STUDY OF THE TEMPORAL-SPATIAL FLUCTUATIONS AND EMPIRICAL MODEL OF NEAR SPACE ATMOSPHERIC DENSITY
-
摘要: 大气密度是飞行器能源动力设计、飞行控制中的重要输入参数. 近年来, 多项研究发现, 对于临近空间高层大气, 常用经验模型如USSA-76, NRLMSISE-00的密度预示值偏大. 另外, 随着飞行器精细化设计趋势, 要求经验模型可预示不同纬度、昼夜和季节条件下的密度特性. 基于此, 本文利用卫星观测数据全面分析了临近空间大气密度随纬度、地方时、日期的变化规律, 包括变化模式和变化幅度. 纬度、日期引起的变化幅度大于地方时引起的变化幅度. 纬度、日期引起的密度变化在不同高度范围表现出不同模式; 变化幅度在78 km附近达最大值, 在22 km和92 km附近达局部极小值. 地方时引起的密度变化随高度递增. 根据大气密度的时空变化特性, 本文提出了临近空间大气密度的时空扰动模型, 该模型能描述临近空间大气密度及其随纬度、地方时、日期的变化规律. 与以往经验模型相比, 时空扰动模型可更好地描述不同高度下密度的时空变化规律. 在相同误差带条件下, 本文模型的置信度明显优于NRLMSISE-00. 本文建模方法合理, 模型结果对临近空间飞行器设计有应用价值.Abstract: Atmospheric density is a fundamental parameter for vehicle designing and flight controlling. In recent years, many researchers have discovered that atmospheric densities in the upper mesosphere and lower thermosphere predicted by the empirical model, such as USSA-76 and NRLMSISE-00, are larger than the measured values. On the other hand, vehicle designing is tending to be more detailed, and engineers hope that the empirical models provide densities under variable latitudes, day-night times and seasons. Based on that, the present work analyzesdependences of near-space atmospheric density on latitude, solar local time and date, by using satellite observed data. Emphasizes are put on density fluctuation patterns and amplitudes. The fluctuation patterns caused by latitude and date vary with altitude, and the amplitudes are largest at 78 km and locally smallest at about 22 km and 92 km. The fluctuation amplitude caused by the solar local time increases monotonically with altitude. Based on the temporal-spatialfluctuationlaw, we proposed the temporal-spatial fluctuation modelfor the near-space atmospheric density, which describes the density fluctuations with latitude, local time and date. The present model describes the temporal-spatial fluctuations better than the existed empirical models at variable altitudes. The confidence coefficient of the present model is much better than NRLMSISE-00 under the same error band. The modeling method in this work is reasonable, and the obtained model could be used in near-space vehicle designing.
-
图 8 (a) 80 km, (b) 90 km, (c) 100 km高度下, SABER数据与三种模型预测结果对比. 红点: SABER, 绿点: NRLMSISE-00模型, 蓝点: 时空扰动模型, 黑线: USSA-76模型
Figure 8. Comparison of three atmospheric density models and observed data at altitudes (a) 80, (b) 90, (c) 100 km. Red symbol: SABER, green symbol: NRLMSISE-00, blue symbol: temporal-spatial variation model, black line: USSA-76
表 1 80, 90, 100 km高度, 太阳活动强(2002)、弱(2008)年份的密度
Table 1. At altitudes 80, 90, 100 km , the global mean density for years with higher solar activity (2002) and lower solar activity (2008)
Altitude/km Global mean density in 2002/(kg·m−3) Global mean density in 2008/(kg·m−3) 80 1.64 × 10−5 1.56 × 10−5 90 3.01 × 10−6 2.79 × 10−6 100 5.36 × 10−7 4.67 × 10−7 表 2 高度80, 90, 100 km, 3种大气模型, 不同误差带要求下, 对比SABER数据的置信度
Table 2. Altitudes 80, 90, 100 km, under different error bands, confidence coefficients of the three atmospheric models compared to SABER data
Altitude/km Error band ±30% ±50% ±80% 80 USSA-76 66.1% 85.2% 96.5% 80 NRLMSISE-00 88.6% 98.9% 99.9% 80 present model 99.0% 99.9% 99.99% 90 USSA-76 68.3% 92.1% 99.1% 90 NRLMSISE-00 76.5% 95.9% 99.7% 90 present model 98.7% 99.9% 99.98% 100 USSA-76 73.0% 87.7% 95.2% 100 NRLMSISE-00 75.4% 90.8% 97.7% 100 present model 93.2% 98.5% 99.7% -
