EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

镜像对称顶盖驱动方腔内流过渡流临界特性研究

安博 孟欣雨 桑为民

安博, 孟欣雨, 桑为民. 镜像对称顶盖驱动方腔内流过渡流临界特性研究. 力学学报, 2022, 54(9): 2409-2418 doi: 10.6052/0459-1879-22-218
引用本文: 安博, 孟欣雨, 桑为民. 镜像对称顶盖驱动方腔内流过渡流临界特性研究. 力学学报, 2022, 54(9): 2409-2418 doi: 10.6052/0459-1879-22-218
An Bo, Meng Xinyu, Sang Weimin. On the transitional characteristics of mirror symmetric lid-driven cavity flow. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 2409-2418 doi: 10.6052/0459-1879-22-218
Citation: An Bo, Meng Xinyu, Sang Weimin. On the transitional characteristics of mirror symmetric lid-driven cavity flow. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 2409-2418 doi: 10.6052/0459-1879-22-218

镜像对称顶盖驱动方腔内流过渡流临界特性研究

doi: 10.6052/0459-1879-22-218
基金项目: 翼型、叶栅空气动力学重点实验室基金(614220121030101)和中国空气动力研究与发展中心结冰与防除冰重点实验室开放课题基金(IADL20210302)资助项目
详细信息
    作者简介:

    桑为民, 教授, 研究方向: 空气动力学、计算流体力学. E-mail: sangweimin@nwpu.edu.cn

  • 中图分类号: O3

ON THE TRANSITIONAL CHARACTERISTICS OF MIRROR SYMMETRIC LID-DRIVEN CAVITY FLOW

  • 摘要: 流场过渡流临界特性是指流场因流动状态改变而引起的流场物理特性变化. 如流动从定常演化为非定常周期性时, 流动处于过渡状态的物理性质. 它从根本上决定了流动演化模式和流场特性等物理规律, 对认清流动现象的形成机理有重要意义. 本文在之前腔体内流流场过渡流临界特性研究的基础上, 针对镜像对称顶盖驱动方腔内流开展数值模拟和流场稳定性分析研究, 捕捉各流动分岔点, 如Hopf流动分岔点和Neimark-Sacker流动分岔点等, 并揭示其对流场特性的影响; 分析流场演化模式, 随着雷诺数增大从定常状态依次演化为非定常周期性流动、准周期性流动和湍流; 揭示各种流动现象的形成机理, 如流动滞后、对称性破坏、能量级串等; 分析流场拓扑结构, 阐明流场镜像对称性和流场稳定性的关系. 本文研究成果有助于揭示该流场的物理特性, 进一步完善了内流流场特性的研究. 研究发现, 针对本文镜像对称方腔顶盖驱动内流, 流场稳定性的破坏总是以Hopf流动分岔点的出现而发生并且伴随着流场对称性的破坏; 流场演化模式符合经典的Ruelle-Takens模式; 流动从定常状态演化至非定常周期性流动时存在流动滞后现象.

     

  • 图  1  计算域

    Figure  1.  Computational domain

    图  2  平直物面边界

    Figure  2.  Straight wall boundary

    图  3  $ Re = {\text{10}}00 $时的定常计算结果

    Figure  3.  Steady state at$ Re = {\text{10}}00 $

    图  4  速度频谱图

    Figure  4.  Velocity spectrum

    图  5  速度相图

    Figure  5.  Velocity phase map

    图  6  完整周期内不同时刻涡量图($ Re = {\text{17}}00 $)

    Figure  6.  Vorticity snapshots at different time steps within a full period T ($ Re = {\text{17}}00 $)

    图  7  准周期性解($ Re = {\text{17}}35 $)

    Figure  7.  A quasi-periodic solution ($ Re = {\text{17}}35 $)

    图  8  湍流状态计算结果

    Figure  8.  Results for chaos

    图  9  扰动衰减系数

    Figure  9.  Perturbation decay rate

    图  10  周期性和准周期性计算结果对比

    Figure  10.  Comparison between periodic and quasi-periodic solutions

    图  11  准周期性和湍流计算结果对比

    Figure  11.  Comparison between quasi-periodic and chaotic solutions

    图  12  不同雷诺数的对称性参数

    Figure  12.  Symmetry at different Re

    图  13  水平速度分量及对称性参数($ Re = {\text{17}}00 $)

    Figure  13.  Velocity and symmetry series ($ Re = {\text{17}}00 $)

    图  14  流动滞后现象

    Figure  14.  Flow hysteresis

    图  15  完整周期内不同时刻涡量图($ Re = {\text{16}}00 $)

    Figure  15.  Vorticity snapshots at different time steps within a full period T ($ Re = {\text{16}}00 $)

