EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水下发射航行体尾涡不稳定性分析

高山 施瑶 潘光 权晓波 鲁杰文

高山, 施瑶, 潘光, 权晓波, 鲁杰文. 水下发射航行体尾涡不稳定性分析. 力学学报, 2022, 54(9): 2435-2445 doi: 10.6052/0459-1879-22-245
引用本文: 高山, 施瑶, 潘光, 权晓波, 鲁杰文. 水下发射航行体尾涡不稳定性分析. 力学学报, 2022, 54(9): 2435-2445 doi: 10.6052/0459-1879-22-245
Gao Shan, Shi Yao, Pan Guang, Quan Xiaobo, Lu Jiewen. Study on the wake vortex instability of the projectile launched underwater. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 2435-2445 doi: 10.6052/0459-1879-22-245
Citation: Gao Shan, Shi Yao, Pan Guang, Quan Xiaobo, Lu Jiewen. Study on the wake vortex instability of the projectile launched underwater. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 2435-2445 doi: 10.6052/0459-1879-22-245

水下发射航行体尾涡不稳定性分析

doi: 10.6052/0459-1879-22-245
基金项目: 国家自然科学基金 (52171324, U21 B2055) 和中央高校基本业务费 (3102019 JC006) 资助项目
详细信息
    作者简介:

    施瑶, 副研究员, 主要研究方向: 跨介质水动力特性研究. E-mail: shiyao@nwpu.edu.cn

  • 中图分类号: O352

STUDY ON THE WAKE VORTEX INSTABILITY OF THE PROJECTILE LAUNCHED UNDERWATER

  • 摘要: 在水下连续发射过程中前一发航行体尾流会对后一发航行体运动姿态稳定性产生流动干扰现象. 因此, 研究尾流中涡旋结构演变机理对解决多弹体水下连续发射流动干扰难题具有重要的意义. 本文采用改进型分离涡模型与能量方程, VOF多相流模型与重叠网格技术相结合方法, 对航行体水下发射尾流演变过程开展精细化模拟研究, 其中模拟结果和实验吻合度较好, 验证了本文数值方法的有效性. 以航行体尾流区域为重点研究对象, 分析了尾流区瞬态流场分布, 讨论了横流强度和雷诺数对尾涡结构演变以及脉动压力分布特性的影响. 结果表明: 由于尾流区高速流体核心区与低速自由流相互作用导致Kelvin-Helmholtz不稳定现象出现, 可以清晰地发现涡旋结构在剪切力的作用下发生脱落. 在横流条件下, 航行体尾端脱落的涡环与涡腿形成发卡涡, 而多个发卡涡沿轴向间隔排列组成发卡涡包存在于尾流中. 随着横流强度增大, 形成多级发卡涡包结构, 而导致脉动压力二次峰值均出现的主要原因是尾流涡旋流场演变引起的. 随着雷诺数的增大, 尾流中由圆柱形涡和U型涡组成的二次涡结构逐渐明显, 不稳定性加强.

     

  • 图  1  计算域和边界条件示意图

    Figure  1.  Schematic diagram of calculation domain and boundary conditions

    图  2  网格划分细节

    Figure  2.  Meshing details

    图  3  重叠网格工作流程

    Figure  3.  Workflow of overlapping grids

    图  4  实验装置

    Figure  4.  Experimental device

    图  5  折射校正

    Figure  5.  Refraction correction

    图  6  实验与数值计算相图对比

    Figure  6.  Comparison of phase diagram between experiment and numerical result

    图  7  实验与模拟计算运动位移对比

    Figure  7.  Comparison of motion displacement between experiment and simulation result

    图  8  不同时刻下流场气−液相体积分数演化

    Figure  8.  Evolution of gas-liquid volume fraction in flow field at different times

    图  9  不同时刻下流场速度幅值演化

    Figure  9.  Evolution of velocity amplitude in flow field at different times

    图  10  不同时刻下流场涡量幅值演化

    Figure  10.  Evolution of vorticity amplitude in flow field at different times

    图  11  涡量与等值面尾涡演变

    Figure  11.  FIig. 11. Evolution of vorticity and isosurface wake vortex

    图  12  不同时刻下流场等值面尾涡结构演化

    Figure  12.  Evolution of isosurface wake vortex at different times

    图  13  流场监测线分布

    Figure  13.  Distribution of flow field monitoring lines

    图  14  不同监测线脉动压力演变

    Figure  14.  Evolution of fluctuating pressure of different monitoring lines

    图  15  不同横流强度下尾流场速度分布

    Figure  15.  Velocity distribution of wake field under different crossflow intensity

    图  16  不同横流强度下尾流场涡量分布

    Figure  16.  Vorticity distribution of wake field under different crossflow intensity

