IMPROVEMENT OF THE TOTAL LAGRANGIAN SPH AND ITS APPLICATION IN IMPACT PROBLEMS
-
摘要: 光滑粒子流体动力学(smoothed particle hydrodynamics, SPH)在模拟固体大变形、破碎和裂纹扩展等问题中有天然的优势, 但SPH固有的拉伸不稳定缺陷是SPH在计算固体力学领域进一步应用的一大障碍. 完全拉格朗日SPH (total Lagrangian-SPH, TL-SPH)方法是一种有效的改善拉伸不稳定的措施, 但其仍面临边界区域精度低、界面条件难以施加、损伤裂纹难以模拟等缺陷. 因此, 首先将可达到二阶精度的高阶SPH方法与TL-SPH耦合, 为了节省高阶方法的计算量, 进一步简化粒子选取模式, 提出TL-SFPM (TL-simplified finite particle method)方法; 其次, 将可提高界面精度的DFPM (discontinuous finite particle method)方法与TL-SPH结合, 并提出一种基于黎曼解的界面接触算法, 通过在不同材料粒子间建立黎曼模型求解不同材料间的相互作用, 分别应用于流体−固体接触和固体−固体接触中; 再者, 为了捕捉固体受外载荷后的损伤程度及破坏模式, 提出一种完全拉格朗日框架下的粒子损伤破坏模型; 最后, 通过流−固冲击的带弹性挡板溃坝算例和固−固冲击的子弹撞击靶板算例验证提出的TL-SFPM方法、界面接触算法和损伤破坏模型的合理性和精确性, 进一步扩展TL-SPH方法在计算固体冲击问题中的应用.Abstract: SPH (smoothed particle hydrodynamics) has its natural advantages in dealing with the large deformation of the material, fracture and crack propagation due to the absence of mesh distortion. However, the tensile instability which is an inherent defect encountered in the conventional SPH, is an obstacle for further applying SPH in computational solid mechanics. TL-SPH (total Lagrangian-SPH) is an effective measure to improve the tensile instability, but it still faces some defects. For example, the accuracy may be not enough at the boundary region for the truncated supported domain of the particle. The interface conditions are difficult to be implemented strictly, and the crack propagation cannot be presented under the Total Lagrangian frame. So, first of all, TL-SPH is coupled with the high-order SPH method, which can achieve second-order accuracy. Moreover, the high-order method is simplified by reducing the number of neighbor particles to save the calculational cost, and TL-SFPM (TL-simplified finite particle method) method is proposed with a reasonable neighbor particles selection mode. Secondly, TL-SPH method is combined with the DFPM (discontinuous finite particle method), which can improve the accuracy of the interface. A contact algorithm based on the Riemann solution is proposed by establishing the Riemann model between two particles with different materials. Then the fluid-solid contact algorithm and the solid-solid contact algorithm are introduced, respectively. Moreover, to capture the damage form of the solid under external load, a particle damage model based on the total Lagrangian frame is proposed. Finally, the rationality and accuracy of the proposed TL-SFPM method, the contact algorithm and the damage model are verified by cases of the fluid-solid impact and solid-solid impact, which further extends the application of TL-SPH method in the calculation of solid impact problems. The results of the dam break with an elastic baffle and the bullet impacting target plate also demonstrate the algorithms proposed in this paper has a wide application prospect for simulation of fluid-solid interaction and solid impact problems.
