EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双振子同异步振动主动控制湍流边界层减阻实验研究

白建侠 赵凯芳 程肖歧 姜楠

白建侠, 赵凯芳, 程肖歧, 姜楠. 双振子同异步振动主动控制湍流边界层减阻实验研究. 力学学报, 2022, 54(10): 1-10 doi: 10.6052/0459-1879-22-248
引用本文: 白建侠, 赵凯芳, 程肖歧, 姜楠. 双振子同异步振动主动控制湍流边界层减阻实验研究. 力学学报, 2022, 54(10): 1-10 doi: 10.6052/0459-1879-22-248
Bai Jianxia, Zhao Kaifang, Cheng Xiaoqi, Jiang Nan. Experimental investigation on active control turbulent boundary layer dray reduction by synchronous and asynchronous vibration of dual vibrators. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 1-10 doi: 10.6052/0459-1879-22-248
Citation: Bai Jianxia, Zhao Kaifang, Cheng Xiaoqi, Jiang Nan. Experimental investigation on active control turbulent boundary layer dray reduction by synchronous and asynchronous vibration of dual vibrators. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 1-10 doi: 10.6052/0459-1879-22-248

双振子同异步振动主动控制湍流边界层减阻实验研究

doi: 10.6052/0459-1879-22-248
基金项目: 国家自然科学基金项目(11732010、11972251、11872272), 工业信息化部高技术船舶项目([2019]360)资助
详细信息
    作者简介:

    姜楠, 教授, 主要研究方向: 实验流体力学, 湍流. E-mail: nanj@tju.edu.cn

  • 中图分类号: O357.5

EXPERIMENTAL INVESTIGATION ON ACTIVE CONTROL TURBULENT BOUNDARY LAYER DRAY REDUCTION BY SYNCHRONOUS AND ASYNCHRONOUS VIBRATION OF DUAL VIBRATORS

  • 摘要: 本文以镶嵌在平板上沿展向对放的两个压电陶瓷振子为主动控制激励器,自主设计了零质量射流主动控制湍流边界层减阻实验方案.在风洞中开展了双压电振子同步和异步振动主动控制湍流边界层减阻的实验研究,实现了压电振子的周期扰动对湍流边界层多尺度相干结构的干扰和调制,施加控制后减小了壁面摩擦阻力,获得减阻效果.当异步控制100 V160 Hz工况时得到最大减阻率为18.54%.小波多尺度分析结果表明,施加控制工况中PZT振子的周期性扰动使得小尺度结构的湍流脉动强度增强,改变了近壁区大尺度和小尺度结构的含能分布,且异步控制工况比同步控制工况的减阻效果好.当双振子振动频率为160 Hz时,流向脉动速度的小波系数PDF曲线呈现出波动特征,尾部变宽显著,近壁湍流脉动更加有序和规则,湍流间歇性减弱.对小尺度脉动进行条件相位平均的结果表明,施加PZT周期扰动后使得大尺度结构破碎成为小尺度结构,小尺度脉动强度增强,实现减阻.随着流向位置离PZT振子越来越远,周期性扰动对相干结构的调制作用逐渐减弱.

     

  • 图  1  实验平板示意图

    Figure  1.  Sketch map of flat plate

    图  2  双PZT振子实物图

    Figure  2.  Picture of dual PZT vibrators

    图  3  PZT振子悬臂梁模型示意图

    Figure  3.  Cantilever beam model of PZT oscillators

    图  4  不同工况平板湍流边界层平均速度剖面

    Figure  4.  Average velocity profiles of the turbulent boundary layer

    图  5  不同法向位置小波系数概率密度函数

    Figure  5.  PDFs of the wavelet coefficient Wu (a,b)at different normal positions

    6  不同法向位置能量随尺度分布

    6.  Scale- energy distribution at different normal positions

    6  不同法向位置能量随尺度分布(续)

    6.  Scale- energy distribution at different normal positions (continued)

    7  小尺度振幅的条件平均

    7.  conditional averaging of small-scale fluctuations amplitude

    7  小尺度振幅的条件平均(续)

    7.  conditional averaging of small-scale fluctuations amplitude (continued)

    8  不同流向位置 100 V160 Hz-asyn工况多尺度流动能量分布

    8.  Energy cloud distribution of the multi-scale flow structures for 100 V160 Hz-asyn case at different streamwise positions

    8  不同流向位置 100 V160 Hz-asyn工况多尺度流动能量分布(续)

