DYNAMIC RESPONSE AND SPATIAL-TEMPORAL EVOLUTIONS OF DEEP-WATER COMPLEX CONFIGURATION CABLES WITH DISTRIBUTED BUOYANCY MODULES
-
摘要: 深水柔性缆线是深海资源开采系统的重要组成部分, 随着水深的增加, 深水缆线长径比达103, 结构柔性变得很大, 且沿展向非均匀分布的浮力模块, 使得缆线构型变得更加复杂、张力等结构参数沿展向变化, 这使得环境载荷作用、海面船体运动等激励作用下的缆线流固耦合响应变得更加复杂, 给结构安全带来严峻挑战. 本文针对Double-stepped这种新构型深水缆线, 基于其流固耦合特性和载荷模型表征, 建立了含分布浮体的深水缆线动力学控制方程, 并结合有限元数值模拟和水箱模型实验, 进行了复杂构型缆线的动响应研究. 考察规则波和极端波浪环境载荷作用、海面船体运动等激励因素对结构响应的影响, 给出位移和张力等响应的时空演化规律, 并基于WKB理论分析了变参数结构响应幅值和波长的演化规律和机理. 结果表明: 结构响应沿着缆线长度向下传播过程中非单调变化, 在低张力区域会出现局部峰值; 由于分布浮体的存在使得结构参数轴向变化且不连续, 响应时空演化变得更加复杂, 呈现驻波、行波混合效应, 而且张力不但会影响位移幅值, 还会引起响应传播过程中的波长改变.Abstract: Long flexible cables is one of important parts of complex systems used in explorations and exploitations of ocean resources, particularly in deep or even ultra-deep water. These flexible cables, with large aspect ratio usually at level of 103, need to be installed with distributed buoyancy modules along its body length. In that case, these distributed buoyancy modules make deep-sea cable configuration more complex and, moreover, their structural properties, such as structural tension and mass, are axially-changing. Thus structural motion response and its spatial-temporal evolutions become more complicated, which brings serious challenges to structural safety. In this study, a novel structural configuration, i.e. the double-stepped cable, is considered, and the dynamic governing equations of deep-water cable with distributed buoyancy modules are developed, principally based on the particular fluid-solid interaction characteristics and its coupling representation of the loadings, along with the experimental observations and verifications using our experimental water tank. The numerical simulations of the double-stepped cable dynamic response are carried out using the modified finite element approach. The responses and its corresponding propagations of the double-stepped cables, in terms of structural displacement and tensions along cable length, under environmental loadings and top-end excitations are comprehensively examined. In addition, the evolutions of displacement amplitudes and wavelengths of this kind of structure with axially-varying tension are explained based on the WKB theory. Our results show that the response does not change monotonously as it propagates along the cable length, and a local peak value may appear in the region with lower tension. Owing to the distributed buoyancy modules, along with axially-varying and discontinuous structural properties, the response spatial-temporal evolutions becomes more variant. There are mixed effects coming from both standing wave and traveling wave. It is also found that structural tensions not only affect the response amplitude significantly, also cause changes of wavelength during the process of response propagation.