-
Key words:
- total Lagrangian SPH /
- tensile instability /
- Riemann contact /
- impact /
- simulation accuracy
-
表 1 弹性挡板材料参数
Table 1. Material parameters of elastic baffle
H/m h/m Z/m s/m ρ/
(kg·m−3)ν E/
MPa0.14 0.079 0.1 0.005 1100 0.4 12 表 2 TL-SPH和TL-SFPM模拟时间对比
Table 2. Computational time with TL-SPH and TL-SFPM methods
Method TL-SPH TL-SFPM Computational time/s 9562 9403 表 3 钢和铝材料参数
Table 3. Material parameters of steel and aluminum
Material ρ/(kg·m−3) Cs/(m·s−1) ν E/GPa A/MPa steel 7800 4596 0.3 200 335 aluminum 2785 5328 0.3 72 265 Material B/MPa n C m Tmelt/K steel 275 0.36 0.022 1.0 1811 aluminum 426 0.34 0.015 1.0 775 表 4 CSPM和TL-SFPM模拟时间对比
Table 4. Computational time with CSPM and TL-SFPM methods
Method CSPM TL-SFPM Computational time/s 2653 3225 -
[1] 杨秀峰, 刘谋斌. 光滑粒子动力学SPH方法应力不稳定性的一种改进方案. 物理学报, 2012, 61(22): 224701 (Yang Xiufeng, Liu Moubin. Improvement on stress instability in smoothed particle hydrodynamics. Acta Physica Sinica, 2012, 61(22): 224701 (in Chinese) doi: 10.7498/aps.61.224701 [2] Salehizadeh AM, Shafiei AR. A coupled ISPH-TLSPH method for simulating fluid-elastic structure interaction problems. Journal of Marine Science and Application, 2022, 21: 15-36 doi: 10.1007/s11804-022-00260-3 [3] Swegle JW, Hicks DL, Attaways SW. Smoothed Particle Hydrodynamics stability analysis. Journal of Computational Physics, 1995, 116: 123-134 doi: 10.1006/jcph.1995.1010 [4] Chen JK, Beraun JE. A generalized smoothed particle hydrodynamics method for nonlinear dynamic problem. Computer Methods in Applied Mechanics and Engineering, 2000, 190(1): 225-239 [5] Liu MB, Liu GR. Restoring particle consistency in smoothed particle hydrodynamics. Applied Numerical Mathematics, 2006, 56(1): 19-36 doi: 10.1016/j.apnum.2005.02.012 [6] Colagrossi A, Landrini M. Numerical simulation of interfacial flows by smoothed particle hydrodynamics. Journal of Computational Physics, 2003, 191(2): 448-475 doi: 10.1016/S0021-9991(03)00324-3 [7] 张建伟, 主攀, 陈海舟等. 基于光滑粒子流体动力学方法的表中孔泄流模拟. 水电能源科学, 2022, 40(3): 136-139 (Zhang Jianwei, Zhu Pan, Chen Haizhou, et al. Simulation of discharge from middle surface hole based on Smoothed Particle Hydrodynamics method. Water Resources and Power, 2022, 40(3): 136-139 (in Chinese) [8] Zheng X, Tian ZZ, Xie ZG, et al. Numerical study of the ice breaking resistance of the icebreaker in the yellow river through smoothed-particle hydrodynamics. Journal of Marine Science and Application, 2022, 21: 1-14 [9] 杨波, 欧阳洁, 蒋涛. PTT黏弹性流体的光滑粒子动力学方法模拟. 力学学报, 2011, 43(4): 667-673 (Yang Bo, Ouyang Jie, Jiang Tao. Numerical simulation of the viscoelastic flows for PTT model by the SPH method. Chinese Journal of Theoretical and Applied Mechani, 2011, 43(4): 667-673 (in Chinese) doi: 10.6052/0459-1879-2011-4-lxxb2010-223 [10] Belytschko T, Guo Y, Liu WK, et al. A unified stability analysis of meshless particle methods. International Journal for Numerical Methods in Engineering, 2000, 48: 1359-1400 doi: 10.1002/1097-0207(20000730)48:9<1359::AID-NME829>3.0.CO;2-U [11] Belytschko T, Xiao S. Stability analysis of particle methods with corrected derivatives. Computers & Mathematics with Applications, 2002, 43: 329-350 [12] Daniel S, Mitsuteru A. Coupling total Lagrangian SPH−EISPH for fluid−structure interaction with large deformed hyperelastic solid bodies. Computer Methods in Applied Mechanics and Engineering, 2021, 381: 113832 doi: 10.1016/j.cma.2021.113832 [13] Liu MB, Liu GR, Lam KY. A one-dimensional meshfree particle formulation for simulating shock waves. Shock Wave, 2003, 13: 201-211 doi: 10.1007/s00193-003-0207-0 [14] Xu F, Zhao Y, Yan R, et al. Multi-dimensional Discontinuous SPH method and its application to metal penetration analysis. International Journal for Numerical Methods in Engineering, 2013, 93: 1125-1146 doi: 10.1002/nme.4414 [15] 王璐, 杨扬, 徐绯. 