EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含分布浮体的复杂构型深海缆线的动响应及其时空演化

郭双喜 陈伟民 严定邦 宋吉祥 沈义俊

郭双喜, 陈伟民, 严定邦, 宋吉祥, 沈义俊. 含分布浮体的复杂构型深海缆线的动响应及其时空演化. 力学学报, 2022, 54(8): 1-14 doi: 10.6052/0459-1879-22-238
引用本文: 郭双喜, 陈伟民, 严定邦, 宋吉祥, 沈义俊. 含分布浮体的复杂构型深海缆线的动响应及其时空演化. 力学学报, 2022, 54(8): 1-14 doi: 10.6052/0459-1879-22-238
Guo Shuangxi, Chen Weimin, Yan Dingbang, Song Jixiang, Shen Yijun. Dynamic response and spatial-temporal evolutions of deep-water complex configuration cables with distributed buoyancy modules. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 1-14 doi: 10.6052/0459-1879-22-238
Citation: Guo Shuangxi, Chen Weimin, Yan Dingbang, Song Jixiang, Shen Yijun. Dynamic response and spatial-temporal evolutions of deep-water complex configuration cables with distributed buoyancy modules. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 1-14 doi: 10.6052/0459-1879-22-238

含分布浮体的复杂构型深海缆线的动响应及其时空演化

doi: 10.6052/0459-1879-22-238
基金项目: 中科院先导项目 (XDA22000000), 南海海洋资源利用重点实验室开放基金(MRUKF2021027)资助
详细信息
    作者简介:

    陈伟民, 研究员, 主要研究方向: 海洋和航空工程中的结构流固耦合动响应. E-mail: wmchen@imech.ac.cn

DYNAMIC RESPONSE AND SPATIAL-TEMPORAL EVOLUTIONS OF DEEP-WATER COMPLEX CONFIGURATION CABLES WITH DISTRIBUTED BUOYANCY MODULES

  • 摘要: 深水柔性缆线是深海资源开采系统的重要组成部分, 随着水深的增加, 深水缆线长径比达103, 结构柔性变得很大, 且沿展向非均匀分布的浮力模块, 使得缆线构型变得更加复杂、张力等结构参数沿展向变化, 这使得环境载荷作用、海面船体运动等激励作用下的缆线流固耦合响应变得更加复杂, 给结构安全带来严峻挑战. 本文针对Double-stepped这种新构型深水缆线, 基于其流固耦合特性和载荷模型表征, 建立了含分布浮体的深水缆线动力学控制方程, 并结合有限元数值模拟和水箱模型实验, 进行了复杂构型缆线的动响应研究. 考察规则波和极端波浪环境载荷作用、海面船体运动等激励因素对结构响应的影响, 给出位移和张力等响应的时空演化规律, 并基于WKB理论分析了变参数结构响应幅值和波长的演化规律和机理. 结果表明: 结构响应沿着缆线长度向下传播过程中非单调变化, 在低张力区域会出现局部峰值; 由于分布浮体的存在使得结构参数轴向变化且不连续, 响应时空演化变得更加复杂, 呈现驻波、行波混合效应, 而且张力不但会影响位移幅值, 还会引起响应传播过程中的波长改变.

     

  • 图  1  缆线整体结构示意图

    Figure  1.  Schematic of double-stepped cable

    图  2  柔性结构流固耦合响应实验平台

    Figure  2.  Experimental platform for fluid-solid coupling response of flexible cable

    图  3  柔性缆线响应数值和实验结果对比

    Figure  3.  Comparisons between numerical and experimental results of flexible cable response

    图  4  Double-stepped缆线的浮体分布和构型

    Figure  4.  Buoyancy distribution and configurations of double-stepped cable

    图  5  缆线RMS位移和张力对比

    Figure  5.  Comparisons of RMS displacement and tension

    图  6  Case 1缆线位移的时空演化结果

    Figure  6.  Spatial-temporal evolutions of cable displacement in Case 1

    图  7  两种海况下RMS位移沿结构展向分布

    Figure  7.  Distributions of RMS displacements for two loading cases

    图  8  极端海况缆线位移时空演化云图

    Figure  8.  Spatial-temporal evolutions of cable displacement under extreme wave condition

    图  9  缆线构型和固有频率随船体偏移幅值的变化

    Figure  9.  Cable configurations and natural frequencies with different vessel offsets

    10  缆线均方根位移响应

    10.  RMS displacement responses

    10  缆线均方根位移响应(续)

    10.  RMS displacement responses (continued)

    图  11  缆线位移时空云图

    Figure  11.  Spatial-temporal evolutions of cable displacements

    图  12  变参数缆线的频率数和波长分布

    Figure  12.  Frequency numbers and wavelengths of cable with axially-varying tension

