EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于仪器化压入实验的煤体微纳尺度非均质力学响应特征

邓博知 聂百胜 柳先锋 石发瑞

邓博知, 聂百胜, 柳先锋, 石发瑞. 基于仪器化压入实验的煤体微纳尺度非均质力学响应特征. 力学学报, 2022, 54(8): 1-15 doi: 10.6052/0459-1879-22-244
引用本文: 邓博知, 聂百胜, 柳先锋, 石发瑞. 基于仪器化压入实验的煤体微纳尺度非均质力学响应特征. 力学学报, 2022, 54(8): 1-15 doi: 10.6052/0459-1879-22-244
Deng Bozhi, Nie Baisheng, Liu Xianfeng, Shi Farui. Characteristics of the heterogeneous mechanical response of coal at the nano and micro-scale using instrumented indentation experiments. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 1-15 doi: 10.6052/0459-1879-22-244
Citation: Deng Bozhi, Nie Baisheng, Liu Xianfeng, Shi Farui. Characteristics of the heterogeneous mechanical response of coal at the nano and micro-scale using instrumented indentation experiments. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 1-15 doi: 10.6052/0459-1879-22-244

基于仪器化压入实验的煤体微纳尺度非均质力学响应特征

doi: 10.6052/0459-1879-22-244
基金项目: 国家自然科学基金(51974322)和(52004042)资助项目, 重庆市博士后研究项目特别资助(2021XM2004)
详细信息
    作者简介:

    通讯作者, 聂百胜, 教授, 主要研究方向: 煤矿安全开采. E-mail: bsnie@cqu.edu.cn

  • 中图分类号: 

CHARACTERISTICS OF THE HETEROGENEOUS MECHANICAL RESPONSE OF COAL AT THE NANO AND MICRO-SCALE USING INSTRUMENTED INDENTATION EXPERIMENTS

  • 摘要: 煤炭是我国的主体能源, 煤矿井下冲击地压、煤与瓦斯突出等灾害的频繁严重影响煤炭的安全生产. 煤体是典型的混合物, 其内部不同组分的力学性质差异较大, 使其在外部扰动的作用下容易产生内部应力集中, 导致煤体的失稳、破坏, 形成煤矿动力灾害. 本文以非均质煤体为研究对象, 利用微焦CT、扫描电子显微镜和纳−微米压入实验, 研究了煤体微纳尺度的非均质结构和力学性质, 实验研究结果表明: 煤体是有机物和多种矿物组成的混合物, 矿物以点填充、丝状填充和条带状侵入等结构存在于煤体有机物中, 不同的矿物填充或侵入区域中矿物含量和结构具有差异, 这导致煤体微纳尺度的物理力学性质具有非均质性; 纳米尺度压入实验可以捕捉矿物在有机物中的填充或侵入结构, 测量煤体混合物中矿物和有机物单组分的力学参数, 识别两者力学性质的巨大差异; 微米尺度的压入实验可以表征煤体混合物整体的力学性质, 矿物填充量越多, 煤体混合物的力学性质越强, 同时煤体混合物微观尺度的破裂模式会受到矿物填充结构的影响. 研究结果揭示了煤体微观结构和力学性质的非均质特征, 探讨了煤体混合物的非均质结构可能引起的脆性破坏, 为煤矿井下冲击地压和煤与瓦斯突出等动力灾害的预测与防治提供了理论基础.

     

  • 图  1  实验流程图

    Figure  1.  Experiment flow diagram

    图  2  不同微纳尺度仪器化压入实验的原理

    Figure  2.  Schematic diagram of instrumented indentation experiments at different scales

    图  3  三维和二维微焦CT扫描形貌图(十字和数字表示SEM扫描的区域)

    Figure  3.  3D and 2D micro-CT scanning images (The crosses and numbers represent the scanning areas of SEM)

    图  4  两种煤样内部SEM观察图(黑色为有机物、白色为矿物)

    Figure  4.  SEM images of the two samples (the black areas represent organics, the white areas represent minerals)

    图  5  两种煤样中具有代表性的矿物填充结构

    Figure  5.  Typical mineral filling structures in the two samples

    图  6  3个实验区域纳米尺度压痕实验结果(载荷−深度曲线、压入模量分布)

    Figure  6.  Nano-indentation experimental results of three experimental areas

    6  3个实验区域纳米尺度压痕实验结果(载荷−深度曲线、压入模量分布) (续)

    6.  Nano-indentation experimental results of three experimental areas (continued)

    图  7  3个实验区域SEM扫描图和纳米尺度压入模量拼接矩阵(SEM中白色代表矿物、黑色代表有机物; 压入模量拼接矩阵中白色代表高压入模量、黑色代表低压入模量)

    Figure  7.  SEM images and modulus matrices of nano-indentation in three experimental areas (white areas represent minerals, black areas represent organics in the SEM images; white areas represent high indentation modulus, black areas represent organics in low indentation modulus in the modulus matrices)

    图  8  随机纳米尺度压入实验结果(力学参数分布图)

    Figure  8.  Experimental results of random nano-indentation (distribution diagram of mechanical parameters)

