RESEARCH PROGRESS OF CONTACT FORCE MODELS IN THE COLLISION MECHANICS OF MULTIBODY SYSTEM
-
摘要: 接触碰撞行为作为大自然与多体系统中的常见现象, 其接触力模型对于多体系统的碰撞行为机理研究与性能预测至关重要. 静态弹塑性接触模型与考虑能量耗散的连续接触力模型是研究接触碰撞行为的两类不同方法, 在多体系统碰撞动力学中存在诸多共性与差异. 本文分别从上述两类接触模型的发展历程入手, 详细介绍了两类模型的区别与联系. 首先, 根据阻尼项分母中是否含有初始碰撞速度将连续接触力模型分为黏性接触力模型与迟滞接触力模型, 讨论了能量指数与Hertz接触刚度之间的关系, 阐述了现有连续接触力模型在计算弹塑性材料接触碰撞行为时存在的问题. 其次, 着重介绍了分段连续的准静态弹塑性接触力模型(可连续从完全弹性转换到完全塑性接触阶段), 分析了利用此类弹塑性接触力模型计算碰撞行为的技术特点. 同时, 以恢复系数为桥梁和借助线性化的弹塑性接触刚度, 避免了Hertz刚度对弹塑性接触刚度的计算误差, 根据碰撞前后多体系统的能量与动能守恒推导了弹塑性接触模型等效的迟滞阻尼因子. 探索了连续接触力模型与准静态弹塑性接触力模型之间的内在联系, 数值计算结果定量说明了人为阻尼项代表的能量耗散与弹塑性接触力模型中加卸载路径代表的能量耗散具有等效性. 另外, 为了避免阻尼项分母中初始碰撞速度在计算颗粒物质动态性能时导致的数值奇异问题, 通过求解等效的线性单自由度欠阻尼非受迫振动方程获得了阻尼项分母中不含初始碰撞速度的连续接触力模型, 并以一维球链为例, 证明了该模型相比EDEM软件使用的连续接触力模型具有更高的精度. 最后, 本文分析了当前多体系统碰撞动力学的研究现状, 并简要展望了多体系统碰撞动力学中接触力模型的发展趋势与面临的挑战.Abstract: Impact behavior is a ubiquitous phenomenon in multibody systems. The contact force model is a pivotal tool to predict the contact characteristics of multibody systems. At present, there are two kinds of contact models used for calculating impact behaviors: the static elastoplastic contact force model and the continuous contact force models with energy dissipation. There are many similarities and discrepancies among them in the impact dynamics of multibody systems. This review starts with the introduction of development history of these two kinds of contact models followed by their development progress and background illustrated in detail. Firstly, whether the initial impact velocity is contained in the denominator of damping term severs as a criterion to classify the continuous contact force model as two types of models that are the contact force model with hysteresis damping factor and the other one with viscous damping factor. The relationship between the power exponent and Hertz contact stiffness is analyzed. The problems in calculating the elastic-plastic contact collision behavior by using the existing continuous contact force models are discussed. Secondly, the static elastoplastic contact force models with the continuous transition between the pure elastic and full plastic are introduced, and its characteristic is illustrated when calculating the elastoplastic collision events. The coefficient of restitution acts as the bridge to connect the static elastoplastic contact model and dynamic dashpot model as a complete system. In order to sidestep the error from the Hertz contact stiffness in calculating the elastoplastic impact behavior, a new viscous damping factor is derived by means of the linear elastoplastic contact stiffness based on energy conservation. The intrinsic connection between the static elastoplastic model and the dashpot model is explored, which proves that the artificial damping describing energy dissipation is equivalent to the one generated by the discrepancy between the loading and unloading paths. In order to avoid the numerical singularity caused by the initial impact velocity in the denominator of damping when calculating the dynamic performance of granular matter, a continuous contact force model with viscous damping is obtained by solving a linear single degree of freedom underdamped vibration system. One-dimension chain is taken as the numerical example to validate that the new dashpot model is more accurate than the one used in the EDEM software. Finally, the current research status of impact dynamics of multibody systems is reviewed, and the development trend and future challenges of contact force models are briefly summarized.
-
Key words:
- multibody system /
- impact /
- energy dissipation /
- coefficient of restitution /
- contact force model
-
表 1 迟滞接触力模型(阻尼项分母中含有初始相对碰撞速度)
Table 1. Contact force models with hysteresis damping factors (the denominators of the damping force do not include the initial impact velocity)
Continuous contact force model $ F = K{\delta ^n} + \chi {\delta ^m}\dot \delta $ Power exponent n Impact parameter m Hysteresis damping factor$ \chi $ Hunt-Crossley model [61] 3/2 3/2 $ \chi = \dfrac{{3\left( {1 - {c_r}} \right)}}{2}\dfrac{K}{{{{\dot \delta }^{\left( - \right)}}}} $ Herbert-McWhannell model [76] 3/2 3/2 $ \chi = \dfrac{{6\left( {1 - {c_r}} \right)}}{{\left[ {{{\left( {2{c_r} - 1} \right)}^2} + 3} \right]}}\dfrac{K}{{{{\dot \delta }^{\left( - \right)}}}} $ Lee-Wang model [79] 3/2 3/2 $ \chi = \dfrac{{3\left( {1 - {c_r}} \right)}}{4}\dfrac{K}{{{{\dot \delta }^{\left( - \right)}}}} $ Lankarani-Nikravesh model[66] 3/2 3/2 $ \chi = \dfrac{{3\left( {1 - c_r^2} \right)}}{4}\dfrac{K}{{{{\dot \delta }^{\left( - \right)}}}} $ Gonthier et al. model[75] 3/2 3/2 $ \chi \approx \dfrac{{1 - c_r^2}}{{{c_r}}}\dfrac{K}{{{{\dot \delta }^{\left( - \right)}}}} $ Zhiying-Qishao model [67] 3/2 3/2 $\chi = \dfrac{ {3\left( {1 - c_r^2} \right){{\rm{e}}^{2\left( {1 - {c_r} } \right)} } } }{4}\dfrac{K}{ { { {\dot \delta }^{\left( - \right)} } } }$ Flores et al. model [68] 3/2 3/2 $ \chi = \dfrac{{8\left( {1 - {c_r}} \right)}}{{5{c_r}}}\dfrac{K}{{{{\dot \delta }^{\left( - \right)}}}} $ Gharib-Hurmuzlu model [77] 3/2 3/2 $ \chi = \dfrac{1}{{{c_r}}}\dfrac{K}{{{{\dot \delta }^{\left( - \right)}}}} $ Hu-Guo model [70] 3/2 3/2 $ \chi = \dfrac{{3\left( {1 - {c_r}} \right)}}{{2{c_r}}}\dfrac{K}{{{{\dot \delta }^{\left( - \right)}}}} $ Hu et al. model [78] 3/2 3/2 $\chi {\text{ = } } - \dfrac{ {6.66\;26\ln {c_r} } }{ {3.852\;38 + \ln {c_r} } }\dfrac{K}{ { { {\dot \delta }^{\left( - \right)} } } }$ Shen et al. model [71] 3/2 3/2 $ \chi {\text{ = }}\dfrac{{3\left( {1 - {c_r}} \right)}}{{2 c_r^{0.89}}}\dfrac{K}{{{{\dot \delta }^{\left( - \right)}}}} $ Carvalho-Martins model [15] 3/2 3/2 $ \chi {\text{ = }}\dfrac{{3\left( {1 - {c_r}} \right)\left( {11 - {c_r}} \right)}}{{2\left( {1{\text{ + }}9{c_r}} \right)}}\dfrac{K}{{{{\dot \delta }^{\left( - \right)}}}} $ Safaeifar-Farshidianfar model [21] 3/2 3/2 $ \chi {\text{ = }}\dfrac{{5\left( {1 - {c_r}} \right)}}{{4{c_r}}}\dfrac{K}{{{{\dot \delta }^{\left( - \right)}}}} $ Zhang et al. model [72] 3/2 3/2 $\chi {\text{ = } }\dfrac{ {3\left( {1 - {c_r} } \right)} }{ {2\left( {0.618{{\rm{e}}^{ - 3.25{c_r} } } + 0.899{{\rm{e}}^{0.090\;25{c_r} } } } \right){c_r} } }\dfrac{K}{ { { {\dot \delta }^{\left( - \right)} } } }$ Zhao et al. model [22] 3/2 3/2 $ \chi {\text{ = }}\dfrac{{4\left( {1 - {c_r}} \right)}}{{1.302{c_r}}}\dfrac{K}{{{{\dot \delta }^{\left( - \right)}}}} $ 表 2 黏性接触力模型(阻尼项分母中不含初始相对碰撞速度)
Table 2. Contact force models with viscous damping factors (the denominators of the damping force do not include the initial impact velocity)
Continuous contact force model
$ F = K{\delta ^n} + \chi {\delta ^m}\dot \delta $Power exponent n Impact parameter m Viscous damping factor$ \chi $ Kuwabara and Kono [99] 3/2 1/2 $\chi = \dfrac{K}{2}\dfrac{ { { {\left( {3{\eta _2} - {\eta _1} } \right)}^2} } }{ { {3{\eta _2} + 2{\eta _1} } } }\dfrac{ {\left( {1 - {\nu ^2} } \right)\left( {1 - 2\nu } \right)} }{ {E{\nu ^2} } }$($ {\eta _1},{\eta _2} $ are the viscous material constant values) Tsuji et al. [96] 3/2 1/4 $\chi = \dfrac{ {\sqrt 5 } }{2}D,D = 2\left| {\ln {c_r} } \right|\sqrt {\dfrac{ {KM} }{ { { {\text{π}} ^2} + { {\ln }^2}{c_r} } } }$ Jankowski [95] 3/2 1/4 $ \chi = 9\sqrt 5 \dfrac{{1 - c_r^2}}{{{c_r}\left[ {{c_r}\left( {9{\text{π}} - 16} \right) + 16} \right]}}\sqrt {KM} $ Lee and Wang[79] 3/2 0 $\chi = TD,D = 2\left| {\ln {c_r} } \right|\sqrt {\dfrac{ {KM} }{ { { {\text{π} } ^2} + { {\ln }^2}{c_r} } } } ,T = \dfrac{ {\delta + \left| \delta \right|} }{ {2\delta } }\exp \left\{ {\dfrac{q}{\varepsilon }\left[ {\left( {\delta - \varepsilon } \right) - \left| {\delta - \varepsilon } \right|} \right]} \right\}$
($ \varepsilon $, $ q $ are constants with unit m)Schwager and Poschel [74] 3/2 0.65 empirical Lee and Herrmann [80] 3/2 1 empirical Ristow [100] 3/2 1 empirical 表 3 连续准静态弹塑性接触力模型
Table 3. Continuous quasi-static elastoplastic contact force models
