EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于定常吹吸气的波浪型圆柱主动控制研究

邹琳 左红成 柳迪伟 王家辉 徐劲力

邹琳, 左红成, 柳迪伟, 王家辉, 徐劲力. 基于定常吹吸气的波浪型圆柱主动控制研究. 力学学报, 2022, 54(11): 2970-2983 doi: 10.6052/0459-1879-22-212
引用本文: 邹琳, 左红成, 柳迪伟, 王家辉, 徐劲力. 基于定常吹吸气的波浪型圆柱主动控制研究. 力学学报, 2022, 54(11): 2970-2983 doi: 10.6052/0459-1879-22-212
Zou Lin, Zuo Hongcheng, Liu Diwei, Wang Jiahui, Xu Jinli. Active flow control of wavy cylinder based on steady blowing and suction. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 2970-2983 doi: 10.6052/0459-1879-22-212
Citation: Zou Lin, Zuo Hongcheng, Liu Diwei, Wang Jiahui, Xu Jinli. Active flow control of wavy cylinder based on steady blowing and suction. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 2970-2983 doi: 10.6052/0459-1879-22-212

基于定常吹吸气的波浪型圆柱主动控制研究

doi: 10.6052/0459-1879-22-212
基金项目: 国家自然科学基金资助项目(11972268)
详细信息
    作者简介:

    邹琳, 教授, 主要研究方向: 流动控制. E-mail: l.zou@163.com

    徐劲力, 教授, 主要研究方向: 计算力学. E-mail: xujl1996@163.com

  • 中图分类号: V211.3

ACTIVE FLOW CONTROL OF WAVY CYLINDER BASED ON STEADY BLOWING AND SUCTION

  • 摘要: 基于定常吹吸气对波浪型圆柱近尾迹流动进行控制以增强柱体振动, 采用大涡模拟研究了亚临界雷诺数(Re = 3000)下前吹后吸和前后吸气控制方式在不同吹吸气工况对波浪型圆柱升阻力特性、时均压力系数、环量、湍动能及近尾迹流动结构的影响. 研究发现: 前吹后吸和前后吸气控制下波浪型圆柱在不同吹吸气动量系数工况脉动升力系数均显著提高, 最大较未受控直圆柱和波浪型圆柱分别提升高达636%和391%, 这主要可能归因于吹吸气控制使波浪型圆柱回流区变短, 高强度涡集中向钝体后方靠拢, 旋涡形成长度缩短, 展向涡流与顺流向涡流相互作用在波浪型圆柱下游形成的“肋状涡”变大变长, 近尾迹环量显著增大, 从而导致脉动升力系数增大, 这可能将诱导柱体产生更强的振动; 同时两种控制方式均改变了波浪型圆柱表面的压力分布, 由于在波浪型圆柱前驻点吹气使前端趋于流线型, 前吹后吸在不同吹吸气动量系数下波浪型圆柱的高压区减小, 但在后驻点吸气使得低压区增大, 而前后吸气在不同吹吸气动量系数下波浪型圆柱的高压区基本不变, 低压区增大. 研究结果可为低风速地区分布式风力俘能结构俘能效率提升提供基础理论支持.

     

  • 图  1  波浪型圆柱的几何模型示意图

    Figure  1.  Geometric model of the wavy cylinder

    图  2  波浪型圆柱计算域及网格示意图

    Figure  2.  Schematic diagram of calculation domain and grid of the wavy cylinder

    图  3  受控波浪型圆柱示意图

    Figure  3.  Schematic of the controlled wavy cylinder

    图  4  受控波浪型圆柱网格划分示意图

    Figure  4.  Schematic diagram of grid of the controlled wavy cylinder

    图  5  Cμ = 0 ~ 0.12下受控波浪型圆柱平均阻力系数和脉动升力系数变化

    Figure  5.  Variation of Cdmean and Clrms of the controlled wavy cylinder with Cμ = 0 ~ 0.12

    图  6  Cμ = 0 ~ 0.12下受控波浪型圆柱时均压力系数分布图

    Figure  6.  Distribution diagram of time-average Cp of the controlled wavy cylinder with Cμ = 0 ~ 0.12