    表  1  实验缆线参数

    Table  1.   Cable parameters of experiment

    ParameterValueParameterValue
    FB2.2 NDistribution length of FC10 cm
    FC4.2 NCable length2.0 m
    Location of buoyancy B SB0.66 mL10.5 m
    Location of buoyancy C SC1.32 mL21.0 m
    Distribution length of FB10 cmDensity per unit length3.2 N/m
    下载: 导出CSV

    表  2  Double-stepped缆线结构参数

    Table  2.   Structural parameters of double-stepped cable

    ParameterValueParameterValue
    Outer diameter33.6 mmUnderwater weight2.4 kg/m
    Bending stiffness82.0 N·m2Safe load limit125 kN
    Axial stiffness39.3 × 103 kNMinimum bending radius0.95 m
    下载: 导出CSV

    表  3  工况条件

    Table  3.   Loading cases

    CasesL1F1L2F2
    1200~300 mG/3900~1000 mG/2
    2200~300 mG/3900~1000 m7 G/15
    下载: 导出CSV

    表  4  1000~1500 m范围内响应对比 (A/D)

    Table  4.   Comparison of responses in 1000~1500 m region (A/D)

    CasesPeak 1Peak 2Peak 3Peak 4Valley 1Valley 2Valley 3Average
    A = 03.313.883.123.882.592.812.393.14
    A = 150 m3.344.093.164.862.252.271.873.12
    A = 250 m1.823.283.294.061.661.631.832.57
    下载: 导出CSV
  • [1] 陈伟民, 付一钦, 郭双喜等. 海洋柔性结构涡激振动的流固耦合机理和响应. 力学进展, 2017, 47(1): 25-91 doi: 10.6052/1000-0992-16-005

    Chen Weimin, Fu Yiqin, Guo Shuangxi, et al. Review on fluid-solid coupling and dynamic response of vortex-induced vibration of slender ocean cylinders. Advances in Mechanics, 2017, 47(1): 25-91(in Chinese)) doi: 10.6052/1000-0992-16-005
    [2] Lou M, Li R, Wu W, et al. Static performance analysis of deepwater compliant vertical access risers. International Journal of Naval Architecture and Ocean Engineering, 2019, 11: 970-979 doi: 10.1016/j.ijnaoe.2019.04.007
    [3] 余杨, 吴凡蕾, 余建星等. 缓波形立管的复合构型响应分析. 天津大学学报: 自然科学与工程技术版, 2022, 55(1): 90-100

    Yu Y ang, Wu Fanlei, Yu Jianxing, et al. Response Analysis of Compound Configuration of LwSCR. Journal of Tianjin University(Science and Technology), 2022, 55(1): 90-100 (in Chinese))
    [4] Wang J, Duan M. A nonlinear model for deepwater steel lazy-wave riser configuration with ocean current and internal flow. Ocean Engineering, 2015, 94(15): 155-162
    [5] Santillan ST, Virgin LN. Numerical and experimental analysis of the static behavior of highly deformed risers. Ocean Engineering, 2011, 38(13): 1397-1402 doi: 10.1016/j.oceaneng.2011.06.009
    [6] Tian Y, Hou Y, Pires F, et al. Tensioned Step Riser Configuration for Ultradeep Application. International Conference on Ocean, Offshore and Arctic Engineering. OMAE2015. V05 AT04 A056.
    [7] Wang G, Liu SJ, Li L. FEM modeling for 3 D dynamic analysis of deep-ocean mining pipeline and its experimental verification. Journal of Central South University of Technology. 2007, 14 (6): 808-813.
    [8] Guo SX, Li YL, Li M, Chen WM. Dynamic Response Analysis on Flexible Riser with Different Configurations in Deep-Water Based on FEM simulation. International Conference on Ocean, Offshore and Arctic Engineering. OMAE2018. V005 T04 A016.
    [9] Wang J, Duan M, Luo J. Mathematical model of steel lazy-wave riser abandonment and recovery in deepwater. Marine Structures, 2015, 41: 127-153 doi: 10.1016/j.marstruc.2015.02.002
    [10] Gai Y, Guo S, Li Y, et al. Configuration and Performance Analysis of Deep Ocean Mining Flexible Riser. ASME 2020 39 th International Conference on Ocean, Offshore and Arctic Engineering. Omae2020-18346
    [11] 符瑜, 曹斌, 夏建新. 深海采矿系统浮力配置对集矿车受力状态的影响. 矿冶工程, 2019, 39(2): 15-23 doi: 10.3969/j.issn.0253-6099.2019.02.004