Quasi-static elastoplastic contact model Loading phase Unloading phase Thornton (1997)[135] $ F = \left\{ \begin{gathered} \dfrac{4}{3}{E^ * }\sqrt R {\delta ^{\frac{3}{2}}}\begin{array}{*{20}{c}} {}&{\begin{array}{*{20}{c}} {}&{} \end{array}}&{\left( {\delta < {\delta _y}} \right)} \end{array} \\ {F_y} + {\text{π}} {\sigma _y}R\left( {\delta - {\delta _y}} \right)\begin{array}{*{20}{c}} {}&{\left( {\delta > {\delta _y}} \right)} \end{array} \\ \end{gathered} \right. $
$ {\delta _y} $critical elastic deformation;$ {\sigma _y} $ yield stress;$ {F_y} $loading force$ F = \dfrac{4}{3}{E^ * }\sqrt {{R_p}} {\left( {\delta - {\delta _p}} \right)^{\frac{3}{2}}},{R_p} = \dfrac{{4{E^ * }}}{{3{F_{\max }}}}{\left( {\dfrac{{2{F_{\max }} + {F_y}}}{{2{\text{π}} {\sigma _y}}}} \right)^{\frac{3}{2}}} $
$ {\delta _p} $permanent deformation;$ {F_{\max }} $maximum
normal contact forceStronge (2000)[63] $F = \left\{ \begin{gathered} \dfrac{4}{3}{E^ * }\sqrt R {\delta ^{\frac{3}{2} } }\begin{array}{*{20}{c} } {}&{\begin{array}{*{20}{c} } {}&{} \end{array} }&{\left( {\delta < {\delta _y} } \right)} \end{array} \\ {F_y}\left( {\dfrac{ {2\delta } }{ { {\delta _y} } } - 1} \right)\begin{array}{*{20}{c} } {\left[ {1 + \dfrac{1}{ {3{\vartheta _y} } }\ln \left( {\dfrac{ {2\delta } }{ { {\delta _y} } } - 1} \right)} \right]}&{\left( { {\delta _y} \leqslant \delta < {\delta _p} } \right)} \end{array} \\ \dfrac{ {2.8{F_y} } }{ { {\vartheta _y} } }\left( {\dfrac{ {2\delta } }{ { {\delta _y} } } - 1} \right)\begin{array}{*{20}{c} } {}&{}&{\left( {\delta \geqslant {\delta _p} } \right)} \end{array} \\ \end{gathered} \right.$
$ {F_y} = {\text{π}} {\vartheta _y}{\sigma _y}{R^2}{\left( {\dfrac{{3{\text{π}} }}{4}} \right)^2}{\left( {\dfrac{{{\vartheta _y}{\sigma _y}}}{{{E^ * }}}} \right)^2} $,$ {\vartheta _y} $coefficient;$ {\delta _y} $critical elastic;
$ {\sigma _y} $yield stress;$ {\delta _p} $critical plastic deformation;$ \begin{gathered} F = \dfrac{4}{3}{E^ * }\sqrt {\bar R} {\left( {\delta - {\delta _f}} \right)^{\frac{3}{2}}} \\ {\delta _f} = {\delta _c} - {\delta _r},\bar R = {\left( {\dfrac{{2{\delta _c}}}{{{\delta _y}}} - 1} \right)^{\frac{1}{2}}}R \\ \end{gathered} $
$ {\delta _c} $maximum contact deformation;
$ {\delta _r} $permanent deformationVu-Quoc and Zhang (2002)[147-148] $F = \left[ {\dfrac{ {2{E^ * } } }{ {3 R\left( {1 - {\nu ^2} } \right)} } } \right]{a^3},a = \sqrt {2 R\delta } \begin{array}{*{20}{c} } {}&{F < {F_y} } \end{array}$
$ \left\{ \begin{gathered} {a^{ep}} = {a^e} + {a^p},{a^p} = \left\{ \begin{gathered} 0\begin{array}{*{20}{c}} {}&{}&{}&{\left( {F < {F_y}} \right)} \end{array} \\ {C_a}\left( {F - {F_y}} \right)\begin{array}{*{20}{c}} {}&{\left( {F > {F_y}} \right)} \end{array} \\ \end{gathered} \right. \\ \delta = \dfrac{{{{\left( {{a^{ep}}} \right)}^2}}}{{2{R^{ep}}}} \\ {R^{ep}} = {C_R}R \\ {C_R}{\text{ = }}\left\{ \begin{gathered} 1.0\begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} {}&{} \end{array}}&{}&{\left( {F < {F_y}} \right)} \end{array} \\ 1.0{\text{ + }}{K_c}\left( {F - {F_y}} \right)\begin{array}{*{20}{c}} {}&{\left( {F > {F_y}} \right)} \end{array} \\ \end{gathered} \right. \\ \end{gathered} \right. $
Fy Normal yield load; Kc and Ca are the empirical parameters;
ae contact radius corresponding to the elastic region; $ \nu $Poisson ratio$\begin{gathered} F = \left[ {\dfrac{ {2{E^ * } } }{ {3 R\left( {1 - {\nu ^2} } \right)} } } \right]a_e^3 \\ {a_e} = {2{ {\left( { {C_R} } \right)}_{\max } }R\left( {\delta - {\delta _r} } \right)} \\ \end{gathered}$
$ {\delta _r} $ permanent deformationKogut and Etsion (2002)[139] $ F = \left\{ \begin{gathered} \dfrac{4}{3}{E^ * }\sqrt R {\delta ^{\frac{3}{2}}}\begin{array}{*{20}{c}} {}&{\begin{array}{*{20}{c}} {}&{} \end{array}}&{\left( {\dfrac{\delta }{{{\delta _y}}} < 1} \right)} \end{array} \\ {F_c}1.03{\left( {\dfrac{\delta }{{{\delta _y}}}} \right)^{1.425}}\begin{array}{*{20}{c}} {}&{\left( {1 \leqslant \dfrac{\delta }{{{\delta _y}}} < 6} \right)} \end{array} \\ {F_c}1.40{\left( {\dfrac{\delta }{{{\delta _y}}}} \right)^{1.263}}\begin{array}{*{20}{c}} {}&{\left( {6 \leqslant \dfrac{\delta }{{{\delta _y}}} < 110} \right)} \end{array} \\ \end{gathered} \right. $
$ {\delta _y} $critical elastic deformation; Fc loading force corresponding to the
beginning phase of the plastic deformation$ F = {F_{\max }}{\left( {\dfrac{{\omega - {\omega _{res}}}}{{{\omega _{\max }} - {\omega _{res}}}}} \right)^{np}},np = 1.5{\left( {{\omega _{\max }}} \right)^{ - 0.0331}} $
$ \omega = {\delta \mathord{\left/ {\vphantom {\delta {{\delta _y}}}} \right. } {{\delta _y}}};{\omega _{\max }} = {{{\delta _{\max }}} \mathord{\left/ {\vphantom {{{\delta _{\max }}} {{\delta _y}}}} \right. } {{\delta _y}}} $
Fmax maximum contact force; $ {\delta _{\max }} $maximum contact
deformation;$ {\omega _{res}} $residual deformationJackson and Green (2005)[138] $F = \left\{ \begin{gathered} \dfrac{4}{3}{E^ * }\sqrt R {\delta ^{\frac{3}{2} } }\begin{array}{*{20}{c} } {}&{\begin{array}{*{20}{c} } {}&{} \end{array} }&{\left( {\dfrac{\delta }{ { {\delta _y} } } \leqslant 1.9} \right)} \end{array} \\ {F_c}\left\{ {\exp \left[ { - \dfrac{1}{4}{\omega ^{\frac{5}{ {12} } } } } \right]{\omega ^{\frac{3}{2} } } + \dfrac{ {4 H} }{ {C{S_y} } }\left[ {1 - \exp \left( { - \dfrac{1}{ {25} }{\omega ^{\frac{5}{9} } } } \right)} \right]\omega } \right\}\begin{array}{*{20}{c} } {}&{\left( {\dfrac{\delta }{ { {\delta _y} } } \geqslant 1.9} \right)} \end{array} \\ \end{gathered} \right.$
$ C = 1.295\exp \left( {0.736\nu } \right) $;$ {\delta _y} $critical elastic deformation; H hardness;
Sy limit of yielding;$ \nu $Poisson ratio; Fc critical elastic load$\begin{gathered} F = \dfrac{4}{3}{E^ * }\sqrt { {R} } {\left( {\delta - {\delta _r} } \right)^{\frac{3}{2} } } \\ {R_b} = R\cos \theta ,\theta = \dfrac{ { {a_c} } }{R} \\ \end{gathered}$
$ {\delta _r} $permanent deformation; ac contact radius in
the unloading phaseDu and Wang (2009)[143] $ F = \left\{ \begin{gathered} \dfrac{4}{3}{E^ * }\sqrt R {\delta ^{\frac{3}{2}}}\begin{array}{*{20}{c}} {}&{\begin{array}{*{20}{c}} {}&{} \end{array}}&{\left( {\delta \leqslant {\delta _e}} \right)} \end{array} \\ {\text{π}} R{p_p}\delta - \dfrac{{p_p^3{{\text{π}} ^3}{R^2}}}{{12{{\left( {{E^ * }} \right)}^2}}}\begin{array}{*{20}{c}} {}&{\left( {\delta \leqslant {\delta _e}} \right)} \end{array} \\ \end{gathered} \right. $
$ {p_p} = \left( {1 + \dfrac{{\text{π}} }{2}} \right){\sigma _y} $;$ {\sigma _y} $yield strength; $ {\delta _e} $critical elastic deformation
$F = \dfrac{4}{3}{E^ * }\sqrt { {R} } {\left( {\delta - {\delta _{res} } } \right)^{\frac{3}{2} } }$
$ {\delta _{res}} $permanent deformationBrake (2012)[146] $F = \left\{ \begin{gathered} \dfrac{4}{3}{E^ * }\sqrt R {\delta ^{\frac{3}{2} } }\begin{array}{*{20}{c} } {}&{\begin{array}{*{20}{c} } {}&{} \end{array} }&{\left( {\delta < {\delta _y} } \right)} \end{array} \\ \left[{2{F_y} - 2{F_p} + \left( { {\delta _p} - {\delta _y} } \right)\left( { { {F'}_y} + { {F'}_p} } \right)} \right]{\left( {\dfrac{ {\delta - {\delta _y} } }{ { {\delta _p} - {\delta _y} } } } \right)^3}+ \\ \qquad \left[ { - 3{F_y} + 3{F_p} + \left( { {\delta _p} - {\delta _y} } \right)\left( { - 2{ {F'}_y} - { {F'}_p} } \right)} \right]{\left( {\dfrac{ {\delta - {\delta _y} } }{ { {\delta _p} - {\delta _y} } } } \right)^2}+ \\ \qquad \left( { {\delta _p} - {\delta _y} } \right)F'\left[ {\dfrac{ {\delta - {\delta _y} } }{ { {\delta _p} - {\delta _y} } } } \right] + {F_y}\begin{array}{*{20}{c} } {}&{\left( { {\delta _y} \leqslant \delta <{\delta _p} } \right)} \end{array} \\ \dfrac{ {3{F_y}{\text{π} } {p_0} } }{ {4 E} }\sqrt {\dfrac{R}{ { {\delta _y} } } } \left[ {4\left( {\dfrac{\delta }{ { {\delta _y} } } } \right) + \dfrac{c}{ {R{\delta _y} } } } \right] \\ \end{gathered} \right.$
$ \begin{gathered} {p_0} \approx H,c = a_p^2 - 2 R{\delta _p},{F_y} = \dfrac{4}{3}{E^ * }\sqrt R \delta _y^{\frac{3}{2}},{F_p} = {p_0}{\text{π}} {a_p} \\ {a_p} = \dfrac{{3 R{\text{π}} {p_0}}}{{4{E^ * }}},{{F'}_p} = 2 R{\text{π}} {p_0},{{F'}_y} = 2{E^ * }\sqrt {R{\delta _y}} \\ \end{gathered} $
H hardness;$ {\delta _y} $ critical elastic deformation;$ {\delta _p} $ critical
