of Fatigue, 2013, 50: 89-93 doi: 10.1016/j.ijfatigue.2012.02.012
    [31] Tofique MW, Bergström J, Svensson K. Very high cycle fatigue of cold rolled stainless steels, crack initiation and formation of the fine granular area. International Journal of Fatigue, 2017, 100: 238-250 doi: 10.1016/j.ijfatigue.2017.03.037
    [32] Du L, Pan X, Qian G, et al. Crack initiation mechanisms under two stress ratios up to very-high-cycle fatigue regime for a selective laser melted Ti-6Al-4V. International Journal of Fatigue, 2021, 149: 106294 doi: 10.1016/j.ijfatigue.2021.106294
    [33] Liu X, Sun C, Hong Y. Faceted crack initiation characteristics for high-cycle and very-high-cycle fatigue of a titanium alloy under different stress ratios. International Journal of Fatigue, 2016, 92: 434-441 doi: 10.1016/j.ijfatigue.2016.03.013
    [34] Zhao A, Xie J, Sun C, et al. Effects of strength level and loading frequency on very-high-cycle fatigue behavior for a bearing steel. International Journal of Fatigue, 2012, 38: 46-56 doi: 10.1016/j.ijfatigue.2011.11.014
    [35] Sun C, Liu X, Hong Y. A two-parameter model to predict fatigue life of high-strength steels in a very high cycle fatigue regime. Acta Mechanica Sinica, 2015, 31: 383-391 doi: 10.1007/s10409-015-0451-4
    [36] Du L, Qian G, Zheng L, et al. Influence of processing parameters of selective laser melting on high-cycle and very-high-cycle fatigue behaviour of Ti-6Al-4V. Fatigue & Fracture of Engineering Materials & Structures, 2021, 44: 240-256
    [37] 邓忠民, 洪友士, 朱晨. SPD纳米材料制备方法及其力学特性. 力学进展, 2003, 33(1): 56–64 doi: 10.3321/j.issn:1000-0992.2003.01.007

    Deng Z, Hong Y, Zhu C. Processing method and mechanical properties of SPD nanostructured materials. Advances in Mechanics, 2003, 33(1): 56–64 (in Chinese) doi: 10.3321/j.issn:1000-0992.2003.01.007
    [38] Valiev RZ, Islamgaliev RK, Stolyarov VV, et al. Processing and mechanical properties of nanocrystalline alloys prepared by severe plastic deformation. Materials Science Forum, 1998, 269-2: 969-974
    [39] Valiev R. Nanostructuring of metals by severe plastic deformation for advanced properties. Nature Materials, 2004, 3: 511-516 doi: 10.1038/nmat1180
    [40] Estrin Y, Vinogradov A. Extreme grain refinement by severe plastic deformation: A wealth of challenging science. Acta Materialia, 2013, 61: 782-817 doi: 10.1016/j.actamat.2012.10.038
    [41] 洪友士, 孙成奇, 刘小龙. 合金材料超高周疲劳的机理与模型综述. 力学进展, 2018, 48: 201801 doi: 10.6052/1000-0992-17-002

    Hong Y, Sun C, Liu X. A review on mechanisms and models for very-high-cycle fatigue of metallic materials. Advances in Mechanics, 2018, 48: 201801 (in Chinese) doi: 10.6052/1000-0992-17-002
  • 加载中
图(33)
计量
  • 文章访问数:  83
  • HTML全文浏览量:  27
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-18
  • 录用日期:  2022-07-15
  • 网络出版日期:  2022-07-21

目录

    /

    返回文章
    返回