    7  Cμ = 0 ~ 0.12下受控波浪型圆柱Node截面到Saddle截面的Lfc

    7.  Lfc from nodal section to saddle section of the controlled wavy cylinder with Cμ = 0 ~ 0.12

    图  8  Cμ = 0 ~ 0.12下受控波浪型圆柱Node截面到Saddle截面的Lfu

    Figure  8.  Lfu from nodal section to saddle section of the controlled wavy cylinder with Cμ = 0 ~ 0.12

    图  9  BS在Cμ = 0 ~ 0.12下受控波浪型圆柱Node截面和Saddle截面的Γ*变化

    Figure  9.  Evolution of normalized circulation distributions at nodal and saddle sections for the controlled wavy cylinder with Cμ = 0 ~ 0.12 under BS control method

    图  10  SS在Cμ = 0 ~ 0.12下受控波浪型圆柱Node截面和Saddle截面的Γ*变化

    Figure  10.  Evolution of normalized circulation distributions at nodal and saddle sections for the controlled wavy cylinder with Cμ = 0 ~ 0.12 under SS control method

    图  11  Cμ = 0 ~ 0.12下x-y平面波浪型圆柱和受控波浪圆柱在 Node, Middle 和 Saddle 截面的湍动能分布

    Figure  11.  Normalized x-y components turbulent kinetic energy distributions at nodal, middle and saddle sections for the controlled wavy cylinder compared with that of an uncontrolled case in the x-y plane with Cμ = 0 ~ 0.12

    图  12  Cμ = 0.12下y/Dm = 0时, x-z平面波浪型圆柱和受控波浪型圆柱的湍动能分布

    Figure  12.  Normalized x-z components turbulent kinetic energy distributions at y/Dm = 0 for the controlled wavy cylinder compared with that of an uncontrolled case in the x-z plane with Cμ = 0.12

    图  13  SS0.12和BS0.12下波浪型圆柱瞬时涡量图(Q = 6000), view1为整体视图, view2为前视图, view3为俯视图

    Figure  13.  Instantaneous vorticity diagram of the wavy cylinder with SS0.12 and BS0.12 (Q = 6000). View1 is the general view; view2 is the front view; view3 is the top view

    图  14  SS0.12和BS0.12下波浪型圆柱Node和Saddle截面瞬时涡量图

    Figure  14.  Z-vorticity of the wavy cylinder with SS0.12 and BS0.12 at nodal and saddle sections

    图  15  SS0.12和BS0.12下波浪型圆柱Node和Saddle截面时均流线图

    Figure  15.  Time-average streamline diagram of the wavy cylinder with SS0.12 and BS0.12 at nodal and saddle sections

    表  1  Re = 3000下波浪型圆柱的网格独立性验证和周期性边界条件验证

    Table  1.   Grid independence test and the periodic boundary condition validation for the wavy cylinder at Re = 3000