plastic deformation$ \begin{gathered} F = \dfrac{4}{3}{E^ * }\sqrt {{{\bar R}_b}} {\left( {\delta - \bar \delta } \right)^{\frac{3}{2}}} \\ \bar \delta = {\delta _m} - {\left( {\dfrac{{3{F_m}}}{{4{E^ * }\sqrt {{{\bar R}_b}} }}} \right)^{\frac{3}{2}}},{{\bar R}_b} = R + \dfrac{1}{2}{\delta _m} \\ \end{gathered} $
$ {\delta _m} $ maximum contact deformation in the
loading phase; Fm maximum contact force in
the loading phaseBurgoyne and Daraio (2014)[144] $ F = \left\{ \begin{gathered} \dfrac{4}{3}{E^ * }\sqrt R {\delta ^{\frac{3}{2}}}\begin{array}{*{20}{c}} {}&{}&{\left( {0 < \delta < {\delta _y}} \right)} \end{array} \\ \delta \left( {\alpha + \beta \ln \delta } \right)\begin{array}{*{20}{c}} {}&{}&{\left( {{\delta _y} < \delta < {\delta _p}} \right)} \end{array} \\ {p_0}{\text{π}} \left( {2 R\delta + {c_2}} \right)\begin{array}{*{20}{c}} {}&{}&{\left( {\delta > {\delta _p}} \right)} \end{array} \\ \end{gathered} \right. $
$\alpha {\text{ = } }{ {\left( { {\delta _p}{F_y}\ln {\delta _p} - {\delta _y}{F_p}\ln {\delta _y} } \right)} \mathord{\left/ {\vphantom { {\left[ { {\delta _p}{F_y}\ln {\delta _p} - {\delta _y}{F_p}\ln {\delta _y} } \right]} {\left[ { {\delta _y}{\delta _p}(\ln {\delta _p} - \ln {\delta _y})} \right]} } } \right. } {\left[ { {\delta _y}{\delta _p}(\ln {\delta _p} - \ln {\delta _y})} \right]} }$
$\beta {\text{ = } }{ {\left( { {\delta _y}{F_p} - {\delta _p}{F_y} } \right)} \mathord{\left/ {\vphantom { {\left( { {\delta _y}{F_p} - {\delta _p}{F_y} } \right)} {\left[ { {\delta _y}{\delta _p}(\ln {\delta _p} - \ln {\delta _y})} \right]} } } \right. } {\left[ { {\delta _y}{\delta _p}(\ln {\delta _p} - \ln {\delta _y})} \right]} }$
$ {F_y} = \dfrac{1}{6}{\left( {{R \mathord{\left/ {\vphantom {R {{E^ * }}}} \right. } {{E^ * }}}} \right)^2}{\left( {1.6{\text{π}} {\sigma _y}} \right)^3},{F_p} = {p_0}{\text{π}} \left( {2 R{\delta _p} + {c_2}} \right),{p_0}{\text{ = }}{c_1}{\sigma _y} $
c1 and c2 are empirical parameters; $ {\delta _y} $ critical elastic deformation;
$ {\delta _p} $ critical plastic deformation;$ {\sigma _y} $yield strength$ F = \dfrac{4}{3}{E^ * }\sqrt {{R_p}} {\left( {\delta - {\delta _r}} \right)^{\frac{3}{2}}} $
$ {R_p} = \dfrac{{4{E^ * }}}{{3{F_{\max }}}}\left( {\dfrac{{2{F_{\max }} + {F_y}}}{{2{\text{π}} {p_y}}}} \right),{p_y} = 1.6{\sigma _y} $
$ {\delta _r} = {\delta _{\max }} - {\left( {\dfrac{{3{F_{\max }}}}{{4{E^ * }\sqrt {{R_p}} }}} \right)^{\frac{2}{3}}} $
$ {\delta _m} $ maximum contact deformation in the
loading phase; Fm maximum contact force in
the loading phaseMa and Liu (2015)[113] $ F\left( \delta \right) = \left\{ \begin{gathered} \dfrac{4}{3}{E^ * }{R^{\frac{1}{2}}}{\delta ^{\frac{3}{2}}}\begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} {}&{} \end{array}}&{}&{}&{\delta < {\delta _y}} \end{array} \\ \delta \left( {{c_1} + {c_2}\ln \dfrac{\delta }{{{\delta _c}}}} \right) + {c_3}\begin{array}{*{20}{c}} {}&{{\delta _y} \leqslant \delta < {\delta _p}} \end{array} \\ {F_p} + {k_1}\left( {\delta - {\delta _p}} \right)\begin{array}{*{20}{c}} {}&{}&{\delta \geqslant {\delta _p}} \end{array} \\ \end{gathered} \right. $
$\left\{\begin{array}{l}{k}_{1}=2{\text{π} } R\psi {\sigma }_{y},\\ {F}_{p}={\delta }_{p}\left[{c}_{1} + {c}_{2}\mathrm{ln}\left({\xi }^{2}/2\right)\right] + {c}_{3}\\ {c}_{1}=\dfrac{ {p}_{y}\left[1 + \mathrm{ln}\left({\xi }^{2}/2\right)\right]-2\psi {\sigma }_{y} }{\mathrm{ln}\left({\xi }^{2}/2\right)}{\text{π} } R,\\{c}_{2}=\dfrac{2\psi {\sigma }_{y}-{p}_{y} }{\mathrm{ln}\left({\xi }^{2}/2\right)}{\text{π} } R\\ {c}_{3}={F}_{y}-{c}_{1}{\delta }_{y}, \\{F}_{y}={ {\text{π} } }^{3}{R}^{2}{p}_{y}^{3}/6{E}^{\ast }{}^{2}\end{array} \right.$
$ {p_y} = 1.61{\sigma _y} $;$ \xi $and$ \psi $are the dimensionless coeffcients;
$ {\delta _y} $ critical elastic deformation;$ {\delta _p} $ critical plastic deformation;
$ {\sigma _y} $yield strength$ F\left( \delta \right) = \left\{ \begin{gathered} \dfrac{4}{3}{E^ * }{R^{\frac{1}{2}}}{\delta ^{\frac{3}{2}}}\begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} {}&{}&{} \end{array}}&{}&{\delta < {\delta _y}} \end{array} \\ \dfrac{4}{3}{E^ * }{\left( {{R^e}} \right)^{\frac{1}{2}}}{\left( {\delta - {\delta _r}} \right)^{\frac{3}{2}}}\begin{array}{*{20}{c}} {}&{{\delta _y} \leqslant \delta < {\delta _p}} \end{array} \\ \dfrac{4}{3}{E^ * }{\left( {R_p^e} \right)^{\frac{1}{2}}}{\left( {\delta - {\delta _r}} \right)^{\frac{3}{2}}}\begin{array}{*{20}{c}} {}&{\delta \geqslant {\delta _p}} \end{array} \\ \end{gathered} \right. $
$ R_{ep}^e = \dfrac{{{F^e}R}}{{{F_{\max }}}},{F^e} = \dfrac{4}{3}{E^ * }{R^{\frac{1}{2}}}\delta _y^{\frac{3}{2}} $
$ R_p^e = \dfrac{{F_p^eR}}{{{F_{ep}}}},F_p^e = \dfrac{4}{3}{E^ * }{R^{\frac{1}{2}}}\delta _p^{\frac{3}{2}} $
$ {\delta _r} $permanent deformation表 4 恢复系数模型
Table 4. Coefficient of restitution (CoR) model
Authors CoR mathematical model Parameters Chang and Ling (1992)[159] ${c_r} = \sqrt { { {\left\{ {\dfrac{8}{ {15} }{E^ * }\sqrt R { {\left[ { {\omega _c}{\omega _m}\left( {2 - \dfrac{ { {\omega _c} } }{ { {\omega _m} } } } \right)} \right]}^{\frac{3}{2} } } } \right\} } \mathord{\left/ {\vphantom { {\left[ {\dfrac{8}{ {15} }{E^ * }\sqrt R { {\left[ { {\omega _c}{\omega _m}\left( {2 - \dfrac{ { {\omega _c} } }{ { {\omega _m} } } } \right)} \right]}^{\frac{3}{2} } } } \right] } {\left[ {\dfrac{8}{ {15} }{E^ * }\sqrt R \omega _c^{\dfrac{5}{2} } + {\text{π} } KYR{\omega _m}\left( { {\omega _m} - {\omega _c} } \right)} \right] } } } \right. } {\left[ {\dfrac{8}{ {15} }{E^ * }\sqrt R \omega _c^{\frac{5}{2} } + {\text{π} } KYR{\omega _m}\left( { {\omega _m} - {\omega _c} } \right)} \right] } } }$ $ {\omega _c} $critical elastic deformation; $ {\omega _m} $maximum deformation in the
compression phase; Y yield strength;$ K = 1.282 + 1.158 v $;
v Poisson ratioThornton (1997)[135] $ {c_r} = {\left( {\dfrac{{6\sqrt 3 }}{5}} \right)^{\frac{1}{2}}}\sqrt {1 - \dfrac{1}{6}{{\left( {\dfrac{{{V_y}}}{{{V_l}}}} \right)}^2}} {\left[ {\dfrac{{\left( {\dfrac{{{V_y}}}{{{V_l}}}} \right)}}{{\left( {\dfrac{{{V_y}}}{{{V_l}}}} \right) + 2\sqrt {\dfrac{6}{5} - \dfrac{1}{5}{{\left( {\dfrac{{{V_y}}}{{{V_l}}}} \right)}^2}} }}} \right]^{\frac{1}{4}}} $ Vy yield impact velocity;
Vl impact velocityWu et al. (2005)[165] $ {c_r} = \left\{ \begin{gathered} 2.08{\left( {\dfrac{{{V_1}}}{{{V_c}}}} \right)^{0.156}}\begin{array}{*{20}{c}} {}&{\left( {{V_1} < {V_f}} \right)} \end{array} \\ 0.62{\left( {\dfrac{{{V_1}{S_y}}}{{{V_c}{E^ * }}}} \right)^{ - \frac{1}{2}}}\begin{array}{*{20}{c}} {}&{\left( {{V_1} > {V_f}} \right)} \end{array} \\ \end{gathered} \right. $ Vc initial impact velocity leading to the plastic deformation;
Vf critical impact velocity; Sy yield stress; V1 impact velocityWeir and Tallon (2005)[161] $ {c_r} = 3.1{\left( {\dfrac{{{S_y}}}{{{E^ * }}}} \right)^{\frac{5}{8}}}{\left( {\dfrac{{{R_1}}}{R}} \right)^{\frac{3}{8}}}{\left( {\dfrac{{{c_0}}}{{{v_0}}}} \right)^{\frac{1}{4}}},{c_0} = \sqrt {\dfrac{E}{\rho }} $ v0 initial impact velocity; Sy yield stress; R1 contact
radius after contact; $ \rho $densityJackson et al. (2010)[152] $ {c_r} = \left\{ \begin{gathered} 1\begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} {}&{}&{} \end{array}}&{}&{} \end{array}}&{}&{\begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} {}&{}&{} \end{array}}&{} \end{array}}&{\left( {0 < {V_1} < 1} \right)} \end{array} \\ 1 - 0.1\ln \left( {{V_1}} \right){\left( {\dfrac{{{V_1} - 1}}{{59}}} \right)^{0.156}}\begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} {}&{}&{} \end{array}}&{\left( {1 < {V_1} \leqslant 60} \right)} \end{array} \\ 1 - 0.1\ln \left( {60} \right) - 0.1\ln \left( {\dfrac{{{V_1}}}{{60}}} \right){\left( {{V_1} - 60} \right)^{2.36{\varepsilon _y}}}\begin{array}{*{20}{c}} {}&{\left( {60 \leqslant {V_1} \leqslant 1000} \right)} \end{array} \\ \end{gathered} \right. $ V1 impact velocity;
$ {\varepsilon _y} = {{{S_y}} \mathord{\left/ {\vphantom {{{S_y}} {{E^ * }}}} \right. } {{E^ * }}} $; Sy yield stressMa and Liu (2015)[113] $ {c_r} = 0.81{E^ * }^{ - \frac{1}{3}}{\left( {R_p^e} \right)^{ - \frac{1}{6}}}k_1^{\frac{5}{{12}}}{m^{ - \frac{1}{{12}}}}v_0^{ - \frac{1}{6}} $ Rep contact radius after plastic deformation;
