EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

流固耦合破坏分析的多分辨率PD-SPH方法

姚学昊 陈丁 武立伟 黄丹

姚学昊, 陈丁, 武立伟, 黄丹. 流固耦合破坏分析的多分辨率PD-SPH方法. 力学学报, 2022, 54(12): 3333-3343 doi: 10.6052/0459-1879-22-268
引用本文: 姚学昊, 陈丁, 武立伟, 黄丹. 流固耦合破坏分析的多分辨率PD-SPH方法. 力学学报, 2022, 54(12): 3333-3343 doi: 10.6052/0459-1879-22-268
Yao Xuehao, Chen Ding, Wu Liwei, Huang Dan. A multi-resolution PD-SPH coupling approach for structural failure under fluid-structure interaction. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(12): 3333-3343 doi: 10.6052/0459-1879-22-268
Citation: Yao Xuehao, Chen Ding, Wu Liwei, Huang Dan. A multi-resolution PD-SPH coupling approach for structural failure under fluid-structure interaction. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(12): 3333-3343 doi: 10.6052/0459-1879-22-268

流固耦合破坏分析的多分辨率PD-SPH方法

doi: 10.6052/0459-1879-22-268
基金项目: 国家自然科学基金(12072104, 51679077)和江苏省研究生科研创新计划(KYCX21_0460)资助项目
详细信息
    作者简介:

    黄丹, 教授, 主要研究方向: 计算力学与工程仿真研究. E-mail: danhuang@hhu.edu.cn

  • 中图分类号: O353.4

A MULTI-RESOLUTION PD-SPH COUPLING APPROACH FOR STRUCTURAL FAILURE UNDER FLUID-STRUCTURE INTERACTION

  • 摘要: 流固耦合破坏是一类涉及结构变形与破坏以及复杂自由表面现象的强非线性力学问题. 结合近场动力学(peridynamics, PD)与光滑粒子流体动力学(smoothed particle hydrodynamics, SPH)各自的优势并考虑其计算效率问题, 提出一种适用于分析流−固耦合破坏问题的多分辨率PD-SPH混合方法. 分别采用SPH和PD方法以不同的空间和时间分辨率对流体和结构进行离散与求解, 利用具有与流体粒子相同光滑长度的虚粒子处理流−固界面, 以高精度满足界面边界条件. 通过两个经典算例: 液柱静压力下弹性板的变形和溃坝流体冲击弹性闸门的变形问题, 表明提出的多分辨率PD-SPH方法兼具较高的计算精度和计算效率; 对含裂缝的Koyna重力坝水力劈裂问题进行模拟计算, 所得裂缝扩展路径与文献结果吻合, 说明该方法适用于涉及结构破坏的流固耦合问题仿真. 最后尝试采用该方法进行流体冲击作用下含裂纹混凝土板崩塌过程数值仿真, 准确描述混凝土板的断裂破坏和全过程中的流体运动. 多分辨率PD-SPH混合方法或可为流−固耦合作用下的结构损伤破坏仿真提供一种新选择.

     

  • 图  1  多分辨率PD−SPH耦合方案

    Figure  1.  Multi-resolution PD−SPH coupling scheme

    图  2  $\ell = 6$时多时间步长方案

    Figure  2.  Multi-timestep scheme ($\ell = 6$)

    图  3  多分辨率PD-SPH耦合计算流程

    Figure  3.  Flow chart for multi-resolution PD-SPH coupling calculation

    图  4  液柱静压力下铝板变形的初始条件(单位: m)

    Figure  4.  Initial condition for the aluminum plate under hydrostatic pressure (unit: m)

    图  5  铝板跨中挠度时间历程

    Figure  5.  Time histories for mid-span deflection of aluminum plate

    图  6  t = 5 s时工况III的流体压力场与板的挠度场

    Figure  6.  Fluid pressure and plate deflection field in case-III at t = 5 s

    图  7  FSI系统归一化总能量时间历程

    Figure  7.  Time histories for normalized total energy of FSI system

    图  8  不同工况的计算时间

    Figure  8.  Computational times for different cases

    图  9  溃坝流体冲破弹性闸门的初始条件示意图(单位: mm)

    Figure  9.  Schematic sketch for initial conditions in the dam-break flow through an elastic gate (unit: mm)