    图  9  B-1煤样不同区域微米尺度压入实验结果(载荷-深度曲线、压入模量分布), 从(a)至(c)矿物填充结构非均质性逐渐增加

    Figure  9.  Experimental results of micro-indentation in different areas of B-1 sample (loading and unloading curves, and indentation modulus distribution). The heterogeneity of the mineral structures is increasing from (a) to (c)

    图  10  Z-1煤样不同区域微米尺度压入实验结果(载荷-深度曲线、压入模量分布), 从(a)至(c)矿物填充结构非均质性逐渐增加

    Figure  10.  Experimental results of micro-indentation in different areas of Z-1 sample (loading and unloading curves and indentation modulus distribution). The heterogeneity of the mineral structures is increasing from (a) to (c)

    图  11  不同尺度条件下, 不同矿物填充结构区域的统计学力学参数

    Figure  11.  Mechanical parameters of different mineral filling areas at different scales based on statistical analysis

    图  12  不同矿物填充结构中矿物代表尺度与微米级压痕作用面积的关系

    Figure  12.  The relationship between the representative size of minerals and the impact area of micro-indentation in different mineral filling areas

    图  13  各矿物填充结构中典型的实验曲线(丝质组矿物填充表面B区域的加载曲线呈现出锯齿和阶梯状)

    Figure  13.  Typical curves of indentation experiments in different mineral structures. (The loading curves of filiform mineral embedding, surface B are zigzag and stagewise )

    图  14  压入实验后不同矿物填充结构中的残余压入(丝质组丝状填充表面B的残余压入附近有明显的煤体破裂现象)

    Figure  14.  Residual indents of different mineral structures after indentation experiments (obvious breakages are found around the indent of filiform mineral embedding, surface B)

    图  15  不同矿物填充或侵入结构压入作用下的破坏模式示意图

    Figure  15.  Sketches of the failure modes in different mineral embedding or intrusion structures under an indentation experiment

    表  1  实验煤样工业分析

    Table  1.   Industrial analysis of experimental coal samples

    coal samplemoisture(%)ash content(%)volatiles(%)
    Z-14.5317.5533.41
    B-11.8827.3511.90
    下载: 导出CSV

    表  2  压入实验方案

    Table  2.   Experimental scheme of indentation experiments

    Experiment typeScaleForceExperiment numbers
    grid indentation experimentnanoscale10 mN100 /225
    random indentation experiment81
    random indentation experimentmicroscale300 mN49
    下载: 导出CSV

    表  3  两块煤样中矿物填充的类别和结构

    Table  3.   Mineral types and structures in the two samples

    MaceralMineral typeMineral contentMineral structure
    vitriniteclayminorspot embedding
    quartzmajorspot embedding
    carbonatemajorbanding intrusion
    inertinite
    (fusinite)
    clay or quartzminorfiliform embedding
    carbonatemajorfiliform embedding
    下载: 导出CSV
  • [1] He J, Dou LM, Gong SY, et al. Rock burst assessment and prediction by dynamic and static stress analysis based on micro-seismic monitoring. Inter J Rock Mech Min Sci, 2017, 93: 46-53 doi: 10.1016/j.ijrmms.2017.01.005
    [2] 许江, 杨孝波, 周斌等. 突出过程中煤层瓦斯压力与温度演化规律研究. 中国矿业 大学学报, 2019, 48

    6): 1177-1187
    [3] 潘一山, 代连朋. 煤矿冲击地压发生理论公式. 煤炭学报, 2021, 46 doi: 10.13225/j.cnki.jccs.yt20.1946

    3): 789-799 doi: 10.13225/j.cnki.jccs.yt20.1946
    [4] 王振, 尹光志, 胡千庭等. 高瓦斯煤层冲击地压与突出的诱发转化条件研究. 采矿与安全工程学报, 2010, 27 doi: 10.3969/j.issn.1673-3363.2010.04.024

    4): 572-581 doi: 10.3969/j.issn.1673-3363.2010.04.024
    [5] Aguado MD, Nicieza CG. Control and prevention of gas outbursts in coal mines, Riosa-Olloniego coalfield, Spain. International Journal of Coal Geology, 2007, 69: 253-266 doi: 10.1016/j.coal.2006.05.004
    [6] 何学秋, 周世宁. 煤和瓦斯突出机理的流变假说. 煤矿安全, 1991 doi: 10.13347/j.cnki.mkaq.1991.10.001

    10): 1-7 doi: 10.13347/j.cnki.mkaq.1991.10.001
    [7] 胡千庭, 周世宁, 周心权. 煤与瓦斯突出过程的力学作用机理. 煤炭学报, 2008, 33 doi: 10.3321/j.issn:0253-9993.2008.12.008

    12): 1368-1372 doi: 10.3321/j.issn:0253-9993.2008.12.008
    [8] 姜耀东, 潘一山, 姜福兴等. 我国煤炭开采中的冲击地压机理和防治. 煤炭学报, 2014, 39 doi: 10.13225/j.cnki.jccs.2013.0024