[1] 石广玉, 黎许, 郭建东等. 大气臭氧与气溶胶垂直分布的高空气球探测. 大气科学, 1996, 20(4): 401-407 (Shi Guangyu, Li Xu, Guo Jiandong, et al. Balloon observation of atmospheric ozone and aerosols. Scientia Atmospherica Sinica, 1996, 20(4): 401-407 (in Chinese) doi: 10.3878/j.issn.1006-9895.1996.04.03 [2] 石广玉, 白宇波, 岩坂泰信等. 拉萨上空大气臭氧垂直分布的高空气球探测. 地球科学进展, 2000, 15: 522-524 (Shi Guangyu, Bai Yubo, Yasunobu Iwasaka, et al. A balloon measurement of the ozone vertical distribution over LAHSA. Advance in Earth Sciences, 2000, 15: 522-524 (in Chinese) doi: 10.3321/j.issn:1001-8166.2000.05.006 [3] Zandt TEV. A brief history of the development of wind-profiling or MST radars. Annales Geophysicae, 2000, 18: 740-749 doi: 10.1007/s00585-000-0740-4 [4] 赵一鸣, 李艳华, 商雅楠等. 激光雷达的应用及发展趋势. 遥测遥控, 2014, 35: 4-22 (Zhao Yiming, Li Yanhua, Shang Yanan, et al. Application and development direction of Lidar. Journal of Telemetry, Tracking and Command, 2014, 35: 4-22 (in Chinese) doi: 10.3969/j.issn.2095-1000.2014.05.002 [5] 杨勇, 程学武, 杨国韬等. 高层大气探测激光雷达研究进展. 量子电子学报, 2020, 37: 566-579 (Yang Yong, Cheng Xuewu, Yang Guotao, et al. Research progress of lidar for upper atmosphere. Chinese Journal of Quantum Electronics, 2020, 37: 566-579 (in Chinese) [6] 秦国泰, 邱时彦, 贺爱卿等. 神舟 2 号大气密度探测器的探测结果 ( I ) 日照和阴影区域热层大气密度变化. 空间科学学报, 2002, 22(2): 136-141 (Qin Guotai, Qiu Shiyan, He Aiqing, et al. “SZ-2” atmospheric density detector measurement result (I) change of the thermosphere density in the sunshine and shaded area. Chinese Journal of Space Sciences, 2002, 22(2): 136-141 (in Chinese) doi: 10.3969/j.issn.0254-6124.2002.02.006 [7] Reber CA, Trevathan CE, Mcneal RJ, et al. The Upper Atmosphere Research Satellite (UARS) mission. Journal of Geophysical Research, 1993, 98: 10643-10647 doi: 10.1029/92JD02828 [8] Schwartz MJ, Lambert A, Manney GL, et al. Validation of the Aura Microwave Limb Sounder temperature and geopotential height measurements. Journal of Geophysical Research, 2008, 113: D15S11 [9] 宫晓艳, 胡雄, 吴小成等. COSMIC大气掩星与SABER/TIMED探测温度数据比较. 地球物理学报, 2013, 56(7): 2152-2162Gong Xiao-Yan, Hu Xiong, Wu Xiao-cheng, et al. Comparisions of temperature measurement between cosmic atmospheric radio occultation and SABER/TIMED, Chinese Journal of Geophysics, 2013, 56(7): 2152-2162 (in Chinese)) [10] Steinerl AK, Kirchengast G, Foelsche U, et al. GNSS occultation sounding for climate monitoring. Physics and Chemistry of the Earth, Parts A, 2001, 26(3): 113-124 doi: 10.1016/S1464-1895(01)00034-5 [11] Hajj GA, Kursinski ER, Romans LJ, et al. A technical description of atmospheric sounding by GPS occultation. Journal of Atmospheric and Solar-Terrestrial Physics, 2002, 64: 451-469 doi: 10.1016/S1364-6826(01)00114-6 [12] Larar AM, Russell Iii JM, Mlynczak MG, et al. Overview of the SABER experiment and preliminary calibration results. Proceedings of SPIE, 1999, 3756: 277-288 doi: 10.1117/12.366382 [13] NOAA, NASA, USAF. U.S. Standard Atmosphere. Washington D.C. : U.S. Government Printing Office, 1976 [14] Hedin AE. MSIS86 themospheric model. Journal of Geophysical Research, 1987, 92: 4649-4662 [15] Picone JM, Hedin AE, Drob DP, et al. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. Journal of Geophysical Research: Space Physics, 2002, 107(A12): SIA15 [16] Emmert JT, Drob DP, Picone JM, et al. NRLMSIS 2.0: A whole-atmosphere empirical model of temperature and neutral species densities. Earth and Space Science, 2021, 8: e2020EA001321 [17] Vitharana A, Zhu X, Du J, et al. Statistical modeling of tidal weather in the mesosphere and lower thermosphere. Journal of Geophysical Research: Atmospheres, 2019, 124(16): 9011-9027 doi: 10.1029/2019JD030573 [18] Weimer DR, Mehta PM, Tobiska WK, et al. Improving neutral density predictions using exospheric temperatures calculated on a geodesic, polyhedral grid. Space Weather, 2020, 18: e2019SW002355 [19] Katsuda S, Fujiwara H, Ishisaki Y, et al. New measurement of the vertical atmospheric density profile from occultations of the crab nebula with X-ray astronomy satellites Suzaku and Hitomi. Journal of Geophysical Research-Space Physics, 2021, 126: e2020JA028886 [20] Yu D, Li H, Li B, et al. New method for Earth neutral atmospheric density retrieval based on energy spectrum fitting during occultation with LE/Insight-HXMT. Advances in Space Research, 2022, 69(9): 3426-3434 doi: 10.1016/j.asr.2022.02.030 [21] Determan JR, Budzien SA, Kowalski MP, et al. Measuring atmospheric density with X-ray occultation sounding. Journal of Geophysical Research: Space Physics, 2007, 112: A06323 [22] Emmert JT. Thermospheric mass density: A review. Advances in Space Research, 2015, 56: 773-824 doi: 10.1016/j.asr.2015.05.038 [23] Cheng X, Yang J, Xiao C, et al. Density correction of NRLMSISE-00 in the middle atmosphere (20–100 km) based on TIMED/SABER density data. Atmosphere, 2020, 11(4): 341 doi: 10.3390/atmos11040341 [24] 王淼, 基于TIMED/SABER数据的临近空间环境建模研究. [硕士论文]. 