    图  10  不同时刻弹性闸门变形和自由液面演变

    Figure  10.  Elastic gate deformation and change of fluid free surface

    图  11  弹性闸门自由端水平位移时程

    Figure  11.  Time histories of horizontal displacements at the free end of elastic gate

    图  12  3种工况的计算总时长

    Figure  12.  Total calculation time in three cases

    图  13  Koyna重力坝模型(单位: m)

    Figure  13.  Koyna gravity dam model (unit: m)

    图  14  Koyna大坝裂缝扩展过程

    Figure  14.  Crack propagation process in Koyna dam

    图  15  重力坝裂缝扩展路径

    Figure  15.  Crack paths in the gravity dam

    图  16  水流冲击混凝土板模型(单位: m)

    Figure  16.  Model of water impacting on a concrete slab (unit: m)

    图  17  水流冲击作用下混凝土板崩塌过程

    Figure  17.  Collapse process of concrete slab subjected to impact of water flow

    图  18  A点竖向位移时程曲线

    Figure  18.  Time history of vertical displacement at point A

    表  1  液柱静压力下铝板变形问题工况布置

    Table  1.   The setup of different cases for aluminum plate deformation with hydrostatic pressure

    Cases$\dfrac{{d{x_{\text{F}}}}}{{d{x_{\text{S}}}}}$$d{x_{\text{S}}}{\text{/m}}$$\dfrac{{\Delta {t_{\text{F}}}}}{{\Delta {t_{\text{S}}}}}$$ \Delta {t_{\text{S}}}{\text{/s}} $
    I1.06.25 × 10−35.01.0 × 10−6
    II2.06.25 × 10−310.01.0 × 10−6
    III4.06.25 × 10−320.01.0 × 10−6
    下载: 导出CSV

    表  2  溃坝流体冲破弹性闸门问题工况布置

    Table  2.   The setup of different cases for dam-break flow through an elastic gate