  • [1] Hof B, Van Doorne CWH, Westerweel J, et al. Experimental observation of nonlinear travelling waves in turbulent pipe flow. Science, 2004, 305: 1594-1598
    [2] Avila K, Moxey D, de Lozar A, et al. The onset of turbulence in pipe flow. Science, 2011, 333: 192-196
    [3] Graham MD. Fluid dynamics turbulence spreads like wildfire. Nature, 2015, 526: 508-509
    [4] Rempfer D. Low-dimensional modeling and numerical simulation of transition in simple shear flows. Annual Review of Fluid Mechanics, 2003, 35: 229-265
    [5] Chomaz JM. Global instabilities in spatially developing flows: Non-normality and nonlinearity. Annual Review of Fluid Mechanics, 2005, 37: 357-392
    [6] Kerswell RR. Nonlinear nonmodal stability theory. Annual Review of Fluid Mechanics, 2005, 50: 319-345
    [7] Eckhardt B, Schneider TM, Hof B, et al. Turbulence transition in pipe flow. Annual Review of Fluid Mechanics, 2007, 39: 447-468
    [8] Launder B, Poncet S, Serre E. Laminar, transitional, and turbulent flows in rotor-stator cavities. Annual Review of Fluid Mechanics, 2010, 42: 229-248
    [9] Luchini P, Bottaro A. Adjiont equations in stability analysis. Annual Review of Fluid Mechanics, 2014, 46: 493
    [10] Kunii K, Ishida T, Duguet Y, et al. Laminar-turbulent coexistence in annular Couette flow. Journal of Fluid Mechanics, 2019, 879: 579-603
    [11] Benton SI, Visbal MR. The onset of dynamics stall at high, transitional Reynolds number. Journal of Fluid Mechanics, 2019, 861: 860-885
    [12] Gavrilakis S. Post-transitional periodic flow in a straight square duct. Journal of Fluid Mechanics, 2019, 859: 731-753
    [13] Wu XH, Moin P, Adrian RJ. Laminar to fully turbulent flow in a pipe: scalar patches, structural duality of turbulent spots and transitional overshoot. Journal of Fluid Mechanics, 2020, 896: A9
    [14] An B, Bergada JM, Mellibovsky F. The lid driven right-angled isosceles triangular cavity flow. Journal of Fluid Mechanics, 2019, 875: 476-519
    [15] An B, Mellibovsky F, Bergada JM, et al. Towards a better understanding of wall-driven square cavity flows using lattice Boltzmann method. Applied Mathematical Modelling, 2020, 82: 469-486
    [16] Chen S, Doolen GD. Lattice Boltzmann method for fluid flows. Annual Review of Fluid Mechanics, 1998, 30: 329-364
    [17] Krüger T, Kusumaatmaja H, Kuzmin A, et al. The Lattice Boltzmann Method: Principles and Practice. New York: Springer Publishing Company, 2016
    [18] Lallemand P, Luo LS. Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, galilean invariance, and stability. Physical Review E, 2000, 61(6): 6546-6562
    [19] An B, Bergada JM, Mellibovsky F, et al. New applications of numerical simulation based on lattice Boltzmann method at high Reynolds numbers. Computers and Mathematics with Applications, 2020, 79(6): 1718-1741
    [20] Qian YH, d’Humieres D, Lallemand P. Lattice BGK models for Navier-Stokes equation. Europhysics Letters, 1992, 17(6): 478-484
    [21] Guo ZL, Zheng CG, Shi BC. An extrapolation method for method boundary conditions in lattice Boltzmann method. Physics of Fluids, 2002, 14(6): 2007-2010
    [22] Sierra J, Fabre D, Citro V, et al. Bifurcation scenario in the two-dimensional laminar flow past a rotating cylinder. Journal of Fluid Mechanics, 2020, 905: A2
    [23] Picella F, Robinet JC, Cherubini S. Laminar-turbulent transition in channel flow with superhydrophobic surface modelled as a partial slip wall. Journal of Fluid Mechanics, 2020, 881: 462-497
    [24] Alexakis A, Biferale L. Cascades and transitions in turbulent flows. Physics Reports-review Section of Physics Letters, 2018, 767: 1-101
    [25] Vassilicos JC. Dissipation in turbulent flows. Annual Review of Fluid Mechanics, 2015, 47: 95-114
    [26] Jimenez J. Cascades in wall-bounded turbulence. Annual Review of Fluid Mechanics, 2012, 44: 27-45
    [27] Auteri F, Parolini N, Quartapelle L. Numerical investigation on the stability of singular driven cavity flow. Journal of Computational Physics, 2002, 183: 1-25
    [28] Boppana VBL, Gajjar JSB. Global flow instability in a lid-driven cavity. International Journal for Numerical Methods in Fluids, 2010, 62: 827-853
    [29] Avila M, Marques F, Lopez JM, et al. Stability control and catastrophic transition in a forced Taylor-Couette system. Journal of Fluid Mechanics, 2007, 590: 471-496
    [30] Heise M, Agshagen J, Küter D, et al. A localized spirals in Taylor-Couette flow. Physical Review E, 2008, 77(2): 026202
  • 加载中
图(15)
计量
  • 文章访问数:  107
  • HTML全文浏览量:  40
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-23
  • 录用日期:  2022-07-11
  • 网络出版日期:  2022-07-12
  • 刊出日期:  2022-09-18

目录

    /

    返回文章
    返回