    8.  Energy cloud distribution of the multi-scale flow structures for 100 V160 Hz-asyn case at different streamwise positions (continued)

    表  1  PZT振子材料主要力学参数

    Table  1.   Main material property of PZT actuator

    Material$ \rho ' $/ (kg·m−3)E / Pa$ \mu $
    Elasticcopper8.89 × 10311.3 × 10100.32
    PZTP5-H7.45 × 1037.69 × 10100.33
    下载: 导出CSV

    表  2  不同工况振子振幅

    Table  2.   Amplitude of oscillator in different case

    CaseAmplitude A /mm
    none0.000
    100 V80 Hz-syn0.155
    100 V160 Hz-syn0.232
    100 V160 Hz-asyn0.232
    80 V160 Hz-asyn0.186
    下载: 导出CSV

    表  3  不同工况减阻率

    Table  3.   Drag reduction rate for each case

    Case${u_\tau }/({\text{m} } \cdot { {\text{s} }^{ {{ - 1} } } })$$ {\text{ }}{\eta \mathord{\left/ {\vphantom {\eta \% }} \right. } \% } $
    none0.408--
    100 V80 Hz-syn0.38510.83
    100 V160 Hz-syn0.38013.00
    100 V240 Hz-syn0.3898.700
    100 V160 Hz-asyn0.36818.54
    下载: 导出CSV
  • [1] Hutchins N, Marusic I. Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. Journal of Fluid Mechanics, 2007, 579: 1-28 doi: 10.1017/S0022112006003946
    [2] Hutchins N, Chauhan K, Marusic I, et al. Towards reconciling the large-scale structure of turbulent boundary layers in the atmosphere and laboratory. Boundary Layer Meteorology, 2012, 145(2): 273-306 doi: 10.1007/s10546-012-9735-4
    [3] Elsinga G E, Adrian RJ, Oudheusden BWV, et al. Three-dimensional vortex organization in a high-Reynolds-number supersonic turbulent boundary layer. Journal of Fluid Mechanics, 2010, 644(4): 35-60
    [4] Dennis DJC, Nickels TB. Experimental measurement of large-scale three dimensional structures in a turbulent boundary layer. Part 1. Vortex packets. Journal of Fluid Mechanics, 2011, 673: 180-217
    [5] Zhou J, Adrian RJ, Balachandar S, et al. Mechanisms for generating coherent packets of hairpin vortices in channel flow. Journal of Fluid Mechanics, 1999, 387: 353-396 doi: 10.1017/S002211209900467X
    [6] Adrian RJ, Meinhart CD, Tomkins CD. Vortex organization in the outer region of the turbulent boundary layer. Journal of Fluid Mechanics, 2000, 422: 1-54 doi: 10.1017/S0022112000001580
    [7] Christensen KT, Adrian RJ. Statistical evidence of hairpin vortex packets in wall turbulence. Journal of Fluid Mechanics, 2001, 431: 433-443 doi: 10.1017/S0022112001003512
    [8] Adrian RJ, Ronald J. Hairpin vortex organization in wall turbulence. Physics of Fluids, 2007, 19(4): 457
    [9] Hutchins N, Marusic I. Large-scale influences in near-wall turbulence. Philosophical Transactions of the Royal Society A:Mathematical, Physical & Engineering Sciences, 2007, 365: 647-664
    [10] Mathis R, Hutchins N, Marusic I. Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers. Journal of Fluid Mechanics, 2009, 628: 311-337 doi: 10.1017/S0022112009006946
    [11] Tang Z, Jiang N, Zheng X, et al. Bursting process of large and small-scale structures in turbulent boundary layer perturbed by a cylinder roughness element. Experiments in Fluids, 2016, 57(5): 1-14
    [12] Jeong J, Hussain F, Schoppa W, et al. Coherent structures near the wall in a turbulent channel flow. Journal of Fluid Mechanics, 1997, 332: 185-214 doi: 10.1017/S0022112096003965
    [13] Perlin M, Dowling D R, Ceccio S L. Freeman Scholar Review: Passive and Active Skin-Friction Drag Reduction in Turbulent Boundary Layers. Journal of Fluids Engineering, 2016, 138(9): 091104 doi: 10.1115/1.4033295
    [14] Hamilton J M, Kim J, Waleffe F. Regeneration mechanisms of near-wall turbulence structures. Journal of Fluid Mechanics, 1995, 287: 317-348
    [15] 黄伟希, 许春晓, 崔桂香等. 壁面展向周期振动的槽道湍流减阻机理的研究. 力学学报, 2004(01): 24-30 doi: 10.1017/S0022112095000978