一种考虑界面不连续的改进FPM方法. 爆炸与冲击, 2019, 39(2): 024202 (Wang Lu, Yang Yang, Xu Fei. An improved finite particle method for discontinuous interface problems. Explosion and Shock Waves, 2019, 39(2): 024202 (in Chinese) [16] 孔伟振, 陈占魁, 田强. 基于ISPH-TLSPH的充液多柔体动力学建模与计算. 中国科学: 物理学 力学 天文学, 2022, 52(4): 84-99 (Kong Weizhen, Chen Zhankui, Tian Qiang. Dynamic modeling and simulation of fluid-filled flexible multibody system based on ISPH-TLSPH method. Scientia Sinica:Physica,Mechanica &Astronomica, 2022, 52(4): 84-99 (in Chinese) [17] Liu MB, Shao JR, Chang JZ. On the treatment of solid boundary in smoothed particle hydrodynamics. Science China-Technological Sciences, 2012, 55: 244-254 doi: 10.1007/s11431-011-4663-y [18] 韩亚伟, 强洪夫, 赵玖玲等. 光滑粒子流体动力学方法固壁处理的一种新型排斥力模型. 物理学报, 2013, 62(4): 044702 (Han Yawei, Qiang Hongfu, Zhao Jiuling, et al. A new repulsive model for solid boundary condition in smoothed particle hydrodynamics. Acta Physica Sinica, 2013, 62(4): 044702 (in Chinese) doi: 10.7498/aps.62.044702 [19] 陈飞国, 葛蔚. 多相流动的光滑粒子流体动力学方法研究综述. 力学学报, 2021, 53(9): 2357-2373 (Chen Feiguo, Ge Wei. A review of smoothed particle hydrodynamics family methods for multiphase flow. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2357-2373 (in Chinese) doi: 10.6052/0459-1879-21-270 [20] 张建伟, 杜宇, 陈海舟. 溃坝水流冲击水垫塘的SPH模拟. 水电能源科学, 2021, 39(3): 41-44 (Zhang Jianwei, Du Yu, Chen Haizhou. SPH simulation of dam break flow impacting plunge pool. Water Resources and Power, 2021, 39(3): 41-44 (in Chinese) [21] 徐建于, 黄生洪. 圆柱形汇聚激波诱导 Richtmyer-Meshkov不稳定的 SPH 模拟. 力学学报, 2019, 51(4): 998-1011 (Xu Jianyu, Huang Shenghong. Numerical simulation of cylindrical converging shock induced richtmyer-meshkov instability with SPH. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 998-1011 (in Chinese) doi: 10.6052/0459-1879-19-041 [22] 孔祥振, 方秦. 基于SPH方法对强动载下混凝土结构损伤破坏的数值模拟研究. 中国科学: 物理学 力学 天文学, 2020, 50(2): 25-33 (Kong Xiangzhen, Fang Qin. Numerical predictions of failures in concrete structures subjected to intense dynamic loadings using the smooth particle hydrodynamics method. Scientia Sinica:Physica,Mechanica &Astronomica, 2020, 50(2): 25-33 (in Chinese) [23] 徐帅, 黄君杰, 张纲等. 人下颌软硬组织爆炸伤光滑粒子流体动力学模型研究. 第三军医大学学报, 2020, 42(20): 1971-1977 (Xu Shuai, Huang Junjie, Zhang Gang, et, al. Smoothed particle hydrodynamics based simulation of blast injuries in human mandible. Journal of Third Military Medical University, 2020, 42(20): 1971-1977 (in Chinese) [24] 周新超, 马小晶, 廖翔云等. 磨料水射流冲击孔隙岩体的SPH模拟研究. 岩土工程学报, 2022, 44(4): 731-739 (Zhou Xinchao, Ma Xiaojing, Liao Xiangyun, et al. Numerical simulation of abrasive water jet impacting porous rock based on SPH method. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 731-739 (in Chinese) [25] 吴思思, 董新龙, 俞鑫炉. 45钢柱壳爆炸膨胀断裂的SPH模拟分析. 