k1 contact parameter; m mass; v0 initial impact velocity表 5 接触参数
Table 5. Contact parameters
Young’s
modulus/GPaPoisson
ratioRadius/cm Yield
strength/MPaMass/kg Density/
kg·m−3200 0.29 2.05 1030 0.097 7800 65 0.33 2.00 30 0.261 2700 表 6 误差分析对比
Table 6. Comparative analysis of the error percentage
No. 9 16 24 31 40 50 56 63 New 4.23 6.68 19.44 1.44 9.12 0.50 12.33 25.39 EDEM 5.36 7.39 22.44 10.03 10.19 16.38 26.54 36.79 -
[1] 孙加亮, 田强, 胡海岩. 多柔体系统动力学建模与优化研究进展. 力学学报, 2019, 51(6): 1565-1586 (Sun Jialiang, Tian Qiang, Hu Haiyan. Advances in dynamic modeling and optimization of flexible multibody systems. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1565-1586 (in Chinese) doi: 10.6052/0459-1879-19-212 [2] 曹登庆, 白坤朝, 丁虎, 周徐斌, 潘忠文, 陈立群等. 大型柔性航天器动力学与振动控制研究进展. 力学学报, 2019, 51(1): 1-13 (Cao Dengqing, Bai Kunchao, Ding Hu, Zhou Xubin, Pan Zhongwen, Chen Liqun, et al. Advances in dynamics and vibration control of Large-Scale flexible spacecraft. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 1-13 (in Chinese) doi: 10.6052/0459-1879-18-054 [3] Megalingam A, Hanumanth Ramji KS. A complete elastic-plastic spherical asperity contact model with the effect of isotropic strain hardening. Proceedings of the Institution of Mechanical Engineers, Part J:Journal of Engineering Tribology, 2021, 235(4): 820-829 doi: 10.1177/1350650120929896 [4] Bonari J, Marulli MR, Hagmeyer N, Mayr M, Popp A, Paggi M. A multi-scale FEM-BEM formulation for contact mechanics between rough surfaces. Computational Mechanics, 2020, 65(3): 731-749 doi: 10.1007/s00466-019-01791-3 [5] Li Y, Yang Y, Li M, Liu Y, Huang Y. Dynamics analysis and wear prediction of rigid-flexible coupling deployable solar array system with clearance joints considering solid lubrication. Mechanical Systems and Signal Processing, 2022, 162(May 2021): 108059 [6] Cammarata A, Pappalardo CM. On the use of component mode synthesis methods for the model reduction of flexible multibody systems within the floating frame of reference formulation. Mechanical Systems and Signal Processing, 2020, 142: 106745 doi: 10.1016/j.ymssp.2020.106745 [7] Stronge WJ. Impact Mechanics, Cambridge: Cambridge University Press, 2000 [8] Brogliato B. Nonsmooth Mechanics: Models, Dynamics and Control. Springer B. Springer International Publishing Switzerland, 2016 [9] Skrinjar L, Slavič J, Boltežar M. A review of continuous contact-force models in multibody dynamics. International Journal of Mechanical Sciences, 2018, 145(July): 171-187 [10] Ordiz M, Cuadrado J, Cabello M, Retolaza I, Martinez F, Dopico D. Prediction of fatigue life in multibody systems considering the increase of dynamic loads due to wear in clearances. Mechanism and Machine Theory, 2021, 160: 104293 doi: 10.1016/j.mechmachtheory.2021.104293 [11] Corral E, Moreno RG, García MJG, Castejón C. Nonlinear phenomena of contact in multibody systems dynamics: a review. Nonlinear Dynamics, 2021, 104(2): 1269-1295 doi: 10.1007/s11071-021-06344-z [12] Ghaednia H, Wang X, Saha S, Xu Y, Sharma A, Jackson RL. A Review of Elastic-Plastic Contact Mechanics. Applied Mechanics Reviews, 2017, 69: 1-30 [13] Ambrósio J. A general formulation for the contact between superellipsoid surfaces and nodal points. Multibody System Dynamics, 2020, 50(4): 415-434 doi: 10.1007/s11044-020-09744-y [14] Banerjee A, Chanda A, Das R. Historical Origin and Recent Development on Normal Directional Impact Models for Rigid Body Contact Simulation: A Critical Review. Archives of Computational Methods in Engineering, 2017, 24(2): 397-422 doi: 10.1007/s11831-016-9164-5 [15] Carvalho AS, Martins JM. Exact restitution and generalizations for the Hunt–Crossley contact model. Mechanism and Machine Theory, 2019, 139(618099): 174-194 [16] Alves J, Peixinho N, Da Silva MT, Flores P, Lankarani HM. A comparative study of the viscoelastic constitutive models for frictionless contact interfaces in solids. Mechanism and Machine Theory, 2015, 85: 172-188 doi: 10.1016/j.mechmachtheory.2014.11.020 [17] MacHado M, Moreira P, Flores P, Lankarani HM. Compliant contact force models in multibody dynamics: Evolution of the Hertz contact theory. Mechanism and Machine Theory, 2012, 53: 99-121 doi: 10.1016/j.mechmachtheory.2012.02.010 [18] Marques F, Flores P, Pimenta Claro JC, Lankarani HM. A survey and comparison of several friction force models for dynamic analysis of multibody mechanical systems. Nonlinear Dynamics, 2016, 86(3): 1407-1443 doi: 10.1007/s11071-016-2999-3 [19] Neto DM, Oliveira MC, Menezes LF. Surface Smoothing Procedures in Computational Contact Mechanics. Archives of Computational Methods in Engineering, 2017, 24(1): 37-87 doi: 10.1007/s11831-015-9159-7 [20] Bhushan B, Peng W. Contact mechanics of multilayered rough surfaces. Applied Mechanics Reviews, 2002, 55(5): 435-479 doi: 10.1115/1.1488931 [21] Safaeifar H, Farshidianfar A. A new model of the contact force for the collision between two solid bodies. Multibody System Dynamics, 2020 [22] Zhao P, Liu J, Li Y, Wu C. A spring-damping contact force model considering normal friction for impact analysis. Nonlinear Dynamics, 2021, 105(2): 1437-1457 doi: 10.1007/s11071-021-06660-4 [23] Glocker C. Formulation of spatial contact situations in rigid multibody systems. Computer Methods in Applied Mechanics and Engineering, 1999, 177(3–4): 199–214 [24] Flores P. A parametric study on the dynamic response of planar multibody systems with multiple clearance joints. Nonlinear Dynamics, 2010, 61(4): 633-653 doi: 10.1007/s11071-010-9676-8 [25] Lin YC, Haftka RT, Queipo N V. , Fregly BJ. Surrogate articular contact models for computationally efficient multibody dynamic simulations. Medical Engineering and Physics, 2010, 32(6): 584-594 [26] Marhefka DW, Orin DE. A compliant contact model with nonlinear damping for simulation of robotic systems. IEEE Transactions on Systems, Man, and Cybernetics Part A:Systems and Humans, 1999, 29(6): 566-572 doi: 10.1109/3468.798060 [27] Marques F, Isaac F, Dourado N, Souto AP, Flores P, Lankarani HM. A Study on the Dynamics of Spatial Mechanisms with Frictional Spherical Clearance Joints. Journal of Computational and Nonlinear Dynamics, 2017, 12(5): 1-10 [28] Brogliato B, Ten Dam AA, Paoli L, Génot F, Abadie M. Numerical simulation of finite dimensional multibody nonsmooth mechanical systems. Applied Mechanics Reviews, 2002, 55(2): 107-149 doi: 10.1115/1.1454112 [29] Flores P, Koshy CS, Lankarani HM, Ambrósio J, Claro JCP. Numerical and experimental investigation on multibody systems with revolute clearance joints. Nonlinear Dynamics, 2011, 65(4): 383-398 doi: 10.1007/s11071-010-9899-8 [30] He L, Pan Y, He Y, Li Z, Królczyk G, Du H. Control strategy for vibration suppression of a vehicle multibody system on a bumpy road. Mechanism and Machine Theory, 2022, 174(April): 104891 [31] Ravn P. A Continuous Analysis Method for Planar Multibody Systems with Joint Clearance. Multibody System Dynamics, 1998, 2(1): 1-24 doi: 10.1023/A:1009759826529 [32] Flores P, Ambrósio J, Claro JP. Dynamic analysis for planar multibody mechanical systems with lubricated joints. Multibody System Dynamics, 2004, 12(1): 47-74 doi: 10.1023/B:MUBO.0000042901.74498.3a [33] Di Puccio F, Mattei L. A novel approach to the estimation and application of the wear coefficient of metal-on-metal hip implants. Tribology International, 2015, 83: 69-76 doi: 10.1016/j.triboint.2014.10.023 [34] Rodrigues da Silva M, Marques F, Tavares da Silva M, Flores P. A compendium of contact force models inspired by Hunt and Crossley’s cornerstone work. Mechanism and Machine Theory, 2022, 167(July 2021): 104501 [35] Liang G, Huang Y, Li H, Lin J. Nonlinear compressed sensing-based adaptive modal shapes selection approach for efficient dynamic response analysis of flexible multibody system. Nonlinear Dynamics, 2021, 105(4): 3393-3407 doi: 10.1007/s11071-021-06747-y [36] Zhang J, Liang X, Zhang Z, Feng G, Zhao Q, Zhao L, et al. A continuous contact force model for impact analysis. Mechanical Systems and Signal Processing, 2022, 168(December 2021): 108739 [37] Ma J, Dong S, Chen G, Peng P, Qian L. A data-driven normal contact force model based on artificial neural network for complex contacting surfaces. Mechanical Systems and Signal Processing, 2021, 156: 107612 doi: 10.1016/j.ymssp.2021.107612 [38] Lan G, Sun W, Zhang X, Chen Y, Tan W, Li X. A three-dimensional fractal model of the normal contact characteristics of two contacting rough surfaces. AIP Advances, 2021, 11(5) [39] Liu Y, Wang Y, Chen X, Yu H. A spherical conformal contact model considering frictional and microscopic factors based on fractal theory. Chaos, Solitons and Fractals, 2018, 111: 96-107 doi: 10.1016/j.chaos.2018.04.017 [40] Li X, Yue B, Wang D, Liang Y, Sun D. Dynamic characteristics of cylinders’ joint surfaces considering friction and elastic–plastic deformation based on fractal theory. Australian Journal of Mechanical Engineering, 2017, 15(1): 11-18 doi: 10.1080/14484846.2015.1093224 [41] Wang G, Wang L. Dynamics investigation of spatial parallel mechanism considering rod flexibility and spherical joint clearance, 2019, 137: 83–107 [42] Lou JJ, Li CB. An improved model of contact collision investigation on multi-body systems with revolute clearance joints. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering, 2020, 234(7): 2103-2112 doi: 10.1177/0954407019868124 [43] Wang G, Liu C, Liu Y. Energy Dissipation Analysis for Elastoplastic Contact and Dynamic Dashpot Models. International Journal of Mechanical Sciences, 2022, 221: 107214 doi: 10.1016/j.ijmecsci.2022.107214 [44] Wang G, Wang L, Yuan Y. Investigation on dynamics performance of multibody system with rough surface. Applied Mathematical Modelling, 2022, 104: 358-372 doi: 10.1016/j.apm.2021.12.012 [45] Flores P. Contact mechanics for dynamical systems: a comprehensive review. Multibody System Dynamics, 2022, 54(2): 127-177 doi: 10.1007/s11044-021-09803-y [46] Bishop RED. The Treatment of Damping Forces in Vibration Theory. The Journal of the Royal Aeronautical Society, 1955, 59(539): 738-742 doi: 10.1017/S0368393100117122 [47] Spitas C, Dwaikat MMS, Spitas V. Non-linear modelling of elastic hysteretic damping in the time domain. Archives of Mechanics, 2020, 72(4): 323-353 [48] Pournin L, Liebling TM, Mocellin A. Molecular-dynamics force models for better control of energy dissipation in numerical simulations of dense granular media. Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 2002, 65(1): 1-7 [49] McDaniel JG, Dupont P, Salvino L. A wave approach to estimating frequency-dependent damping under transient loading. Journal of Sound and Vibration 2000, 231(2): 433–449 [50] Priestley MJN, Grant DN. Viscous damping in seismic design and analysis. Journal of Earthquake Engineering, 2005, 9(SPEC.ISS.2): 229-255 [51] Wang G, Liu C. Further investigation on improved viscoelastic contact force model extended based on hertz’s law in multibody system. Mechanism and Machine Theory, 2020, 153: 103986 doi: 10.1016/j.mechmachtheory.2020.103986 [52] Bhushan B. Contact mechanics of rough surfaces in tribology: Multiple asperity contact. Tribology Letters, 1998, 4(1): 1-35 doi: 10.1023/A:1019186601445 [53] Pereira CM, Ramalho AL, Ambrósio JA. A critical overview of internal and external cylinder contact force models. Nonlinear Dynamics, 2011, 63(4): 681-697 doi: 10.1007/s11071-010-9830-3 [54] 韩石磊, 洪嘉振. 柔性多体碰撞问题的多变量方法. 力学学报, 2011, 43(5): 886-893 (Han Shilei, Hong Jiazhen. Multi-Variable method for flexible Multi-Body systems with contact/impact. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(5): 886-893 (in Chinese) doi: 10.6052/0459-1879-2011-5-lxxb2010-657 [55] Flores P, Ambrósio J. On the contact detection for contact-impact analysis in multibody systems. Multibody System Dynamics, 2010, 24(1): 103-122 doi: 10.1007/s11044-010-9209-8 [56] Dubowsky S, Gardner TN. Dynamic interactions of link elasticity and clearance connections in planar mechanical systems. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 1975, 97(2): 652-661 [57] Dubowsky S, Freudenstein F. Dynamic analysis of mechanical systems with clearances part 1: formation of dynamic response. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 1971, 93(1): 305-309 [58] Dubowsky S, Young SC. An Experimental and Analytical of Connection Forces in High-Speed Mechanisms. Journal of Engineering for Industry, 1975: 1166-1174 [59] Rogers RJ, Andrews GC. Dynamic simulation of planar mechanical systems with lubricated bearing clearances using vector-network methods. Journal of Engineering for Industry, 1977, 99(1): 131-137 [60] Taylor P, Hegazy S, Rahnejat H, Hussain K. Multi-Body Dynamics in Full-Vehicle Handling Analysis under Transient Manoeuvre. Vehicle System Dynamics, 2000, 34: 1-24 doi: 10.1076/0042-3114(200008)34:1;1-K;FT001 [61] Hunt KH, Crossley FRE, Crossley E. Coefficient of restitution interpreted as damping in vibroimpact. Journal of Applied Mechanics, 1975, 42: 440-445 doi: 10.1115/1.3423596 [62] Marques F, Magalhães H, Pombo J, Ambrósio J, Flores P. A three-dimensional approach for contact detection between realistic wheel and rail surfaces for improved railway dynamic analysis. Mechanism and Machine Theory, 2020, 149: 103825 doi: 10.1016/j.mechmachtheory.2020.103825 [63] Stronge WJ. Contact Problems for Elasto-Plastic Impact in Multi-Body Systems. Impacts in Mechanical Systems, 2000 [64] Bordbar MH, Hyppänen T. Modeling of binary collision between multisize viscoelastic spheres. Journal of Numerical Analysis, Industrial and Applied Mathematics, 2007, 2(3–4): 115–128 [65] Lankarani HM, Nikravesh PE. A contact force model with hysteresis damping for impact analysis of multibody systems. Journal of Mechanical Design, Transactions of the ASME, 1990, 112(3): 369-376 doi: 10.1115/1.2912617 [66] Lankarani HM, Nikravesh PE. Continuous contact force models for impact analysis in multibody systems. Nonlinear Dynamics, 1994, 5(2): 193-207 doi: 10.1007/BF00045676 [67] 秦志英, 陆启韶. 基于恢复系数的碰撞过程模型分析. 动力学与控制学报, 2006, 4(4): 294-298 (Qin Zhiying, Lu Qichao. Analysis of impact process model based on restitution coefficien. Journal of Dynamics and Control, 2006, 4(4): 294-298 (in Chinese) doi: 10.3969/j.issn.1672-6553.2006.04.002 [68] Flores P, MacHado M, Silva MT, Martins JM. On the continuous contact force models for soft materials in multibody dynamics. Multibody System Dynamics, 2011, 25(3): 357-375 doi: 10.1007/s11044-010-9237-4 [69] Ye K, Li L, Hongping Zhu. A note on the Hertz contact model with nonlinear damping for pounding simulation. Earthquake Engineering & Structural Dynamics, 2009, 38: 1135-1142 [70] Hu S, Guo X. A dissipative contact force model for impact analysis in multibody dynamics. Multibody Syst Dyn, 2015, 35: 131-151 doi: 10.1007/s11044-015-9453-z [71] Shen Y, Xiang D, Wang X, Jiang L, Wei Y. A contact force model considering constant external forces for impact analysis in multibody dynamics. Multibody System Dynamics, 2018, 44(4): 397-419 doi: 10.1007/s11044-018-09638-0 [72] Zhang J, Li W, Zhao L, He G. A continuous contact force model for impact analysis in multibody dynamics. Mechanism and Machine Theory, 2020, 153: 103946 doi: 10.1016/j.mechmachtheory.2020.103946 [73] Zhang Y, Sharf I. Validation of nonlinear viscoelastic contact force models for low speed impact. Journal of Applied Mechanics, Transactions ASME, 2009, 76(5): 1-12 [74] Schwager T, Pöschel T. Coefficient of normal restitution of viscous particles and cooling rate of granular gases. Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1998, 57(1): 650-654 [75] Gonthier Y, Mcphee J, Lange C, Piedbœuf J claude C. A regularized contact model with asymmetric damping and dwell-time dependent friction. Multibody System Dynamics, 2004, 11(3): 209-233 doi: 10.1023/B:MUBO.0000029392.21648.bc [76] Herbert RG, McWhannell DC. Shape and Frequency Composition of Pulses From an Impact Pair. Journal of Engineering for Industry, 1977: 513-518 [77] Gharib M, Hurmuzlu Y. A New Contact Force Model for Low Coefficient of Restitution Impact. Journal of Applied Meclianics, 2012, 79: 1-6 [78] Hu G, Hu Z, Jian B, Liu L, Wan H. On the determination of the damping coefficient of non-linear spring-dashpot system to model hertz contact for simulation by discrete element method. Journal of Computers, 2011, 6(5): 984-988 [79] Lee TW, Wang AC. On the dynamics of intermittent-motion mechanisms. Part 1:dynamic model and response. Journal of Mechanisms, Transmissions, and Automation in Design, 1983, 105: 534-540 doi: 10.1115/1.3267392 [80] Lee J, Herrmann HJ. Angle of repose and angle of marginal stability: Molecular dynamics of granular particles. Journal of Physics A:Mathematical and General, 1993, 26(2): 373-383 doi: 10.1088/0305-4470/26/2/021 [81] Qian M, Qin Z, Yan S, Zhang L. A comprehensive method for the contact detection of a translational clearance joint and dynamic response after its application in a crank-slider mechanism. Mechanism and Machine Theory, 2020, 145: 103717 doi: 10.1016/j.mechmachtheory.2019.103717 [82] Olsson E, Larsson PL. A unified model for the contact behaviour between equal and dissimilar elastic-plastic spherical bodies. International Journal of Solids and Structures, 2016, 81: 23-32 doi: 10.1016/j.ijsolstr.2015.10.004 [83] Zhao Y, Marietta DM, Chang L. An Asperity Microcontact Model Incorporating the Transition From Elastic Deformation to Fully Plastic Flow. Journal of Tribology, 2000, 122(2): 479-480 doi: 10.1115/1.555386 [84] Marques F, Roupa I, Silva MT, Flores P, Lankarani HM. Examination and comparison of different methods to model closed loop kinematic chains using Lagrangian formulation with cut joint, clearance joint constraint and elastic joint approaches. Mechanism and Machine Theory, 2021, 160: 104294 doi: 10.1016/j.mechmachtheory.2021.104294 [85] Brilliantov N V, Spahn F, Hertzsch JM, Thorsten P. A model for collisions in granular gases. Physical Review E, 1996, 53: 1-12 doi: 10.1103/PhysRevB.53.1 [86] Zhang W, Xu J. Toward understanding solitary wave propagation in composite-cylinders-based 1 D granular crystals. Extreme Mechanics Letters, 2021, 43: 101156 doi: 10.1016/j.eml.2020.101156 [87] Hurmuzlu Y, Chang TH. Rigid Body Collisions of a Special Class of Planar Kinematic Chains. IEEE Transactions on Systems, Man and Cybernetics, 1992, 22(5): 964-971 doi: 10.1109/21.179836 [88] Sen S, Hong J, Bang J, Avalos E, Doney R. Solitary waves in the granular chain. Physics Reports, 2008, 462(2): 21-66 doi: 10.1016/j.physrep.2007.10.007 [89] Massoumi S, Challamel N, Lerbet J. Exact solutions for the vibration of finite granular beam using discrete and gradient elasticity cosserat models. Journal of Sound and Vibration, 2021, 494: 115839 doi: 10.1016/j.jsv.2020.115839 [90] Daraio C, Nesterenko VF, Herbold EB, Jin S. Energy trapping and shock disintegration in a composite granular medium. Physical Review Letters, 2006, 96(5): 1-4 [91] Rosas A, Romero AH, Nesterenko VF, Lindenberg K. Observation of two-wave structure in strongly nonlinear dissipative granular chains. Physical Review Letters, 2007, 98(16): 98-101 [92] Wu Q, Feng X, Chen Y, Liu M, Bao X. Continuous medium chain carboxylic acids production from excess sludge by granular chain-elongation process. Journal of Hazardous Materials, 2021, 402(May 2020): 123471 [93] King H, White R, Maxwell I, Menon N. Inelastic impact of a sphere on a massive plane: Nonmonotonic velocity-dependence of the restitution coefficient. Europhysics Letters, 2011, 93(1): 14002 doi: 10.1209/0295-5075/93/14002 [94] Wang G, Liu C. Nonlinear wave in granular systems based on elastoplastic dashpot model. International Journal of Mechanical System Dynamics, 2021, 1(1): 132-142 doi: 10.1002/msd2.12008 [95] Jankowski R. Non-linear viscoelastic modelling of earthquake-induced structural pounding. Earthquake Engineering and Structural Dynamics, 2005, 34(6): 595-611 doi: 10.1002/eqe.434 [96] Tsuji Y, Tanaka T, Ishida T. Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technology, 1992, 71(3): 239-250 doi: 10.1016/0032-5910(92)88030-L [97] Horabik J, Molenda M. Parameters and contact models for DEM simulations of agricultural granular materials: A review. Biosystems Engineering, 2016, 147: 206-225 doi: 10.1016/j.biosystemseng.2016.02.017 [98] Zhang Q, Venegas R, Umnova O, Lan Y. Tuning coupled wave dispersion in a granular chain on a V-shaped rail. Wave Motion, 2019, 90: 51-65 doi: 10.1016/j.wavemoti.2019.04.009 [99] Kuwabara G, Kono K. Restitution coefficient in a collision between two spheres. Japanese Journal of Applied Physics, 1987, 26(8): 1230-1233 [100] Ristow G. Simulating granular flow with molecular dynamics. J Phys I France, 1992, 2(5): 649-662 doi: 10.1051/jp1:1992159 [101] Reggio A, De Angelis M. Modelling and identification of structures with rate-independent linear damping. Meccanica, 2015, 50(3): 617-632 doi: 10.1007/s11012-014-0046-3 [102] Dwaikat M. M. S. , Spitas C, Spitas V. A non-linear model for elastic hysteresis in the time domain: Implementation for multiple degrees of freedom. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2021, 235(20): 4612–4624 [103] James G, Vorotnikov K, Brogliato B. Kuwabara-Kono numerical dissipation: A new method to simulate granular matter. IMA Journal of Applied Mathematics (Institute of Mathematics and Its Applications) , 2020, 85(1): 27-66 [104] Di Renzo A, Di Maio FP. Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes. Chemical Engineering Science, 2004, 59(3): 525-541 doi: 10.1016/j.ces.2003.09.037 [105] Zhuang X, Saraygord Afshari S, Yu T, Liang X. A hybrid model for wear prediction of a single revolute joint considering a time-varying lubrication condition. Wear, 2020, 442–443(November 2019): 203124 [106] Ju Y, Gong W, Chang W, Sun M. Effects of pore characteristics on water-oil two-phase displacement in non-homogeneous pore structures: A pore-scale lattice Boltzmann model considering various fluid density ratios. International Journal of Engineering Science, 2020, 154: 103343 doi: 10.1016/j.ijengsci.2020.103343 [107] Yang J, Wang D, Wei P, Pu W. A mixed EHL model of grease lubrication considering surface roughness and the study of friction behavior. Tribology International, 2021, 154(September 2020): 106710 [108] Bai ZF, Zhao Y. Dynamic behaviour analysis of planar mechanical systems with clearance in revolute joints using a new hybrid contact force model. International Journal of Mechanical Sciences, 2012, 54(1): 190-205 doi: 10.1016/j.ijmecsci.2011.10.009 [109] Bai ZF, Zhao Y. A hybrid contact force model of revolute joint with clearance for planar mechanical systems. International Journal of Non-Linear Mechanics, 2013, 48: 15-36 doi: 10.1016/j.ijnonlinmec.2012.07.003 [110] Tian Q, Flores P, Lankarani HM. A comprehensive survey of the analytical, numerical and experimental methodologies for dynamics of multibody mechanical systems with clearance or imperfect joints. Mechanism and Machine Theory, 2018, 122: 1-57 doi: 10.1016/j.mechmachtheory.2017.12.002 [111] 段玥晨, 章定国. 基于弹塑性接触的柔性多体系统碰撞动力学. 南京理工大学学报, 2012, 36(2): 189-194 (Duan Yuechen, Zhang Dingguo. Flexible multibody system impact dynamics based on Elastic-Plastic contact. Journal of Nanjing University of Science and Technology, 2012, 36(2): 189-194 (in Chinese) doi: 10.14177/j.cnki.32-1397n.2012.02.002 [112] Chen P, Liu JY, Lu GC. A new subregion mesh method for the investigation of the elastic-plastic impact in flexible multibody systems. Acta Mechanica Sinica, 2017, 33(1): 189-199 doi: 10.1007/s10409-016-0603-1 [113] Ma D, Liu C. Contact Law and Coefficient of Restitution in Elastoplastic Spheres. Journal of Applied Mechanics, 2015, 82(12): 1-9 [114] Liu C, Tian Q, Hu H. Dynamics and control of a spatial rigid-flexible multibody system with multiple cylindrical clearance joints. Mechanism and Machine Theory, 2012, 52: 106-129 doi: 10.1016/j.mechmachtheory.2012.01.016 [115] 董富祥, 洪嘉振. 多体系统动力学碰撞问题研究综述. 力学进展, 2009, 39(3): 352-359 (Dong Fuxiang, Hong Jiazhen. Review of impact problem for dynamics of multibody system. Advances in Mechanics, 2009, 39(3): 352-359 (in Chinese) doi: 10.3321/j.issn:1000-0992.2009.03.007 [116] 骞朋波, 尹晓春, 沈煜年, 孔德平. 梁撞击弹塑性波传播的动态子结构方法的研究. 