    Cases$\dfrac{{d{x_{\text{F}}}}}{{d{x_{\text{S}}}}}$$d{x_{\text{S}}}{\text{/m}}$$\dfrac{{\Delta {t_{\text{F}}}}}{{\Delta {t_{\text{S}}}}}$$ \Delta {t_{\text{S}}}{\text{/s}} $
    I1.01.0 × 10−31.05.0 × 10−6
    II2.01.0 × 10−31.05.0 × 10−6
    III2.01.0 × 10−34.05.0 × 10−6
    下载: 导出CSV
  • [1] Caraeni D, Casseau V, Habashi WG. Fluid-structure interaction: Extended-FEM approach to solidification. Finite Elements in Analysis and Design, 2020, 177: 103425 doi: 10.1016/j.finel.2020.103425
    [2] 汪春辉, 王嘉安, 王超等. 基于S-ALE方法的圆柱体垂直出水破冰研究. 力学学报, 2021, 53(11): 3110-3123 (Wang Chunhui, Wang Jiaan, Wang Chao, et al. Research on vertical movement of cylindrical structure out of water and breaking through ice layer based on S-ALE method. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 3110-3123 (in Chinese) doi: 10.6052/0459-1879-21-217
    [3] Martínez-Ferrer PJ, Qian L, Ma Z, et al. An efficient finite-volume method to study the interaction of two-phase fluid flows with elastic structures. Journal of Fluids and Structures, 2018, 83: 54-71 doi: 10.1016/j.jfluidstructs.2018.08.019
    [4] Aus Der Wiesche S. Sloshing dynamics of a viscous liquid in a spinning horizontal cylindrical tank. Aerospace Science and Technology, 2008, 12(6): 448-456 doi: 10.1016/j.ast.2007.10.013
    [5] Höllbacher S, Wittum G. Rotational test spaces for a fully-implicit FVM and FEM for the DNS of fluid-particle interaction. Journal of Computational Physics, 2019, 393: 186-213 doi: 10.1016/j.jcp.2019.05.004
    [6] Liao KP, Hu CH, Sueyoshi M. Free surface flow impacting on an elastic structure: Experiment versus numerical simulation. Applied Ocean Research, 2015, 50: 192-208 doi: 10.1016/j.apor.2015.02.002
    [7] Silling SA, Epton M, Weckner O, et al. Peridynamic states and constitutive modeling. Journal of Elasticity, 2007, 88(2): 151-184 doi: 10.1007/s10659-007-9125-1
    [8] 黄丹, 章青, 乔丕忠等. 近场动力学方法及其应用. 力学进展, 2010, 40(4): 448-459 (Huang Dan, Zhang Qing, Qiao Pizhong, et al. A review on peridynamics (PD) method and its applications. Advances in Mechanics, 2010, 40(4): 448-459 (in Chinese) doi: 10.6052/1000-0992-2010-4-J2010-002
    [9] 乔丕忠, 张勇, 张恒等. 近场动力学研究进展. 力学季刊, 2017, 38(1): 1-13 (Qiao Pizhong, Zhang Yong, Zhang Heng, et al. A review on advances in peridynamics. Chinese Quarterly of Mechanics, 2017, 38(1): 1-13 (in Chinese)
    [10] Liu MB, Zhang ZL. Smoothed particle hydrodynamics (SPH) for modeling fluid-structure interactions. Science China: Physics, Mechanics and Astronomy, 2019, 62(8): 984701 doi: 10.1007/s11433-018-9357-0
    [11] Niazi S, Chen ZG, Bobaru F. Crack nucleation in brittle and quasi-brittle materials: A peridynamic analysis. Theoretical and Applied Fracture Mechanics, 2021, 112: 102855 doi: 10.1016/j.tafmec.2020.102855
    [12] 王涵, 黄丹, 徐业鹏等. 非常规态型近场动力学热黏塑性模型及其应用. 力学学报, 2018, 50(4): 810-819 (Wang Han, Huang Dan, Xu Yepeng, et al. Non-ordinary state-based peridynamic thermal-viscoplastic model and its application. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): 810-819 (in Chinese) doi: 10.6052/0459-1879-18-113
    [13] Wu LW, Huang D, Bobaru F. A reformulated rate-dependent visco-elastic model for dynamic deformation and fracture of PMMA with peridynamics. International Journal of Impact Engineering, 2021, 149: 103791 doi: 10.1016/j.ijimpeng.2020.103791
    [14] Zhang YB, Huang D, Cai Z, et al. An extended ordinary state-based peridynamic approach for modelling hydraulic fracturing. Engineering Fracture Mechanics, 2020, 234: 107086 doi: 10.1016/j.engfracmech.2020.107086
    [15] Zhou XP, Wang YT, Shou YD. Hydromechanical bond-based peridynamic model for pressurized and fluid-driven fracturing processes in fissured porous rocks. International Journal of Rock Mechanics and Mining Sciences, 2020, 132: 104383 doi: 10.1016/j.ijrmms.2020.104383
    [16] Ren HF, Zhang CP, Zhao X. Numerical simulations on the fracture of a sea ice floe induced by waves. Applied Ocean Research, 2021, 108: 102527 doi: 10.1016/j.apor.2021.102527
    [17] Liu RW, Yan JL, Li SF. Modeling and simulation of ice-water interactions by coupling peridynamics with updated Lagrangian particle hydrodynamics. Computational Particle Mechanics, 2020, 7(2): 241-255 doi: 10.1007/s40571-019-00268-7
    [18] Gao Y, Oterkus S. Fluid-elastic structure interaction simulation by using ordinary state-based peridynamics and peridynamic differential operator. Engineering Analysis with Boundary Elements, 2020, 121: 126-142 doi: 10.1016/j.enganabound.2020.09.012
    [19] Oger G, Doring M, Alessandrini B, et al. Two-dimensional SPH simulations of wedge water entries. Journal of Computational Physics, 2006, 213(2): 803-822 doi: 10.1016/j.jcp.2005.09.004
    [20] Sun PN, Le Touzé D, Oger G, et al. An accurate FSI-SPH modeling of challenging fluid-structure interaction problems in two and three dimensions. Ocean Engineering, 2021, 221: 108552 doi: 10.1016/j.oceaneng.2020.108552
    [21] Khayyer A, Gotoh H, Falahaty H, et al. An enhanced ISPH-SPH coupled method for simulation of incompressible fluid-elastic structure interactions. Computer Physics Communications, 2018, 232: 139-164 doi: 10.1016/j.cpc.2018.05.012
    [22] Fan HF, Bergel GL, Li SF. A hybrid peridynamics-SPH simulation of soil fragmentation by blast loads of buried explosive. International Journal of Impact Engineering, 2016, 87: 14-27 doi: 10.1016/j.ijimpeng.2015.08.006
    [23] Fan HF, Li SF. A peridynamics-SPH modeling and simulation of blast fragmentation of soil under buried explosive loads. Computer Methods in Applied Mechanics and Engineering, 2017, 318: 349-381 doi: 10.1016/j.cma.2017.01.026
    [24] Sun WK, Zhang LW, Liew KM. A smoothed particle hydrodynamics-peridynamics coupling strategy for modeling fluid-structure interaction problems. Computer Methods in Applied Mechanics and Engineering, 2020, 371: 113298 doi: 10.1016/j.cma.2020.113298
    [25] 姚学昊, 黄丹. 流固耦合问题的PD-SPH建模与分析. 工程力学, doi: 10.6052/j.issn.1000-4750.2021.06.0418