-
Key words:
- complex configuration /
- fluid-solid coupling /
- dynamic /
- wave propagation /
- no-uniform structure
-
表 1 实验缆线参数
Table 1. Cable parameters of experiment
Parameter Value Parameter Value FB 2.2 N Distribution length of FC 10 cm FC 4.2 N Cable length 2.0 m Location of buoyancy B SB 0.66 m L1 0.5 m Location of buoyancy C SC 1.32 m L2 1.0 m Distribution length of FB 10 cm Density per unit length 3.2 N/m 表 2 Double-stepped缆线结构参数
Table 2. Structural parameters of double-stepped cable
Parameter Value Parameter Value Outer diameter 33.6 mm Underwater weight 2.4 kg/m Bending stiffness 82.0 N·m2 Safe load limit 125 kN Axial stiffness 39.3 × 103 kN Minimum bending radius 0.95 m 表 3 工况条件
Table 3. Loading cases
Cases L1 F1 L2 F2 1 200~300 m G/3 900~1000 m G/2 2 200~300 m G/3 900~1000 m 7 G/15 表 4 1000~1500 m范围内响应对比 (A/D)
Table 4. Comparison of responses in 1000~1500 m region (A/D)
Cases Peak 1 Peak 2 Peak 3 Peak 4 Valley 1 Valley 2 Valley 3 Average A = 0 3.31 3.88 3.12 3.88 2.59 2.81 2.39 3.14 A = 150 m 3.34 4.09 3.16 4.86 2.25 2.27 1.87 3.12 A = 250 m 1.82 3.28 3.29 4.06 1.66 1.63 1.83 2.57 -
[1] 陈伟民, 付一钦, 郭双喜等. 海洋柔性结构涡激振动的流固耦合机理和响应. 力学进展, 2017, 47(1): 25-91 doi: 10.6052/1000-0992-16-005Chen Weimin, Fu Yiqin, Guo Shuangxi, et al. Review on fluid-solid coupling and dynamic response of vortex-induced vibration of slender ocean cylinders. Advances in Mechanics, 2017, 47(1): 25-91(in Chinese)) doi: 10.6052/1000-0992-16-005 [2] Lou M, Li R, Wu W, et al. Static performance analysis of deepwater compliant vertical access risers. International Journal of Naval Architecture and Ocean Engineering, 2019, 11: 970-979 doi: 10.1016/j.ijnaoe.2019.04.007 [3] 余杨, 吴凡蕾, 余建星等. 缓波形立管的复合构型响应分析. 天津大学学报: 自然科学与工程技术版, 2022, 55(1): 90-100Yu Y ang, Wu Fanlei, Yu Jianxing, et al. Response Analysis of Compound Configuration of LwSCR. Journal of Tianjin University(Science and Technology), 2022, 55(1): 90-100 (in Chinese)) [4] Wang J, Duan M. A nonlinear model for deepwater steel lazy-wave riser configuration with ocean current and internal flow. Ocean Engineering, 2015, 94(15): 155-162 [5] Santillan ST, Virgin LN. Numerical and experimental analysis of the static behavior of highly deformed risers. Ocean Engineering, 2011, 38(13): 1397-1402 doi: 10.1016/j.oceaneng.2011.06.009 [6] Tian Y, Hou Y, Pires F, et al. Tensioned Step Riser Configuration for Ultradeep Application. International Conference on Ocean, Offshore and Arctic Engineering. OMAE2015. V05 AT04 A056. [7] Wang G, Liu SJ, Li L. FEM modeling for 3 D dynamic analysis of deep-ocean mining pipeline and its experimental verification. Journal of Central South University of Technology. 2007, 14 (6): 808-813. [8] Guo SX, Li YL, Li M, Chen WM. Dynamic Response Analysis on Flexible Riser with Different Configurations in Deep-Water Based on FEM simulation. International Conference on Ocean, Offshore and Arctic Engineering. OMAE2018. V005 T04 A016. [9] Wang J, Duan M, Luo J. Mathematical model of steel lazy-wave riser abandonment and recovery in deepwater. Marine Structures, 2015, 41: 127-153 doi: 10.1016/j.marstruc.2015.02.002 [10] Gai Y, Guo S, Li Y, et al. Configuration and Performance Analysis of Deep Ocean Mining Flexible Riser. ASME 2020 39 th International Conference on Ocean, Offshore and Arctic Engineering. Omae2020-18346 [11] 符瑜, 曹斌, 夏建新. 深海采矿系统浮力配置对集矿车受力状态的影响. 