    Fu Yu, Cao Bin, Xia Jianxin. Influence of parameter configuration of hose buoyancy for deep-sea mining system on the stress state of mining vehicle. Mining and metallurgical engineering, 2019, 39(2): 15-23(in Chinese)) doi: 10.3969/j.issn.0253-6099.2019.02.004
    [12] Mavrakos S A, Chatjigeorgiou J. Dynamic behaviour of deep water mooring lines with submerged buoys. Computers & structures, 1997, 64(1): 819-835
    [13] Zhu HJ, Gao Yue, Hu Jie, et al. Temporal-spatial mode competition in slug-flow induced vibration of catenary flexible riser in both in plane and out of plane. Applied Ocean Research, 2022, 119: 103017 doi: 10.1016/j.apor.2021.103017
    [14] Yin D, Passano E, Lie H, et al. Experimental and numerical study of a top tensioned riser subjected to vessel motion. Ocean Engineering, 2018, 171: 565-574
    [15] Cheng Y, Tang L, Fan T. Dynamic analysis of deepwater steel lazy wave riser with internal flow and seabed interaction using a nonlinear finite element method. Ocean Engineering, 2020, 209(4): 107498
    [16] 唐达生, 李钟, 周知进等. 锰结核泵工作对扬矿管道振动影响的研究. 振动与冲击, 2015, 34(23): 149-152, 160

    Tang Dasheng, Li Zhong, Zhou Zhijin, et al. Effects of manganese nodules pump operation on lifting pipe vibration. Journal of vibration and shock, 2015, 34(23): 149-152, 160 (in Chinese))
    [17] Chatjigeorgiou I K. Three dimensional nonlinear dynamics of submerged, extensible catenary pipes conveying fluid and subjected to end-imposed excitations. International Journal of Non-Linear Mechanics, 2010, 45(7): 667-680 doi: 10.1016/j.ijnonlinmec.2010.04.001
    [18] Li Y, Guo S, Chen W. Analysis on multi-frequency vortex-induced vibration and mode competition of flexible deep-ocean riser in sheared fluid fields. Journal of Petroleum Science & Engineering, 2018, 163: 378-386
    [19] Vassalos D, Huang S. Dynamics of small-sagged slack-taut marine cables. Computers & structures, 1996, 58(3): 557-562
    [20] Huang S, Vassalos D. A numerical method for predicting snap loading of marine cables. Applied Ocean Research, 1993, 15(4): 235-242 doi: 10.1016/0141-1187(93)90012-M
    [21] Mansour A, Mekki OB, Montassar S, et al. Catenary-induced geometric nonlinearity effects on cable linear vibrations. Journal of Sound and Vibration, 2018, 413: 332-353 doi: 10.1016/j.jsv.2017.10.012
    [22] Guo S, Chen W, Fu Y. Non-linearly restoring performance of SFT’s catenary mooring-lines under consideration of its dynamic behaviors. Procedia Engineering, 2016, 166: 202-211 doi: 10.1016/j.proeng.2016.11.583
    [23] Zhang S, Tang Y, Liu X. Experimental investigation of nonlinear dynamic tension in mooring lines. Journal of Marine Science and Technology, 2012, 17(2): 181-186 doi: 10.1007/s00773-012-0160-7
    [24] Hsu WT, Thiagarajan KP, Manuel L. Extreme mooring tensions due to snap loads on a floating offshore wind turbine system. Marine Structures, 2017, 55: 182-199 doi: 10.1016/j.marstruc.2017.05.005
    [25] Li Y, Guo S, Chen W, et al. Analysis on restoring stiffness and its hysteresis behavior of slender catenary mooring-line. Ocean Engineering, 2020(209): 107521
    [26] 吴天昊, 付世晓, 任桐鑫等. 平台运动与管内流动联合作用下悬垂立管动力响应特性研究. 振动与冲击, 2022, 37(17): 32-40 doi: 10.13465/j.cnki.jvs.2018.17.005

    Wu Tianhao, Fu Shixiao, Ren Tongxin, et al. Dynamic response of water intake risers under interaction between vessel motion and internal flow. Journal of vibration and shock, 2022, 37(17): 32-40 (in Chinese)) doi: 10.13465/j.cnki.jvs.2018.17.005
    [27] Yuan T, Hou Y, Pires F, et al. Tensioned Step Riser Configuration for Ultra-Deep Application. International Conference on Ocean. OMAE2015.
    [28] Mao L, Liu Q, Zhou S, et al. Deep water drilling riser mechanical behavior analysis considering actual riser string configuration. Journal of Natural Gas Science & Engineering, 2016, 33: 240-254
    [29] Gosselin F, De Langre E, Machado-Almeida BA. Drag reduction of flexible plates by reconfiguration. Journal of Fluid Mechanics, 2010, 650: 319-341 doi: 10.1017/S0022112009993673
    [30] Vogel S. Drag and Reconfiguration of Broad Leaves in High Winds. Journal of Experimental Botany, 1989, 40: 941-948 doi: 10.1093/jxb/40.8.941
    [31] Song J, Wang T, Chen W, et al. Vibration Control of Marine Top Tensioned Riser with a Single Tuned Mass Damper. Journal of Marine Science and Engineering, 2020, 8(10): 785 doi: 10.3390/jmse8100785
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  27
  • HTML全文浏览量:  11
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-31
  • 网络出版日期:  2022-08-01

目录

    /

    返回文章
    返回