EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高超声速高焓边界层稳定性与转捩研究进展

陈贤亮 符松

陈贤亮, 符松. 高超声速高焓边界层稳定性与转捩研究进展. 力学学报, 2022, 54(11): 2937-2957 doi: 10.6052/0459-1879-22-184
引用本文: 陈贤亮, 符松. 高超声速高焓边界层稳定性与转捩研究进展. 力学学报, 2022, 54(11): 2937-2957 doi: 10.6052/0459-1879-22-184
Chen Xianliang, Fu Song. Progress in the research of hypersonic and high­enthalpy boundary layer instabilities and transition. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 2937-2957 doi: 10.6052/0459-1879-22-184
Citation: Chen Xianliang, Fu Song. Progress in the research of hypersonic and high­enthalpy boundary layer instabilities and transition. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 2937-2957 doi: 10.6052/0459-1879-22-184

高超声速高焓边界层稳定性与转捩研究进展

doi: 10.6052/0459-1879-22-184
基金项目: 国家重点研发计划(2019YFA0405201), 国家重大项目(GJXM92579), 国家自然科学基金(92052103, 12172195), 1912项目资助
详细信息
    作者简介:

    符松, 教授, 主要研究方向: 流动转捩与湍流. E-mail: fs­dem@tsinghua.edu.cn

  • 中图分类号: O357.4

PROGRESS IN THE RESEARCH OF HYPERSONIC AND HIGH­ENTHALPY BOUNDARY LAYER INSTABILITIES AND TRANSITION

  • 摘要: 边界层由层流向湍流的转捩是高超声速飞行器设计面临的重大空气动力学问题. 随着飞行速域与空域的不断拓展, 高超声速高焓边界层中的高温气体效应会使得量热完全气体假设失效, 从而深刻影响流动转捩过程. 相关研究涉及多个学科, 是典型的多物理场耦合问题. 近年来, 随着相关飞行器技术的快速发展, 高超声速高焓边界层转捩问题的重要性越来越得到体现, 相关研究已成为国际上的热点领域. 本文综述相关研究进展, 首先介绍目前常用的高温气体物理模型, 尤其关注热化学非平衡模型, 并介绍激波捕捉、激波装配和边界层方程解等常用的高焓流动求解方法, 以及相关风洞和飞行试验技术的进展. 然后综述高温气体效应对转捩过程中的感受性、模态增长、瞬态增长和非线性作用等的影响的相关研究, 其中流向不稳定性中出现较大增长率的第三模态和超声速模态引起了广泛的研究兴趣. 最后进行总结, 并对未来发展略作展望.

     

  • 图  1  各种飞行器的典型轨迹以及需要考虑的物理问题[2]

    Figure  1.  Typical vehicle trajectories and the physics concerned with [2]

    图  2  标准大气压下平衡态空气发生不同热化学过程的温度范围[8,41,43]

    Figure  2.  Temperature ranges of typical thermochemical processes under standard atmosphere [8,41,43]

    图  3  不同高度H处正激波后温度随波前速度的变化[47]

    Figure  3.  Temperature behind a normal shock with varying pre-shock velocity and altitude [47]

    图  4  氧气有限速率的(a)振动能松弛和(b)化学分解的特征时间($ {\tau }_{v/c} $, 单位s)[48]

    Figure  4.  Time scales of oxygen of (a) vibrational energy relaxation and (b) chemical dissociation ($ {\tau }_{v/c} $ in second) [48]

    图  5  边界激波装配法示意图

    Figure  5.  Illustration of the boundary shock-fitting method

    图  6  式(4)给出的$ \mathrm{\varDelta } $的等值线

    Figure  6.  Contours of $ \mathrm{\varDelta } $ (unit in meter) from Eq. (4)

    图  7  10马赫绝热平板边界层算例中(a)流向速度, (b)温度和振动温度和(c)氧气质量分数的剖面($ {Re}_{\delta } $ = 2000)

    Figure  7.  (a) Streamwise velocity, (b) temperature and vibrational temperature and (c) oxygen mass fraction profiles in a Mach-10 adiabatic flat-plate boundary layer flow

    图  8  壁面物理量随流向的变化: (a)温度和振动温度和(b)氧气质量分数. 虚线标注的流向位置对应于图7

    Figure  8.  Distributions of (a) temperature and vibrational temperature, and (b) oxygen mass fraction at the wall. The dotted lines correspond to the location in Fig. 7

    图  9  扰动增长率等值线: (a)轴对称(零周向波数)模态和(b)三维模态, 算例为来流20马赫的热化学非平衡钝锥边界层[133]

    Figure  9.  Growth rate contours of (a) axisymmetric and (b) 3D modes in a Mach-20 TCNE blunt-cone boundary layer[133]

    图  10  (a)亚声速和(b)超声速模态的温度扰动等值线, 算例为5马赫振动非平衡平板边界层[121]

    Figure  10.  Temperature disturbance contours of (a) subsonic and (b) supersonic modes in a Mach-5 vibrational non-equilibrium flat-plate boundary layer [121]

    图  11  大钝度圆锥边界层中失稳模态的增长率特征[139]

    Figure  11.  Disturbance growth rate behaviors in the cone-boundary-layer case with large nose bluntness[139]

    图  12  10马赫绝热平板边界层中二维模态的(a)增长率和(b)相速度随圆频率的变化($ {Re}_{\delta } $ = 2000)

    Figure  12.  (a) Growth rate and (b) phase velocity of the 2D mode in a Mach-10 adiabatic flat-plate boundary layer