矿冶工程, 2019, 39(2): 15-23 doi: 10.3969/j.issn.0253-6099.2019.02.004Fu Yu, Cao Bin, Xia Jianxin. Influence of parameter configuration of hose buoyancy for deep-sea mining system on the stress state of mining vehicle. Mining and metallurgical engineering, 2019, 39(2): 15-23(in Chinese)) doi: 10.3969/j.issn.0253-6099.2019.02.004 [12] Mavrakos S A, Chatjigeorgiou J. Dynamic behaviour of deep water mooring lines with submerged buoys. Computers & structures, 1997, 64(1): 819-835 [13] Zhu HJ, Gao Yue, Hu Jie, et al. Temporal-spatial mode competition in slug-flow induced vibration of catenary flexible riser in both in plane and out of plane. Applied Ocean Research, 2022, 119: 103017 doi: 10.1016/j.apor.2021.103017 [14] Yin D, Passano E, Lie H, et al. Experimental and numerical study of a top tensioned riser subjected to vessel motion. Ocean Engineering, 2018, 171: 565-574 [15] Cheng Y, Tang L, Fan T. Dynamic analysis of deepwater steel lazy wave riser with internal flow and seabed interaction using a nonlinear finite element method. Ocean Engineering, 2020, 209(4): 107498 [16] 唐达生, 李钟, 周知进等. 锰结核泵工作对扬矿管道振动影响的研究. 振动与冲击, 2015, 34(23): 149-152, 160Tang Dasheng, Li Zhong, Zhou Zhijin, et al. Effects of manganese nodules pump operation on lifting pipe vibration. Journal of vibration and shock, 2015, 34(23): 149-152, 160 (in Chinese)) [17] Chatjigeorgiou I K. Three dimensional nonlinear dynamics of submerged, extensible catenary pipes conveying fluid and subjected to end-imposed excitations. International Journal of Non-Linear Mechanics, 2010, 45(7): 667-680 doi: 10.1016/j.ijnonlinmec.2010.04.001 [18] Li Y, Guo S, Chen W. Analysis on multi-frequency vortex-induced vibration and mode competition of flexible deep-ocean riser in sheared fluid fields. Journal of Petroleum Science & Engineering, 2018, 163: 378-386 [19] Vassalos D, Huang S. Dynamics of small-sagged slack-taut marine cables. Computers & structures, 1996, 58(3): 557-562 [20] Huang S, Vassalos D. A numerical method for predicting snap loading of marine cables. Applied Ocean Research, 1993, 15(4): 235-242 doi: 10.1016/0141-1187(93)90012-M [21] Mansour A, Mekki OB, Montassar S, et al. Catenary-induced geometric nonlinearity effects on cable linear vibrations. Journal of Sound and Vibration, 2018, 413: 332-353 doi: 10.1016/j.jsv.2017.10.012 [22] Guo S, Chen W, Fu Y. Non-linearly restoring performance of SFT’s catenary mooring-lines under consideration of its dynamic behaviors. Procedia Engineering, 2016, 166: 202-211 doi: 10.1016/j.proeng.2016.11.583 [23] Zhang S, Tang Y, Liu X. Experimental investigation of nonlinear dynamic tension in mooring lines. Journal of Marine Science and Technology, 2012, 17(2): 181-186 doi: 10.1007/s00773-012-0160-7 [24] Hsu WT, Thiagarajan KP, Manuel L. Extreme mooring tensions due to snap loads on a floating offshore wind turbine system. Marine Structures, 2017, 55: 182-199 doi: 10.1016/j.marstruc.2017.05.005 [25] Li Y, Guo S, Chen W, et al. Analysis on restoring stiffness and its hysteresis behavior of slender catenary mooring-line. Ocean Engineering, 2020(209): 107521 [26] 吴天昊, 付世晓, 任桐鑫等. 平台运动与管内流动联合作用下悬垂立管动力响应特性研究. 振动与冲击, 2022, 37(17): 32-40 doi: 10.13465/j.cnki.jvs.2018.17.005Wu Tianhao, Fu Shixiao, Ren Tongxin, et al. Dynamic response of water intake risers under interaction between vessel motion and internal flow. Journal of vibration and shock, 2022, 37(17): 32-40 (in Chinese)) doi: 10.13465/j.cnki.jvs.2018.17.005 [27] Yuan T, Hou Y, Pires F, et al. Tensioned Step Riser Configuration for Ultra-Deep Application. International Conference on Ocean. OMAE2015. [28] Mao L, Liu Q, Zhou S, et al. Deep water drilling riser mechanical behavior analysis considering actual riser string configuration. Journal of Natural Gas Science & Engineering, 2016, 33: 240-254 [29] Gosselin F, De Langre E, Machado-Almeida BA. Drag reduction of flexible plates by reconfiguration. Journal of Fluid Mechanics, 2010, 650: 319-341 doi: 10.1017/S0022112009993673 [30] Vogel S. Drag and Reconfiguration of Broad Leaves in High Winds. Journal of Experimental Botany, 1989, 40: 941-948 doi: 10.1093/jxb/40.8.941 [31] Song J, Wang T, Chen W, et al. Vibration Control of Marine Top Tensioned Riser with a Single Tuned Mass Damper. Journal of Marine Science and Engineering, 2020, 8(10): 785 doi: 10.3390/jmse8100785 -