    Huang Weixi, Xu Chunxiao, Cui Guixiang, et al. Mechanism of drag reduction by spanwise wall oscillation in turbulent channel flow. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(1): 24-30 (in Chinese) doi: 10.1017/S0022112095000978
    [16] 杨歌, 许春晓, 崔桂香. 槽道湍流减阻次优控制方案研究. 力学学报, 2010, 42(05): 818-829 doi: 10.6052/0459-1879-2010-5-lxxb2009-230

    Yang Ge, Xu Chunxiao, Cui Guixiang. Study on suboptimal control schemes for skin-friction reduction in turbulent channel flow. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(5): 818-829 (in Chinese)) doi: 10.6052/0459-1879-2010-5-lxxb2009-230
    [17] Deng Bingqing, Xu Chunxiao. Influence of active control on STG-based generation of streamwise vortices in near-wall turbulence. Journal of Fluid Mechanics, 2012, 710(5): 234-259
    [18] 罗世东, 许春晓, 崔桂香. 圆管湍流减阻电磁力控制的直接数值模拟[J]. 力学学报, 2007(03): 311-319 doi: 10.3321/j.issn:0459-1879.2007.03.003

    Luo Shidong, Xu Chunxiao, Cui Guixiang. Direct Numerical simulation of turbulent pipe flow controlled by MHD for drag reduction. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(3): 311-319 (in Chinese)) doi: 10.3321/j.issn:0459-1879.2007.03.003
    [19] 葛铭纬, 许春晓, 黄伟希等. 基于壁面主动变形的湍流减阻控制研究. 力学学报, 2012, 44(04): 653-663 doi: 10.6052/0459-1879-11-198

    Ge Mingwei, Xu Chunxiao, Huang Weixi, et al. Drag reduction control based on active wall deformation. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44 (04): 653-663 (in Chinese)) doi: 10.6052/0459-1879-11-198
    [20] Gad-El-Hak M. Flow control: passive, active, and reactive flow management. Cambridge: Cambridge University Press, 2000
    [21] Kang S, Choi H. Active wall motions for skin-friction drag reduction. Journal of Fluid Mechanics, 2000, 12(12): 3301-3304
    [22] Kral LD. Active flow control technology. ASME Fluids Engineering Division Newslette, 1999: 1-3
    [23] 彭磊, 罗振兵, 邓雄等. 水下合成双射流流场特性与推力特性实验研究, 空气动力学学报, 2017, 35(2): 290-298

    Peng Lei, Luo Zhenbing, Deng Xiong, et al. Experimental investigation on characteristics of flow field and propulsion of dual synthetic jets in water. Acta Mechanica Sinica, 2017, 35(2): 290-298 (in Chinese))
    [24] Guo H, Huang Q, Liu P, et al. Effects of local high-frequency perturbation on a turbulent boundary layer by synthetic jet injection. Fluid Dynamics Research, 2015, 47(4): 045501 doi: 10.1088/0169-5983/47/4/045501
    [25] 罗振兵, 夏智勋. 合成射流技术及其在流动控制中应用的进展. 力学进展, 2005, 35(02): 221-234 doi: 10.3321/j.issn:1000-0992.2005.02.009