    图  17  不同横流强度下等值面尾涡分布

    Figure  17.  Wake vortex distribution of isosurface under different crossflow intensity

    图  18  不同横流强度下P2脉动压力演变

    Figure  18.  Evolution of P2 fluctuating pressure under different crossflow intensities

    图  19  不同横流强度下P3脉动压力演变

    Figure  19.  Evolution of P3 fluctuating pressure under different crossflow intensities

    图  20  不同横流强度下P4脉动压力演变

    Figure  20.  Evolution of P4 fluctuating pressure under different crossflow intensities

    图  21  不同雷诺数下尾流场速度分布

    Figure  21.  Velocity distribution of wake field under different Reynolds number

    图  23  不同雷诺数下等值面尾涡云图

    Figure  23.  Wake vortex distribution of isosurface under different Reynolds number

    图  24  不同雷诺数下P2脉动压力演变

    Figure  24.  Evolution of P2 fluctuating pressure under different Reynolds number

    图  25  不同雷诺数下P3脉动压力演变

    Figure  25.  Evolution of P3 fluctuating pressure under different Reynolds number

    图  26  不同雷诺数下P4脉动压力演变

    Figure  26.  Evolution of P4 fluctuating pressure under different Reynolds number

    图  22  不同雷诺数下尾流场涡量分布

    Figure  22.  Vorticity distribution of wake field under different Reynolds number

  • [1] 许奇, 权晓波, 魏海鹏, 等. 水下推力矢量控制技术研究现状及进展. 兵器装备工程学报, 2022, 43(01): 27-34

    Xu Qi, Quan Xiaobo, Wei Haipeng, et al. Research progress and prospects of underwater thrust vector control technology. Journal of Ordnance Equipment Engineering, 2022, 43(01): 27-34 (in Chinese)
    [2] 刘超群. Liutex-涡定义和第三代涡识别方法. 空气动力学学报, 2020, 38(03): 413-431

    Liu Chaoqun. Liutex-third generation of vortex definition and identification methods. Acta Aerodynamica Sinica, 2020, 38(03): 413-431 (in Chinese)
    [3] Xu H, Wei YJ, Wang C, et al. On wake vortex encounter of axial-symmetric projectiles launched successively underwater. Ocean Engineering, 2019, 189: 106382 doi: 10.1016/j.oceaneng.2019.106382
    [4] 王畅畅, 王国玉, 黄彪, 等. 可压缩空化流动空穴演化及压力脉动特性实验研究. 力学学报, 2019, 51(05): 1296-1309

    Wang Changchang, Wang Guoyu, Huang Biao, et al. Experimental investigation of cavitation characteristics and dynamics in compressible turbulent cavitating flow. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(05): 1296-1309 (in Chinese)
    [5] 孙铁志, 魏英杰, 王聪, 等. 空化模型在低温流体空化流动三维计算中的应用与评价. 船舶力学, 2018, 22(01): 22-30 doi: 10.3969/j.issn.1007-7294.2018.01.003

    Sun Tiezhi, Wei Yingjie, Wang Cong, et al. Evaluation of cavitation model in three-dimensional computations of cryogenics liquid cavitating flows. Journal of Ship Mechanics, 2018, 22(01): 22-30 (in Chinese) doi: 10.3969/j.issn.1007-7294.2018.01.003
    [6] 岳军政, 吴先前, 黄晨光. 航行体出水破冰的多场耦合效应与相似律[J]. 力学学报, 2021, 53(07): 1930-1939 doi: 10.6052/0459-1879-21-082

    Yue Junzheng, Wu Xianqian, Huang Chenguang. Multi-Field coupling effect and similarity law of floation ice break by vehicle launched underwater. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(07): 1930-1939 (in Chinese) doi: 10.6052/0459-1879-21-082
    [7] 任泽宇, 孙龙泉, 李志鹏, 等. 水下航行体空泡发展及出水溃灭特性实验研究. 宇航总体技术, 2021, 5(01): 42-49

    Ren Zeyu, Sun Longquan, Li Zhipeng, et al. Experimental study on cavitation development and collapse characteristics of underwater vehicle. Astronautical Systems Engineering Technology, 2021, 5(01): 42-49 (in Chinese)
    [8] 王一伟, 黄晨光, 杜特专, 等. 航行体垂直出水载荷与空泡溃灭机理分析. 力学学报, 2012, 44(01): 39-48 doi: 10.6052/0459-1879-2012-1-lxxb2011-139

    Wang Yiwei, Huang Chenguang, Du Tezhuan, et al. Mechanism analysis about cavitation collapse load of underwater vehicle in a vertical launching process. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(01): 39-48 (in Chinese) doi: 10.6052/0459-1879-2012-1-lxxb2011-139
    [9] 杜特专, 王一伟, 黄晨光, 等. 航行体水下发射流固耦合效应分析. 力学学报, 2017, 49(04): 782-792 doi: 10.6052/0459-1879-16-401