南京: 南京信息工程大学, 2020Wang Miao. Research on near space environment modeling based on TIMED/SABER observation. [Master Thesis]. Nanjing: Nan jing University of Information Science and Technology, 2020 (in Chinese)) [25] Dawkins ECM, Feofilov A, Chu X, et al. Validation of SABER v2.0 operational temperature data with ground-based lidars in the mesosphere-lower thermosphere region (75-105 km). Journal of Geophysical Research: Atmospheres, 2018, 123: 9916-9934 doi: 10.1029/2018JD028742 [26] Mertens CJ. SABER observations of mesospheric temperatures and comparisons with falling sphere measurements taken during the 2002 summer MaCWAVE campaign. Geophysical Research Letters, 2004, 31: L03105 [27] Wrasse CM, Fechine J, Takahashi H, et al. Temperature comparison between CHAMP radio occultation and TIMED/SABER measurements in the lower stratosphere. Advances in Space Research, 2008, 41(9): 1423-1428 doi: 10.1016/j.asr.2007.06.073 [28] Xu J, She CY, Yuan W, et al. Comparison between the temperature measurements by TIMED/SABER and lidar in the midlatitude. Journal of Geophysical Research, 2006, 111: A10S09 [29] Zou X, Yang G, Chen L, et al. Rayleigh lidar observations and comparisons with TIMED/SABER of typical case studies in Beijing (40.5° N, 116. 2° E), China. Atmosphere, 2021, 12(10): 1237 [30] Remsberg EE, Marshall BT, Garcia-Comas M, et al. Assessment of the quality of the Version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER. Journal of Geophysical Research, 2008, 113: D17101 doi: 10.1029/2008JD010013 [31] Kumari K, Oberheide J, Lu X, The tidal response in the mesosphere/lower thermosphere to the madden‐Julian oscillation observed by SABER. Geophysical Research Letters, 2020, 47: e2020GL089172 [32] Zhao XR, Sheng Z, Shi HQ, et al. Long‐term trends and solar responses of the mesopause temperatures observed by SABER during the 2002–2019 period. Journal of Geophysical Research: Atmospheres, 2020, 125: e2020JD032418 [33] Kawatani Y, Hirooka T, Hamilton K, et al. Representation of the equatorial stratopause semiannual oscillation in global atmospheric reanalyses. Atmospheric Chemistry and Physics, 2020, 20(14): 9115-9133 doi: 10.5194/acp-20-9115-2020 [34] Alexander P, Torre A, Kaifler N, et al. Temperature profiles from two close lidars and a satellite to infer the structure of a dominant gravity wave. Earth and Space Science, 2020, 7: e2020EA001074 [35] Strelnikova I, Almowafy M, Baumgarten G, et al. Seasonal cycle of gravity wave potential energy densities from lidar and satellite observations at 54° and 69°N. Journal of the Atmospheric Sciences, 2021, 78(4): 1359-1386 doi: 10.1175/JAS-D-20-0247.1 [36] Xiao C, Hu X, Tian J. Global temperature stationary planetary waves extending from 20 to 120 km observed by TIMED/SABER. Journal of Geophysical Research, 2009, 114: D17101 doi: 10.1029/2008JD011349 [37] 肖存英, 胡雄, 王博等. 临近空间大气扰动变化特性的定量研究. 地球物理学报, 2016, 59: 1211-1221 (Xiao Cunying, Hu Xiong, Wang Bo, et al. Quantitative studies on the variations of near space atmospheric fluctuation. Chinese Journal of Geophysics, 2016, 59: 1211-1221 (in Chinese) doi: 10.6038/cjg20160404 [38] Wan T, Liu H, Fan J. Error band and confidence coefficient of atmospheric density models around altitude 100 km. Scientia Sinica: Physica, Mechanica & Astronomica, 2015, 45(12): 124706 -