爆炸与冲击, 2021, 41(10): 67-77 (Wu Sisi, Dong Xinlong, Yu Xinlu. An investigating on explosive expanding fracture of 45 steel cylinders by SPH method. Explosion and Shock Waves, 2021, 41(10): 67-77 (in Chinese) [26] Islam MRI, Peng C. A total Lagrangian SPH method for modelling damage and failure in solids. International Journal of Mechanical Sciences, 2019, 157-158: 498-511 doi: 10.1016/j.ijmecsci.2019.05.003 [27] Islam MRI, Zhang W, Peng C. Large deformation analysis of geomaterials using stabilized total Lagrangian smoothed particle hydrodynamics. Engineering Analysis with Boundary Elements, 2022, 136: 252-265 doi: 10.1016/j.enganabound.2022.01.002 [28] Wang L, Xu F, Yang Y. An improved total Lagrangian SPH method for modeling solid deformation and damage. Engineering Analysis with Boundary Elements, 2021, 133: 286-302 doi: 10.1016/j.enganabound.2021.09.010 [29] Adami S, Hu XY, Adams NA. A transport-velocity formulation for smoothed particle hydrodynamics. Journal of Computational Physics, 2013, 241: 292-307 doi: 10.1016/j.jcp.2013.01.043 [30] 孙鹏楠. 物体与自由液面耦合作用的光滑粒子流体动力学方法研究. [博士论文]. 哈尔滨: 哈尔滨工程大学, 2018Sun Pengnan. Study on SPH method for the simulation of object-free surface interactions. [PhD Thesis]. Harbin: Harbin Engineering University, 2018 (in Chinese)) [31] Sugiura K, Inutsuka S. An extension of Godunov SPH II: Application to elastic dynamics. Journal of Computational Physics, 2017, 333: 78-103 doi: 10.1016/j.jcp.2016.12.026 [32] 杨秋足, 徐绯, 王璐等. 一种基于黎曼解处理大密度比多相流SPH的改进算法. 力学学报, 2019, 51(3): 730-742 (Yang Qiuzu, Xu Fei, Wang Lu, et al. An improved SPH algorithm for large density ratios multiphase flows based on riemann solution. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 730-742 (in Chinese) [33] 强洪夫. 光滑粒子流体动力学新方法及应用. 北京: 科学出版社, 2017Qiang Hongfu. New Method and Application of Smoothed Particle Hydrodynamics. Beijing: Science Press, 2017 (in Chinese)) [34] Adami S, Hu XY, Adams NA. A generalized wall boundary condition for smoothed particle hydrodynamics. Journal of Computational Physics, 2012, 231: 7057-7075 [35] Sun PN, Touzé D, Zhang A. Study of a complex fluid-structure dam-breaking benchmark problem using a multi-phase SPH method with APR. Engineering Analysis with Boundary Elements, 2019, 104: 240-258 doi: 10.1016/j.enganabound.2019.03.033 [36] 段兴锋, 任鸿翔, 神和龙. 基于CUDA的弱可压SPH流体建模与仿真. 计算机工程与科学, 2018, 40(8): 1375-1382 (Duan Xingfeng, Ren Hongxiang, Shen Helong. Fluid modeling and simulation using CUDA based weakly compressible SPH. Computer Engineering & Science, 2018, 40(8): 1375-1382 (in Chinese) doi: 10.3969/j.issn.1007-130X.2018.08.006 [37] Zhang C, Hu XY, Adams NA. A weakly compressible SPH method based on a low-dissipation Riemann solver. Journal of Computational Physics, 2017, 335: 605-620 doi: 10.1016/j.jcp.2017.01.027 [38] Wang L, Xu F, Yang Y. Improvement of the tensile instability in SPH scheme for the FEI (fluid-elastomer interaction) problem. Engineering Analysis with Boundary Elements, 2019, 106: 116-125 doi: 10.1016/j.enganabound.2019.04.032 [39] Antoci C, Gallati M, Sibilla S. Numerical simulation of fluid–structure interaction by SPH. Computers and Structures, 2007, 85(11): 879-90 [40] 刘传雄, 郭伟国, 李玉龙. 不同结构形式加强蒙皮的抗弹性能研究. 科学技术与工程, 2008, 1: 21-25 (Liu Chuanxiong, Guo Weiguo, Li Yulong. Anti-penetration performance of different structural types of reinforced skin panels. Science Technology and Engineering, 2008, 1: 21-25 (in Chinese) doi: 10.3969/j.issn.1671-1815.2008.01.006 -