    CaseGird numberΔy/DLzNΔt*ReCdmeanClrmsSt
    Case11 397 3600.0032λ1200.00530001.1320.1070.220
    Case22 305 3680.0032λ1600.00530001.0280.07570.210
    Case33 345 4530.0032λ1800.00530001.0260.07540.209
    Case42 466 9200.00152λ1600.00530001.0270.7550.210
    Case52 209 5600.0062λ1600.00530001.1140.0990.217
    Case62 305 3680.0032λ1600.0530001.1580.10.215
    Case72 305 3680.0032λ1600.000530001.0240.07560.210
    Case83 448 2000.0033λ1600.000530001.0280.07530.210
    Ref. [29]30001.0350.0760.210
    下载: 导出CSV
  • [1] Bundschuh J, Kaczmarczyk M, Ghaffour N, et al. State-of-the-art of renewable energy sources used in water desalination: Present and future prospects. Desalination, 2021, 508: 115035 doi: 10.1016/j.desal.2021.115035
    [2] Sadorsky P. Wind energy for sustainable development: Driving factors and future outlook. Journal of Cleaner Production, 2021, 289: 125779 doi: 10.1016/j.jclepro.2020.125779
    [3] Chizfahm A, Yazdi EA, Eghtesad M. Dynamic modeling of vortex induced vibration wind turbines. Renewable Energy, 2018, 121: 632-643 doi: 10.1016/j.renene.2018.01.038
    [4] Lee YJ, Qi Y, Zhou G, et al. Vortex-induced vibration wind energy harvesting by piezoelectric MEMS device in formation. Scientific Reports, 2019, 9(1): 1-11 doi: 10.1038/s41598-018-37186-2
    [5] Wang J, Geng L, Ding L, et al. The state-of-the-art review on energy harvesting from flow-induced vibrations. Applied Energy, 2020, 267: 114902 doi: 10.1016/j.apenergy.2020.114902
    [6] Choi H, Jeon WP, Kim J. Control of flow over a bluff body. Annu. Rev. Fluid Mech., 2008, 40: 113-139 doi: 10.1146/annurev.fluid.39.050905.110149
    [7] Abdi R, Rezazadeh N, Abdi M. Investigation of passive oscillations of flexible splitter plates attached to a circular cylinder. Journal of Fluids and Structures, 2019, 84: 302-317 doi: 10.1016/j.jfluidstructs.2018.11.001
    [8] 李昂, 孙仁. 螺旋列板立管受迫振动时的水动力学研究. 上海交通大学学报, 2021, 55(8): 907-915
    [9] Xu L, Liang S, Hu Z, et al. Vortex-induced vibration response of a circular cylinder surrounded with small rods. Journal of Hydrodynamics, 2021, 33(3): 510-519 doi: 10.1007/s42241-021-0045-5
    [10] Lam K, Lin YF. Effects of wavelength and amplitude of a wavy cylinder in cross-flow at low Reynolds numbers. Journal of Fluid Mechanics, 2009, 620: 195-220 doi: 10.1017/S0022112008004217
    [11] Bai H, Lu Z, Wei R, et al. Noise reduction of sinusoidal wavy cylinder in subcritical flow regime. Physics of Fluids, 2021, 33(10): 105120 doi: 10.1063/5.0065881
    [12] Bai HL, Alam MM, Gao N, et al. The near wake of sinusoidal wavy cylinders: Three-dimensional POD analyses. International Journal of Heat and Fluid Flow, 2019, 75: 256-277 doi: 10.1016/j.ijheatfluidflow.2019.01.013
    [13] Bai HL, Zang B, New TH. The near wake of a sinusoidal wavy cylinder with a large spanwise wavelength using time-resolved particle image velocimetry. Experiments in Fluids, 2019, 60(1): 1-18 doi: 10.1007/s00348-018-2646-5
    [14] Lin YF, Bai HL, Alam MM, et al. Effects of large spanwise wavelength on the wake of a sinusoidal wavy cylinder. Journal of Fluids and Structures, 2016, 61: 392-409 doi: 10.1016/j.jfluidstructs.2015.12.004
    [15] Zhang Z, Tu J, Zhang K, et al. Vortex characteristics and flow-induced forces of the wavy cylinder at a subcritical Reynolds number. Ocean Engineering, 2021, 222: 108593 doi: 10.1016/j.oceaneng.2021.108593
    [16] 赵桂欣, 桂洪斌, 王晓聪. 有限长波浪形圆柱绕流数值模拟. 哈尔滨工业大学学报, 2021, 53(6): 163-170 (Zhao Guixin, Gui Hongbin, Wang Xiaocong. Numerical simulation of flow around finite length wavy cylinders. Journal of Harbin Institute of Technology, 2021, 53(6): 163-170 (in Chinese)
    [17] 吴应湘, 林黎明, 钟兴福. 带有新型涡激振动抑制罩的圆柱体的水动力特性. 力学学报, 2016, 48(2): 307-317 (Wu Yingxiang, Lin Liming, Zhong Xingfu. Investigation in hydrodynamics of a circular cylinder with the new suppressing shroud for vortex-induced vibration. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 307-317 (in Chinese)