工程力学, 2012, 29(12): 377-384 (Qian Pengbo, Yin Xiaochun, Shen Yinian, Kong Deping. Dynamic substructure technique for propagation of Elastic-Plastic waves of beam induced by impact. Engineering Mechanics, 2012, 29(12): 377-384 (in Chinese) doi: 10.6052/j.issn.1000-4750.2011.03.0165 [117] Feng Y, Kang W, Ma D, Liu C. Multiple Impacts and Multiple-Compression Process in the Dynamics of Granular Chains. Journal of Computational and Nonlinear Dynamics, 2019, 14(12): 1-9 [118] Rong B, Rui X, Tao L, Wang G. Theoretical modeling and numerical solution methods for flexible multibody system dynamics. Nonlinear Dynamics, 2019, 98(2): 1519-1553 doi: 10.1007/s11071-019-05191-3 [119] Peng Q, Ye X, Wu H, Liu X, Wei YG. Effect of plasticity on dynamic impact in a journal-bearing system: A planar case. Mechanism and Machine Theory, 2020: 154 [120] Zhu C, Yan Z. Research on the micro and dynamic characteristics of combination surface based on fractal theory. Mechanical Sciences, 2020, 11(1): 1-27 doi: 10.5194/ms-11-1-2020 [121] Zangi S, Hejazi I, Seyfi J, Hejazi E, Khonakdar HA, Davachi SM. Tuning cell adhesion on polymeric and nanocomposite surfaces: Role of topography versus superhydrophobicity. Materials Science and Engineering C, 2017, 231(2): 279-293 [122] Chen Q, Xu F, Liu P, Fan H. Research on fractal model of normal contact stiffness between two spheroidal joint surfaces considering friction factor. Tribology International, 2016, 97: 253-264 doi: 10.1016/j.triboint.2016.01.023 [123] Gujrati A, Sanner A, Khanal SR, Moldovan N, Zeng H, Pastewka L, et al. Comprehensive topography characterization of polycrystalline diamond coatings. Surface Topography:Metrology and Properties, 2021, 9: 1-14 [124] Guo J, He P, Liu Z, Huang H. Investigation of an improved planar revolute clearance joint contact model with rough surface. Tribology International, 2019, 134: 385-393 doi: 10.1016/j.triboint.2019.02.019 [125] 王庚祥, 刘宏昭. 多体系统动力学中关节效应模型的研究进展. 力学学报, 2015, 47(1): 31-50 (Wang Gengxiang, Liu Hongzhao. Research progress of joint effects model in multibody system dynamics. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(1): 31-50 (in Chinese) doi: 10.6052/0459-1879-14-091 [126] Song J, Wang W, Lang Y, Dong Y, Luo G. Double Rough Surface Contact Model and Finite Element Simulation based on Fractal Theory. Journal of Physics: Conference Series, 2021, 1877(1) [127] Megalingam A, Ramji KSH. A Comparison on Deterministic, Statistical and Statistical with Asperity Interaction Rough Surface Contact Models. Journal of Bio- and Tribo-Corrosion, 2021, 7(3): 1-7 [128] Jackson RL. An Analytical Solution to an Archard-Type Fractal Rough Surface Contact Model. Tribology Transactions, 2010, 53: 543-553 doi: 10.1080/10402000903502261 [129] Carbone G, Bottiglione F. Contact mechanics of rough surfaces: A comparison between theories. Meccanica, 2011, 46(3): 557-565 doi: 10.1007/s11012-010-9315-y [130] Johnson KL, Keer LM. Contact Mechanics, 1986 [131] D. Tabor. A Simple Theory of Static and Dynamic Hardness. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1948, 192(1029): 247-274 [132] Lee CH, Masaki S, Kobayashi S. Analysis of ball indentation. International Journal of Mechanical Sciences, 1972, 14(7): 417-426 doi: 10.1016/0020-7403(72)90099-9 [133] Sinclair GB, P. S. Follansbee, K. J. Johnson. Quasi-static normal indentation of an elasto-plastic half-space by a rigid circular cylinder of infinite length. International Journal of Solids and Structures, 1986, 22(8): 919-934 [134] Chang WR, Etsion I, Bogy DB. An elastic-plastic model for the contact of rough surfaces. Journal of Tribology, 1987, 109(2): 257-263 doi: 10.1115/1.3261348 [135] Thornton C. Coefficient of Restitution for Collinear Collisions of Elastic- Perfectly Plastic Spheres. Journal of Applied Mechanics, 1997, 64: 383-386 doi: 10.1115/1.2787319 [136] Stronge WJ, Sofi AR, Ravani B. Computing the composite coefficient of restitution for inelastic impact of dissimilar bodies. International Journal of Impact Engineering, 2019, 133(June): 103333 [137] K. L. Johnson. Contact Mechanics. Cambridge: Cambridge University Press, 1985 [138] Jackson RL, Green I. A finite element study of elasto-plastic hemispherical contact against a rigid flat. Journal of Tribology, 2005, 127(2): 343-354 doi: 10.1115/1.1866166 [139] Kogut L, Etsion I. Elastic-plastic contact analysis of a sphere and a rigid flat. Journal of Applied Mechanics, 2002, 69(5): 657-662 doi: 10.1115/1.1490373 [140] Shankar S, Mayuram MM. A finite element based study on the elastic-plastic transition behavior in a hemisphere in contact with a rigid flat. Journal of Tribology, 2008, 130(4): 1-6 [141] Vu-Quoc L, Zhang X, Laesburg L. A normal force-Displacement model for contacting spheres accounting for plastic deformation: Force-Driven formulation. Journal of Applied Mechanics, 2000, 67(2): 363-371 doi: 10.1115/1.1305334 [142] Etsion I, Kligerman Y, Kadin Y. Unloading of an elastic-plastic loaded spherical contact. International Journal of Solids and Structures, 2005, 42(13): 3716-3729 doi: 10.1016/j.ijsolstr.2004.12.006 [143] Du Y, Wang S. Energy dissipation in normal elastoplastic impact between two spheres. Journal of Applied Mechanics, Transactions ASME, 2009, 76(6): 1-8 [144] Burgoyne HA, Daraio C. Strain-rate-dependent model for the dynamic compression of elastoplastic spheres. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2014, 89(3): 1-5 [145] Komvopoulos K, Ye N. Three-dimensional contact analysis of elastic-plastic layered media with fractal surface topographies. Journal of Tribology, 2001, 123(3): 632-640 doi: 10.1115/1.1327583 [146] Brake MR. An analytical elastic-perfectly plastic contact model. International Journal of Solids and Structures, 2012, 49(22): 3129-3141 doi: 10.1016/j.ijsolstr.2012.06.013 [147] Zhang X, Vu-Quoc L. Modeling the dependence of the coefficient of restitution on the impact velocity in elasto-plastic collisions. International Journal of Impact Engineering, 2002, 27(3): 317-341 doi: 10.1016/S0734-743X(01)00052-5 [148] Zhang X, Vu-Quoc L. A method to extract the mechanical properties of particles in collision based on a new elasto-plastic normal force-displacement model. Mechanics of Materials, 2002, 34(12): 779-794 doi: 10.1016/S0167-6636(02)00181-3 [149] Gunes R, Aydin M, Apalak MK, Reddy JN. The elasto-plastic impact analysis of functionally graded circular plates under low-velocities. Composite Structures, 2011, 93(2): 860-869 doi: 10.1016/j.compstruct.2010.07.008 [150] Wu CY, Li L yuan, Thornton C. Rebound behaviour of spheres for plastic impacts. International Journal of Impact Engineering, 2003, 28(9): 929-946 doi: 10.1016/S0734-743X(03)00014-9 [151] Seifried R, Schiehlen W, Eberhard P. The role of the coefficient of restitution on impact problems in multi-body dynamics. Proceedings of the Institution of Mechanical Engineers, Part K:Journal of Multi-Body Dynamics, 2010, 224(3): 279-306 doi: 10.1243/14644193JMBD239 [152] Jackson RL, Green I, Marghitu DB. Predicting the coefficient of restitution of impacting elastic-perfectly plastic spheres. Nonlinear Dynamics, 2010, 60(3): 217-229 doi: 10.1007/s11071-009-9591-z [153] Hedrih KR (Stevanovic). Central collision of two rolling balls: theory and examples. vol. 10. 