    Du Tezhuan, Wang Yiwei, Huang Chenguang, et al. Study on coupling effects of underwater launched vehicle. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(04): 782-792 (in Chinese) doi: 10.6052/0459-1879-16-401
    [10] 王一伟, 黄晨光. 高速航行体水下发射水动力学研究进展. 力学进展, 2018, 48: 201805 doi: 10.6052/1000-0992-16-020

    Wang Yiwei, Huang Chenguang. Research progress on hydrodynamics of high speed vehicles in the underwater launching process. Advances in Mechanics, 2018, 48: 201805 (in Chinese) doi: 10.6052/1000-0992-16-020
    [11] 尤天庆, 权晓波, 刘元清, 等. 基于势流理论的尾空泡对航行体表面压力影响研究. 船舶力学, 2021, 25(09): 1182-1188 doi: 10.3969/j.issn.1007-7294.2021.09.006

    You Tianqing, Quan Xiaobo, Liu Yuanqing, et al. Effects of tail cavity on pressure distribution of underwater vehicle based on potential flow theory. Journal of Ship Mechanics, 2021, 25(09): 1182-1188 (in Chinese) doi: 10.3969/j.issn.1007-7294.2021.09.006
    [12] 李永光, 林宗虎. 气液两相涡街稳定性的研究. 力学学报, 1998(02): 10-16 doi: 10.3321/j.issn:0459-1879.1998.02.002

    Li Yongguang, Lin Zonghu. A Study on the stability of gas-liquid two-phase vortex street. Journal of Theoretical and Applied Mechanics, 1998(02): 10-16 (in Chinese) doi: 10.3321/j.issn:0459-1879.1998.02.002
    [13] 王智慧, 翟红岩, 李庆领, 等. 椭圆柱绕流尾迹的PIV测量及DMD分析[J]. 青岛科技大学学报(自然科学版), 2020, 41(01): 91-96

    Wang Zhihui, Zhai Hongyan, Li Qingling, et al. PIV measurement and DMD analysis of elliptical cylinder’s wake. Journal of Qingdao University of science and Technology (Natural Science Edition) 2020, 41(01): 91-96 (in Chinese)
    [14] 徐一航, 陈少松. 旋转圆柱绕流流场特性分析. 力学学报, 2021, 53(07): 1900-1911 doi: 10.6052/0459-1879-21-153

    Xu Yihang, Chen Shaosong. Analysis of flow field characteristics around a rotating cylinder. Journal of Theoretical and Applied Mechanics, 2021, 53(07): 1900-1911 (in Chinese) doi: 10.6052/0459-1879-21-153
    [15] 李聪洲, 张新曙, 胡晓峰, 等. 高雷诺数下多柱绕流特性研究. 力学学报, 2018, 50(02): 233-243 doi: 10.6052/0459-1879-17-346

    Li congzhou, Zhang Xinshu, Hu Xiaofeng, et al. The Study on flow past multiple cylinders at high Reynolds number. Journal of Theoretical and Applied Mechanics, 2018, 50(02): 233-243 (in Chinese) doi: 10.6052/0459-1879-17-346
    [16] 陈蒋力, 陈少强, 任峰, 等. 基于壁面压力反馈的圆柱绕流减阻智能控制. 物理学报, 2022, 71(08): 210-219

    Chen Jiangli, Chen Shaoqiang, Ren Feng, et al. Artificially intelligent control of drag reduction around a circular cylinder based on wall pressure feedback. ActaPhysica Sinica, 2022, 71(08): 210-219 (in Chinese)
    [17] 刘二朋, 陈威, 林永水, 等. 不同雷诺数下二维椭圆柱绕流的数值模拟研究[J]. 应用力学学报, 2021, 38(05): 2025-2031

    Liu Erpeng, Chen Wei, Lin Yongshui, et al. Numerical simulation of flow around a two-dimensional elliptic cylinder with different Reynolds numbers. Chinese Journal of Applied Mechanics, 2021, 38(05): 2025-2031 (in Chinese))
    [18] 郝乐, 陈龙, 倪明玖. 流向磁场作用下圆柱绕流的直接数值模拟. 力学学报, 2020, 52(06): 1645-1654

    Hao Le, Chen Long, Ni Mingjiu. Direct numerical simulation on the turbulent flow past a confined circular with the influence of the streamwise magnetic fields. Journal of Theoretical and Applied Mechanics, 2020, 52(06): 1645-1654 (in Chinese)
    [19] 高洋洋, 张演明, 刘彩, 等. 不同雷诺数下倾斜圆柱绕流三维数值模拟研究. 海洋工程, 2020, 38(01): 86-100 doi: 10.16483/j.issn.1005-9865.2020.01.009