    2): 205-213 doi: 10.13225/j.cnki.jccs.2013.0024
    [9] 齐庆新, 李一哲, 赵善坤等. 我国煤矿冲击地压发展70年: 理论与技术体系的建立与思考. 煤炭科学技术, 2019, 47

    9): 1-40
    [10] 潘一山. 煤与瓦斯突出、冲击地压复合动力灾害一体化研究. 煤炭学报, 2016, 41 doi: 10.13225/j.cnki.jccs.2015.9034

    1): 105-112 doi: 10.13225/j.cnki.jccs.2015.9034
    [11] Wang C, Yang S, Yang D, et al. Experimental analysis of the intensity and evolution of coal and gas outbursts. Fuel, 2018, 226: 252-262 doi: 10.1016/j.fuel.2018.03.165
    [12] 唐春安. 岩石破裂过程中的灾变. 北京: 煤炭工业出版社, 1993
    [13] 尹光志, 李星, 鲁俊等. 深部开采动静载荷作用下复合动力灾害致灾机理研究. 煤炭学报, 2017, 42 doi: 10.13225/j.cnki.jccs.2017.0139

    9): 2316-2326 doi: 10.13225/j.cnki.jccs.2017.0139
    [14] 聂百胜, 马延崑, 何学秋等. 煤与瓦斯突出微观机理探索研究. 中国矿业大学学报, 2022, 51

    2): 207-220
    [15] Wang E, He X, Wei J, et al. Electromagnetic emission graded warning model and its applications against coal rock dynamic collapses. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(4): 556-564 doi: 10.1016/j.ijrmms.2011.02.006
    [16] Chen Z, Liu J, Elsworth D, et al. Roles of coal heterogeneity on evolution of coal permeability under unconstrained boundary conditions. Journal of Natural Gas Science and Engineering, 2013, 15: 38-52 doi: 10.1016/j.jngse.2013.09.002
    [17] Heriawan MN, Koike K. Identifying spatial heterogeneity of coal resource quality in a multilayer coal deposit by multivariate geostatistics. International Journal of Coal Geology, 2008, 73(3-4): 307-330 doi: 10.1016/j.coal.2007.07.005
    [18] Zhao J, Xu H, Tang D, et al. Coal seam porosity and fracture heterogeneity of macrolithotypes in the Hancheng Block, eastern margin, Ordos Basin, China. International Journal of Coal Geology, 2016, 159: 18-29 doi: 10.1016/j.coal.2016.03.019
    [19] Cardott BJ, Curtis ME. Identification and nanoporosity of macerals in coal by scanning electron microscopy. International Journal of Coal Geology, 2018, 190: 205-217 doi: 10.1016/j.coal.2017.07.003
    [20] Hower JC, Trinkle EJ, Raione, RP. Vickers microhardness of telovitrinite and pseudovitrinite from high volatile bituminous Kentucky coals. International journal of coal geology, 2008, 75(2): 76-80 doi: 10.1016/j.coal.2008.03.002
    [21] Kossovich EL, Dobryakova NN, Epshtein SA, et al. Mechanical properties of coal microcomponents under continuous indentation. Journal of Mining Science, 2016, 52(5): 906-912 doi: 10.1134/S1062739116041382
    [22] Kossovich EL, Borodich FM, Epshtein SA, et al. Mechanical, structural and scaling properties of coals: depth-sensing indentation studies. Applied Physics A, 2019, 125(3): 1-15
    [23] Zhang Y, Lebedev M, Al-Yaseri A, et al. Nanoscale rock mechanical property changes in heterogeneous coal after water adsorption. Fuel, 2018, 218: 23-32 doi: 10.1016/j.fuel.2018.01.006
    [24] Yu H, Zhang Y, Lebedev M, et al. Nanoscale geomechanical properties of Western Australian coal. Journal of Petroleum Science and Engineering, 2018, 162: 736-746 doi: 10.1016/j.petrol.2017.11.001
    [25] Li, Y, Yang, J, Pan, Z. et al Nanoscale pore structure and mechanical property analysis of coal:An insight combining AFM and SEM images. Fuel, 2020, 260: 1-9
    [26] 孙长伦, 李桂臣, Gomah ME等. 基于纳米压痕技术的破碎煤样力学特性实验研究. 煤炭学报, 2020, 45 doi: 10.13225/j.cnki.jccs.2020.0351

    S2): 682-691 doi: 10.13225/j.cnki.jccs.2020.0351
    [27] 张慧, 李小颜, 郝琦等. 中国煤的扫描电子显微镜研究. 北京: 地质出版社, 2003
    [28] Li G, Qin Y, Zhou X, et al. Comparative analysis of the pore structure of fusain in lignite and high-volatile bituminous coal. Journal of Natural Gas Science and Engineering, 2021: 103955
    [29] Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research, 1992, 7(6): 1564-1583 doi: 10.1557/JMR.1992.1564
    [30] 张泰华. 微/纳米力学测试技术. 北京: 科学出版社, 2013
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  35
  • HTML全文浏览量:  9
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 网络出版日期:  2022-07-26

目录

    /

    返回文章
    返回