    Yao Xuehao, Huang Dan. PD-SPH modelling and analysis for fluid-strucutre interaction problems. Engineering Mechanics, doi: 10.6052/j.issn.1000-4750.2021.06.0418 (in Chinese)
    [26] Rahimi MN, Kolukisa DC, Yildiz M, et al. A generalized hybrid smoothed particle hydrodynamics-peridynamics algorithm with a novel Lagrangian mapping for solution and failure analysis of fluid-structure interaction problems. Computer Methods in Applied Mechanics and Engineering, 2022, 389: 114370 doi: 10.1016/j.cma.2021.114370
    [27] Le QV, Bobaru F. Surface corrections for peridynamic models in elasticity and fracture. Computational Mechanics, 2018, 61(4): 499-518 doi: 10.1007/s00466-017-1469-1
    [28] Zhang AM, Sun PN, Ming FR, et al. Smoothed particle hydrodynamics and its applications in fluid-structure interactions. Journal of Hydrodynamics, 2017, 29(2): 187-216 doi: 10.1016/S1001-6058(16)60730-8
    [29] Monaghan JJ. Smoothed particle hydrodynamics. Reports on Progress in Physics, 2005, 68(8): 1703-1759 doi: 10.1088/0034-4885/68/8/R01
    [30] 陈飞国, 葛蔚. 多相流动的光滑粒子流体动力学方法研究综述. 力学学报, 2021, 53(9): 2357-2373 (Chen Feiguo, Ge Wei. A review of smoothed particle hydrodynamics family methods for multiphase flow. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2357-2373 (in Chinese) doi: 10.6052/0459-1879-21-270
    [31] Warren TL, Silling SA, Askari A, et al. A non-ordinary state-based peridynamic method to model solid material deformation and fracture. International Journal of Solids and Structures, 2009, 46(5): 1186-1195 doi: 10.1016/j.ijsolstr.2008.10.029
    [32] Peng YX, Zhang AM, Wang SP. Coupling of WCSPH and RKPM for the simulation of incompressible fluid-structure interactions. Journal of Fluids and Structures, 2021, 102: 103254 doi: 10.1016/j.jfluidstructs.2021.103254
    [33] Fourey G, Hermange C, Le Touzé D, et al. An efficient FSI coupling strategy between smoothed particle hydrodynamics and finite element methods. Computer Physics Communications, 2017, 217: 66-81 doi: 10.1016/j.cpc.2017.04.005
    [34] Zhang C, Rezavand M, Hu XY. A multi-resolution SPH method for fluid-structure interactions. Journal of Computational Physics, 2021, 429: 110028 doi: 10.1016/j.jcp.2020.110028
    [35] Antoci C, Gallati M, Sibilla S. Numerical simulation of fluid-structure interaction by SPH. Computers and Structures, 2007, 85(11-14): 879-890 doi: 10.1016/j.compstruc.2007.01.002
    [36] 沙莎. 重力坝水力劈裂的数值模拟与坝踵真实应力性态研究. [博士论文]. 北京: 清华大学, 2017

    Sha Sha. Numerical simulation of hydraulic fracturing of gravity dams and study on the real stress state of dam heel. [PhD Thesis]. Beijing: Tsinghua University, 2017 (in Chinese)
    [37] Cornejo A, Franci A, Zárate F, et al. A fully Lagrangian formulation for fluid-structure interaction problems with free-surface flows and fracturing solids. Computers and Structures, 2021, 250: 106532 doi: 10.1016/j.compstruc.2021.106532
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  701
  • HTML全文浏览量:  248
  • PDF下载量:  162
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-14
  • 录用日期:  2022-08-10
  • 网络出版日期:  2022-08-11
  • 刊出日期:  2022-12-15

目录

    /

    返回文章
    返回