    Gao Yangyang, Zhang Yanming, Liu Cai, et al. Three-dimensional numerical simulation of flow past inclined circular cylinder at different Reynolds numbers. Ocean Engineering, 2020, 38(01): 86-100 (in Chinese) doi: 10.16483/j.issn.1005-9865.2020.01.009
    [20] 刘闯, 黄剑峰, 邵晨. 基于LBM-LES的三维串列多圆柱绕流尾涡结构研究. 应用力学学报, 2022, 39(01): 186-194

    Liu Chuang, Huang Jianfeng, Shao Chen. Research on wake structure of three-dimensional tandem multi-cylinder flow based on LBM-LES. Chinese Journal of Applied Mechanics, 2022, 39(01): 186-194 (in Chinese)
    [21] 端木玉, 万德成. 雷诺数为 3900 时三维圆柱绕流的大涡模拟[J]. 海洋工程, 2016, 34(6): 11-20

    Duan Muyu, Wan Decheng. Large-eddy simulation of the flow past a cylinder with Re=3900. Ocean Engineering, 2016, 34(6): 11-20 (in Chinese)
    [22] Zhang W, Zapata MU, Bai X, et al. Three-dimensional simulation of horseshoe vortex and local scour around a vertical cylinder using an unstructured finite-volume technique. International Journal of Sediment Research, 2020, 35(3): 295-306 doi: 10.1016/j.ijsrc.2019.09.001
    [23] Chen JG, Zhou Y, Antonia RA, et al. The turbulent Kármán vortex. Journal of Fluid Mechanics, 2019, 871: 92-112 doi: 10.1017/jfm.2019.296
    [24] Chen JG, Zhou Y, Antonia RA, et al. Characteristics of the turbulent energy dissipation rate in a cylinder wake. Journal of Fluid Mechanics, 2018, 835: 271-300 doi: 10.1017/jfm.2017.765
    [25] Taneda S. Flow field visualization. in: Theoretical and Applied Mechanics, 1985: 399-410
    [26] Rosenhead L. Vortex systems in wakes. Advances in Applied Mechanics, 1953, 3: 185-195
    [27] 夏雪湔, 黄政. 轴对称钝物体的尾涡结构. 力学学报, 1990(03): 347-350

    Xia Xuejian, Huang Zheng. Vortex structure in the wake of the axisymmetric bluff bodies. Journal of Theoretical and Applied Mechanics, 1990(03): 347-350 (in Chinese)
    [28] Shi Y, Gao S, Pan G, et al. Simulation of the wake vortex and trajectory characteristics of successively launched multiple projectiles. Ocean Engineering, 2022, 249: 110962 doi: 10.1016/j.oceaneng.2022.110962
    [29] Gao S, Shi Y, Pan G, et al. A study on the flow interference characteristics of projectiles successively launched underwater. International Journal of Multiphase Flow, 2022, 151: 104066 doi: 10.1016/j.ijmultiphaseflow.2022.104066
    [30] 王一伟, 黄晨光, 吴小翠, 等. 航行体水下垂直发射空泡脱落条件研究. 工程力学, 2015, 32(11): 33-39 doi: 10.6052/j.issn.1000-4750.2014.04.0331

    Wang Yiwei, Huang Chenguang, Wu Xiaocui, et al. Investigation of the cavitation shedding condition on underwater vehicles in the vertical launch process. Engineering Mechanics, 2015, 32(11): 33-39 (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.04.0331
    [31] Pozrikidis C, Higdon JJ. Nonlinear Kelvin-Helmholtz instability of a finite vortex layer. Journal of Fluid Mechanics, 1985, 157: 225-263
    [32] Popiel CO, Trass O. Visualization of a free and impinging round jet. Experimental Thermal and Fluid Science, 1991, 4(3): 253-264 doi: 10.1016/0894-1777(91)90043-Q
    [33] Gao S, Shi Y, Pan G, et al. The transient vortex structure in the wake of an axial-symmetric projectile launched underwater. Physics of Fluids, 2022, 34: 065109 doi: 10.1063/5.0095817
    [34] 姜翼冲. 水下航行体齐射过程流场结构及弹道特性数值研究. [硕士论文]. 哈尔滨: 哈尔滨工业大学, 2019

    Jiang Yichong. Numerical study on the flow field structure and ballistic characteristics in the salvo process of underwater vehicles. [Master Thesis]. Harbin: Harbin Institute of Technology, 2019 (in Chinese)
  • 加载中
图(26)
计量
  • 文章访问数:  152
  • HTML全文浏览量:  46
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-01
  • 录用日期:  2022-07-08
  • 网络出版日期:  2022-07-09
  • 刊出日期:  2022-09-18

目录

    /

    返回文章
    返回