2017 [154] Hedrih KR. Vibro-impact dynamics of two rolling heavy thin disks along rotate curvilinear line and energy analysis. Nonlinear Dynamics, 2019, 98(4): 2551-2579 doi: 10.1007/s11071-019-04988-6 [155] Wu X, Sun Y, Wang Y, Chen Y. Correlation dimension and bifurcation analysis for the planar slider-crank mechanism with multiple clearance joints. Multibody System Dynamics, 2021, 52(1): 95-116 doi: 10.1007/s11044-020-09769-3 [156] Yu M, Xu Y, Chen S, Li Y. Dynamic Modeling and Simulation of Flexible Joint Manipulator. IEEE Advanced Information Technology, Electronic and Automation Control Conference (IAEAC) , 2021, 2021: 259-263 [157] Higham JE, Shepley P, Shahnam M. Measuring the coefficient of restitution for all six degrees of freedom. Granular Matter, 2019, 21(2) [158] Van Name FW. Experiment for Measuring the Coefficient of Restitution. American Journal of Physics, 1958, 26(6): 386-388 doi: 10.1119/1.1996166 [159] Chang WR, Ling FF. Normal impact model of rough surfaces. Journal of Tribology, 1992, 114(3): 439-447 doi: 10.1115/1.2920903 [160] Vu-Quoc L, Zhang X, Lesburg L. Normal and tangential force-displacement relations for frictional elasto-plastic contact of spheres. International Journal of Solids and Structures, 2001, 38(36–37): 6455–6489 [161] Weir G, Tallon S. The coefficient of restitution for normal incident, low velocity particle impacts. Chemical Engineering Science, 2005, 60(13): 3637-3647 doi: 10.1016/j.ces.2005.01.040 [162] Jackson R, Chusoipin I, Green I. A finite element study of the residual stress and deformation in hemispherical contacts. Journal of Tribology, 2005, 127(3): 484-493 doi: 10.1115/1.1843166 [163] Jackson RL, Kogut L. A comparison of flattening and indentation approaches for contact mechanics modeling of single asperity contacts. Journal of Tribology, 2006, 128(1): 209-212 doi: 10.1115/1.2114948 [164] Antonyuk S, Heinrich S, Tomas J, Deen NG, Van Buijtenen MS, Kuipers JAM. Energy absorption during compression and impact of dry elastic-plastic spherical granules. Granular Matter, 2010, 12(1): 15-47 doi: 10.1007/s10035-009-0161-3 [165] Wu CY, Li LY, Thornton C. Energy dissipation during normal impact of elastic and elastic-plastic spheres. International Journal of Impact Engineering, 2005, 32(1–4): 593–604 [166] 刘才山, 陈滨. 多柔体系统碰撞动力学研究综述. 力学进展, 2000, 30(1): 7-14 (Liu Caishan, Chen Bin. A global review for the impact dynamic research of flexible multibody systems. Advances in Mechanics, 2000, 30(1): 7-14 (in Chinese) doi: 10.3321/j.issn:1000-0992.2000.01.002 [167] Hurmuzlu Y. An Energy Based Coefficient of Restitution for Planar Impacts of Slender Bars with Massive External Surfaces. Journal of Applied Mechanics, 2001, 65(4): 952-962 [168] 王检耀, 刘铸永, 洪嘉振. 基于两种接触模型的柔性体间多次微碰撞问题研究. 振动与冲击, 2018, 37(11): 202-206 (Wang Jianyao, Liu Zhuyong, Hong Jiazhen. Multi-micro impact among flexible bodies using two contact models. Journal of Vibration and Shock, 2018, 37(11): 202-206 (in Chinese) doi: 10.13465/j.cnki.jvs.2018.11.029 [169] Wang G, Wang L. Coupling relationship of the non-ideal parallel mechanism using modified Craig-Bampton method. Mechanical Systems and Signal Processing, 2020, 141: 106471 doi: 10.1016/j.ymssp.2019.106471 [170] Khulief YA, Shabana AA. Impact responses of multi-body systems with consistent and lumped masses. Journal of Sound and Vibration, 1986, 104(2): 187-207 doi: 10.1016/0022-460X(86)90263-4 [171] Shabana AA, Wang G, Kulkarni S. Further investigation on the coupling between the reference and elastic displacements in fl exible body dynamics. Journal of Sound and Vibration, 2018, 427: 159-177 doi: 10.1016/j.jsv.2018.02.054 [172] Sun D, Liu C, Hu H. Dynamic computation of 2 D segment-to-segment frictional contact for a flexible multibody system subject to large deformations. Mechanism and Machine Theory, 2021, 158: 1-32 [173] Sun D, Chen G, Shi Y, Wang T, Sun R. Model reduction of a flexible multibody system with clearance. Mechanism and Machine Theory, 2015, 85: 106-115 doi: 10.1016/j.mechmachtheory.2014.10.013 [174] Salahshoor E, Ebrahimi S, Zhang Y. Frequency analysis of a typical planar flexible multibody system with joint clearances. Mechanism and Machine Theory, 2018, 126: 429-456 doi: 10.1016/j.mechmachtheory.2018.04.027 [175] Tang L, Liu J. Frictional contact analysis of sliding joints with clearances between flexible beams and rigid holes in flexible multibody systems. Multibody System Dynamics, 2020, 49(2): 155-179 doi: 10.1007/s11044-019-09717-w [176] 盛立伟, 刘锦阳, 余征跃. 柔性多体系统弹性碰撞动力学建模. 上海交通大学学报, 2006, 40(10): 1790-1793 (Sheng Liwei, Liu Jinyang, Yu Zhengyue. Dynamic modeling of a flexible multibody sytem with elastic impact. Journal of the Shanghai Jiao Tong University, 2006, 40(10): 1790-1793 (in Chinese) doi: 10.3321/j.issn:1006-2467.2006.10.036 [177] 刘昊, 魏承, 田健, 谭春林, 赵阳. 空间充气展开绳网捕获系统动力学建模与分析. 机械工程学报, 2018, 54(22): 145-152 (Liu Hao, Wei Cheng, Tian Jian, Tan Chunlin, Zhao Yang. Dynamics modeling and analysis of the inflatable net system for space capture. Journal of Mechanical Engineering, 2018, 54(22): 145-152 (in Chinese) doi: 10.3901/JME.2018.22.145 [178] 方建士, 李宝玉, 章定国. 大范围运动柔性梁的连续力法撞击动力学分析. 南京理工大学学报, 2008, 32(6): 661-665 (Fang Jianshi, Li Baoyu, Tan Dingguo. Continuous force approach for impact dynamics of flexible beam in large overall motion. Journal of Nanjing University of Science and Technology, 2008, 32(6): 661-665 (in Chinese) doi: 10.14177/j.cnki.32-1397n.2008.06.003 [179] Song N, Peng H, Kan Z, Chen B. A novel nonsmooth approach for flexible multibody systems with contact and friction in 3 D space. Nonlinear Dynamics, 2020, 102(3): 1375-1408 doi: 10.1007/s11071-020-05972-1 [180] 虞磊, 赵治华, 任启鸿, 任革学. 基于绝对节点坐标的柔性体碰撞仿真. 清华大学学报(自然科学版), 2010, 50(7): 1135-1140 (Yu Lei, Zhao Zhihua, Ren Qihong, Ren Gexue. Contact simulations of flexible bodies based on absolute nodal coordinates. Journal of Tsinghua University(Sci & Tech) , 2010, 50(7): 1135-1140 (in Chinese) doi: 10.16511/j.cnki.qhdxxb.2010.07.013 [181] Pan Y, Huang L, Dai W, Zhao J, Yu X, Mikkola A. Rod-removal technique for flexible-rods in the framework of semi-recursive multibody formulation. Mechanism and Machine Theory, 2022, 169(December 2021): 104625 [182] Zhang Z, Páez Chávez J, Sieber J, Liu Y. Controlling grazing-induced multistability in a piecewise-smooth impacting system via the time-delayed feedback control. Nonlinear Dynamics, 2022, 107(2): 1595-1610 doi: 10.1007/s11071-021-06511-2 [183] Afebu KO, Liu Y, Papatheou E. Application and comparison of feature-based classification models for multistable impact motions of percussive drilling. Journal of Sound and Vibration, 2021, 508: 116205 doi: 10.1016/j.jsv.2021.116205 [184] Ghaednia H, Pope SA, Jackson RL, Marghitu DB. A comprehensive study of the elasto-plastic contact of a sphere and a flat. Tribology International, 2016, 93: 78-90 doi: 10.1016/j.triboint.2015.09.005 [185] Jackson RL, Kogut L. Electrical contact resistance theory for anisotropic conductive films considering electron tunneling and particle flattening. IEEE Transactions on Components and Packaging Technologies, 2007, 30(1): 59-66 doi: 10.1109/TCAPT.2007.892070 [186] Alcalá J, Esqué-De Los Ojos D. Reassessing spherical indentation: Contact regimes and mechanical property extractions. International Journal of Solids and Structures, 2010, 47(20): 2714-2732 doi: 10.1016/j.ijsolstr.2010.05.025 [187] Yigit S. On the use of an elastic-plastic contact law for the impact of a single flexible link. Journal of Dynamic Systems, Measurement, and Control, 1997, 117: 527-533 [188] 钱震杰, 章定国. 含摩擦碰撞柔性机械臂动力学研究. 振动工程学报, 2015, 28(6): 879-886 (Qian Zhenjie, Zhang Dingguo. Frictional impact dynamics of flexible manipulator arms. Journal of Vibration Engineering, 2015, 28(6): 879-886 (in Chinese) doi: 10.16385/j.cnki.issn.1004-4523.2015.06.004 [189] Wang G, Ma D, Liu C, Liu Y. Development of a compliant dashpot model with nonlinear and linear behaviors for the contact of multibody systems. Mechanical Systems and Signal Processing, 2023, 185(August 2022): 109785 [190] Afebu KO, Liu Y, Papatheou E, Guo B. LSTM-based approach for predicting periodic motions of an impacting system via transient dynamics. Neural Networks, 2021, 140: 49-64 doi: 10.1016/j.neunet.2021.02.027 [191] Liu Y, Páez Chávez J, Guo B, Birler R. Bifurcation analysis of a vibro-impact experimental rig with two-sided constraint. Meccanica, 2020, 55(12): 2505-2521 doi: 10.1007/s11012-020-01168-4 [192] Tian Q, Yu Z, Lan P, Cui Y, Lu N. Model order reduction of thermo-mechanical coupling flexible multibody dynamics via free-interface component mode synthesis method. Mechanism and Machine Theory, 2022, 172(June 2021): 104786 [193] Yu Z, Cui Y, Zhang Q, Liu J, Qin Y. Thermo-mechanical coupled analysis of V-belt drive system via absolute nodal coordinate formulation. Mechanism and Machine Theory, 2022, 174(October 2021): 104906 -