    Luo Zhenbing, Xia Zhixun. Advances in synthetic jet technology and applications in flow control. Advances in Mechanics, Advances in Mechanics, 2005, 35(02): 221-234 (in Chinese)) doi: 10.3321/j.issn:1000-0992.2005.02.009
    [26] Park YS, Park SH, Sung HJ. Measurement of local forcing on a turbulent boundary layer using PIV. Experiments in Fluids, 2003, 34(6): 697-707 doi: 10.1007/s00348-003-0604-2
    [27] Ye Z, Jiang Y, Zhang Y, et al. Effects of synthetic jet array on turbulent boundary layer. International Journal of Heat and Technology, 2019, 37(3): 893-898 doi: 10.18280/ijht.370327
    [28] Lu L, Li D, Gao Z, et al. Characteristics of array of distributed synthetic jets and effect on turbulent boundary layer. Acta Mechanica Sinica, 2020, 36(6): 1-20
    [29] Wang JJ, Feng LH, Xu CJ. Experimental investigations on separation control and flow structure around a circular cylinder with synthetic jet. Science China Technological Sciences, 2007, 50(5): 1-10
    [30] Zhang PF, Wang JJ. Novel Signal Wave Pattern for Efficient Synthetic Jet Generation. Aiaa Journal, 2007, 45(5): 1058-1065 doi: 10.2514/1.25445
    [31] Iii L N C, Sheplak M. Actuators for Active Flow Control. Annual Review of Fluid Mechanics, 2011, 43: 247-272 doi: 10.1146/annurev-fluid-122109-160634
    [32] Jung WJ, Mangiavacchi N, Akhavan R, et al. Suppression of turbulence in wallbounded flows by high-frequency spanwise oscillations. Physics of Fluids, 1992, 4(8): 1605-1607 doi: 10.1063/1.858381
    [33] Skote, Martin. Comparison between spatial and temporal wall oscillations in turbulent boundary layer flows. Journal of Fluid Mechanics, 2013, 730: 273-294 doi: 10.1017/jfm.2013.344
    [34] Choi K S. Near-wall structure of turbulent boundary layer with spanwise-wall oscillation. Physics of Fluids, 2002, 14(7): 2530-2542 doi: 10.1063/1.1477922
    [35] Jacobson S A, Reynolds W C. Active control of streamwise vortices and streaks in boundary layers. Journal of Fluid Mechanics, 1998, 360: 179-211 doi: 10.1017/S0022112097008562
    [36] Bai HL, Zhou Y. Active control of turbulent boundary layer using an array of piezo-ceramic actuators. Berlin Heidelberg: Springer, 2009
    [37] Bai HL, Zhou Y, Zhang WG, et al. Active control of a turbulent boundary layer based on local surface perturbation. Journal of Fluid Mechanics, 2014, 750: 316-354 doi: 10.1017/jfm.2014.261
    [38] Qiao Z X, Zhou Y, Wu Z. Turbulent boundary layer under the control of different schemes. Philosophical Transactions of the Royal Society A, 2017, 473: 20170038
    [39] Zheng XB, Jiang N, Zhang H. Predetermined control of turbulent boundary layer with a piezoelectric oscillator. Chinese Physics B, 2016, 25(1): 673-677
    [40] Bai JX, Jiang N, Zheng XB, et al. Active control of wall-bounded turbulence for drag reduction with piezoelectric oscillators. Chinese Physics B, 2018, 27(7): 074701 doi: 10.1088/1674-1056/27/7/074701
    [41] Cui XT, Jiang N, Zheng XB, et al. Active control of multiscale features in wall-bounded turbulence. Acta Mechanica Sinica, 2020, 36(1): 12-21
    [42] 王帅杰, 崔晓通, 白建侠等. 减阻工况下壁面周期扰动对湍流边界层多尺度的影响.力学学报,2019,51(3): 767-774 doi: 1

    Wang Shuaijie, Cui Xiaotong, Bai Jianxia, et al. The effect of periodic perturbation on multi scales in a turbulent boundary layer flow under drag reduction. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 767–774 (in Chinese)) doi: 1
    [43] Liu JH, Jiang N, Wang ZD, et al. Multi-scale Coherent Structures in Turbulent Boundary Layer Detected by Locally Averaged Velocity Structure Functions. Applied Mathematics and Mechanics, 2005, 26(4): 456-464
    [44] 姜楠,柴雅彬.用子波系数概率密度函数研究湍流多尺度结构的间歇性.航空动力学报,2005(05):718-724

    Jiang Nan, Chai Yabin.Experimental Investigation of Multi-Scale Eddy Structures intermittency in Turbulent Flow Using Probability Density Function of Wavelet Coefficients,Journal of Aerospace Power, 2005(05):718-724) (in Chinese)
    [45] Tang Z, Jiang N. The effect of a synthetic input on small-scale intermittent bursting events in near-wall turbulence. Physics of Fluids, 2020, 32(1): 015110 doi: 10.1063/1.5129042
    [46] Ganapathisubramani B, Hutchins N, Monty J P, et al. Amplitude and frequency modulation in wall turbulence. Journal of Fluid Mechanics, 2012, 712: 61-91 doi: 10.1017/jfm.2012.398
    [47] Tang Z, Jiang N. Scale interaction and arrangement in a turbulent boundary layer perturbed by a wall mounted cylindrical element. Physics of Fluids, 2018, 30: 055103 doi: 10.1063/1.5022670
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  26
  • HTML全文浏览量:  7
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 网络出版日期:  2022-07-26

目录

    /

    返回文章
    返回