    [18] 赵国庆, 招启军, 顾蕴松等. 合成射流对失速状态下翼型大分离流动控制的试验研究. 力学学报, 2015, 47(2): 351-355 (Zhao Guoqing, Zhao Qijun, Gu Yunsong, et al. Experimental investigation of Synthetic jet control on large flow separation of airfoil during stall. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(2): 351-355 (in Chinese)
    [19] Yang WH, Chen WL, Li H. Suppression of vortex-induced vibration of single-box girder with various angles of attack by self-issuing jet method. Journal of Fluids and Structures, 2020, 96: 103017 doi: 10.1016/j.jfluidstructs.2020.103017
    [20] Chen WL, Li H, Hu H. An experimental study on a suction flow control method to reduce the unsteadiness of the wind loads acting on a circular cylinder. Experiments in Fluids, 2014, 55(4): 1-20
    [21] Chen WL, Cao Y, Li H, et al. Numerical investigation of steady suction control of flow around a circular cylinder. Journal of Fluids and Structures, 2015, 59: 22-36 doi: 10.1016/j.jfluidstructs.2015.09.002
    [22] Kim J, Choi H. Distributed forcing of flow over a circular cylinder. Physics of Fluids, 2005, 17(3): 033103
    [23] Feng LH, Wang JJ. The virtual aeroshaping enhancement by synthetic jets with variable suction and blowing cycles. Physics of Fluids, 2014, 26(1): 014105 doi: 10.1063/1.4861367
    [24] Feng LH, Wang JJ. Circular cylinder vortex-synchronization control with a synthetic jet positioned at the rear stagnation point. Journal of Fluid Mechanics, 2010, 662: 232-259 doi: 10.1017/S0022112010003174
    [25] Mei YF, Zheng C, Aubry N, et al. Active control for enhancing vortex induced vibration of a circular cylinder based on deep reinforcement learning. Physics of Fluids, 2021, 33(10): 103604
    [26] 陈文礼, 郭艳娇. 基于主动吸吹气的圆柱绕流控制. 空气动力学学报, 2020, 38(5): 989-995 (Chen Wenli, Guo Yanjiao. Flow control of circular cylinder based on active suction and blow. Acta Aerodynamica Sinica, 2020, 38(5): 989-995 (in Chinese)
    [27] 陈林烽. 基于Navier-Stokes方程残差的隐式大涡模拟有限元模型. 力学学报, 2020, 52(5): 1314-1322 (Chen Linfeng. A residual-based unresolved-scale finite element modelling for implict large eddy simulation. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1314-1322 (in Chinese)
    [28] Smagorinsky J. General circulation experiments with the primitive equations: I. The basic experiment. Monthly Weather Review, 1963, 91(3): 99-164 doi: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
    [29] Lam K, Lin YF. Large eddy simulation of flow around wavy cylinders at a subcritical Reynolds number. International Journal of Heat and Fluid Flow, 2008, 29(4): 1071-1088 doi: 10.1016/j.ijheatfluidflow.2008.01.006
    [30] Norberg C. Fluctuating lift on a circular cylinder: review and new measurements. Journal of Fluids and Structures, 2003, 17(1): 57-96 doi: 10.1016/S0889-9746(02)00099-3
    [31] Lam K, Wang FH, So RMC. Three-dimensional nature of vortices in the near wake of a wavy cylinder. Journal of Fluids and Structures, 2004, 19(6): 815-833 doi: 10.1016/j.jfluidstructs.2004.04.004
    [32] Zhou J, Adrian RJ, Balachandar S, et al. Mechanisms for generating coherent packets of hairpin vortices in channel flow. Journal of Fluid Mechanics, 1999, 387: 353-396 doi: 10.1017/S002211209900467X
    [33] Carlier J, Stanislas M. Experimental study of eddy structures in a turbulent boundary layer using particle image velocimetry. Journal of Fluid Mechanics, 2005, 535: 143-188 doi: 10.1017/S0022112005004751
    [34] Gao Q, Ortiz-Duenas C, Longmire EK. Analysis of vortex populations in turbulent wall-bounded flows. Journal of Fluid Mechanics, 2011, 678: 87-123 doi: 10.1017/jfm.2011.101
    [35] Zhang W, Lee SJ. PIV measurements of the near-wake behind a sinusoidal cylinder. Experiments in Fluids, 2005, 38(6): 824-832 doi: 10.1007/s00348-005-0981-9
    [36] 刘超群. Liutex-涡定义和第三代涡识别方法. 空气动力学学报, 2020, 38(3): 413-431, 478 (Liu Chaoqun. Liutex-third generation of vortex definition and identification methods. Acta Aerodynamica Sinica, 2020, 38(3): 413-431, 478 (in Chinese)
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  229
  • HTML全文浏览量:  113
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-23
  • 录用日期:  2022-10-12
  • 网络出版日期:  2022-10-13
  • 刊出日期:  2022-11-18

目录

    /

    返回文章
    返回