    图  13  自由来流中热化学非平衡扰动的幅值衰减速率, 第二和第三模态的频率范围取自图12

    Figure  13.  Amplitude dissipation rate of disturbance in the uniform free-stream; the frequency ranges of the second and third modes are from Fig. 12

    图  14  振动非平衡边界层中层流(基本流)和扰动的达姆科勒数的量级变化示意图[146]

    Figure  14.  Illustration of the distribution of the mean-flow and disturbance Damköhler numbers in a vibrational non-equilibrium boundary layer [146]

    图  15  16马赫的热化学非平衡后掠抛物体边界层中定常横流涡的演化[160]

    Figure  15.  Evolution of the stationary cross-flow vortices in a Mach-16 TCNE swept-parabola boundary layer [160]

    图  16  10马赫化学非平衡平板边界层中由氧原子的体积分数着色的Q的瞬时等值面[183]

    Figure  16.  Instantaneous Q-isosurface colored by oxygen mass fraction in a Mach-10 chemical non-equilibrium boundary layer[183]

    表  1  热化学非平衡效应对第二模态的影响汇总

    Table  1.   Summary of the influences of TCNE effects on the second mode

    Boundary layer changeOn the second modeKey parameters
    on the base flow (effect I)lower temperature and density, lower speed of soundhigher growth rate, higher frequency$ {Da}_{v}^{\mathrm{b}\mathrm{a}\mathrm{s}\mathrm{e}}\propto \dfrac{1}{{Re}_{x}} $
    on the disturbance (effect II)lower speed of sound (with base flow unchanged)higher growth rate, lower frequency$ {Da}_{v}^{\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}}\propto \dfrac{1}{\sqrt{{Re}_{x}}} $
    disturbance amplitude dissipation (endothermic processes)lower growth rate
    下载: 导出CSV
  • [1] 周恒, 苏彩虹, 张永明. 超声速/高超声速边界层的转捩机理及预测. 北京: 科学出版社, 2015

    Zhou Heng, Su Caihong, Zhang Yongming. Transition Mechanism and Prediction of Supersonic/Hypersonic Boundary Layers. Beijing: Science Press, 2015 (in Chinese)
    [2] Bertin JJ, Cummings RM. Critical hypersonic aerothermodynamic phenomena. Annual Review of Fluid Mechanics, 2006, 38: 129­157
    [3] Schmisseur JD. Hypersonics into the 21st century: a perspective on AFOSR-sponsored research in aerothermodynamics. Progress in Aerospace Sciences, 2015, 72: 3­16
    [4] 段毅, 姚世勇, 李思怡等. 高超声速边界层转捩的若干问题及工程应用研究进展综述. 空气动力学学报, 2020, 38(2): 391-403 (Duan Yi, Yao Shiyong, Li Siyi, et al. Review of progress in some issues and engineering application of hypersonic boundary layer transition. Acta Aerodynamica Sinica, 2020, 38(2): 391-403 (in Chinese)
    [5] White FM. Viscous Fluid Flow, 3rd ed. Singapore: McGraw Hill, 2006
    [6] Morkovin MV. Transition at hypersonic speeds. NASA Langley Research Center, 1987
    [7] Defense Science Board Task Force. Report of the defense science board task force on National Aerospace Plane (NASP) program. Defense Science Board, 1992
    [8] Anderson JD. Hypersonic and High-temperature Gas Dynamics, 2nd ed. Reston: AIAA, 2006
    [9] Bertin JJ, Cummings RM. Fifty years of hypersonics: where we’ve been, where we’re going. Progress in Aerospace Sciences, 2003, 39(6): 511­536
    [10] 姜宗林. 高超声速高焓风洞试验技术研究进展. 空气动力学学报, 2019, 37(3): 347-355 (Jiang Zonglin. Progresses on experimental techniques of hypersonic and high-enthalpy wind tunnels. Acta Aerodynamica Sinica, 2019, 37(3): 347-355 (in Chinese)
    [11] Shang JS, Yan H. High-enthalpy hypersonic flows. Advances in Aerodynamics, 2020, 2(1): 19 doi: 10.1186/s42774-020-00041-y
    [12] 苏彩虹. 高超声速边界层转捩预测中的关键科学问题——感受性、扰动演化及转捩判据研究进展. 空气动力学学报, 2020, 38(2): 355-367 (Su Caihong. Progress in key scientific problems of hypersonic boundary-layer transition prediction: receptivity, evolution of disturbances and transition criterion. Acta Aerodynamica Sinica, 2020, 38(2): 355-367 (in Chinese) doi: 10.7638/kqdlxxb-2020.0056
    [13] Fedorov AV. Transition and stability of high-speed boundary layers. Annual Review of Fluid Mechanics, 2011, 43: 79­95
    [14] Schmid PJ. Non-modal stability theory. Annual Review of Fluid Mechanics, 2007, 39: 129­162
    [15] Wu XS. Nonlinear theories for shear-flow instabilities: physical insights and practical implications. Annual Review of Fluid Mechanics, 2019, 51: 451­485
    [16] Hall P, Malik MR, Poll DIA, et al. On the stability of an infinite swept attachment line boundary layer. Proceedings of the Royal Society of London A. Mathematical and Physical Sciences, 1984, 395: 229­245
    [17] Xi YC, Ren J, Fu S. Hypersonic attachment-line instabilities with large sweep Mach numbers. Journal of Fluid Mechanics, 2021, 915: A44 doi: 10.1017/jfm.2021.66
    [18] Mack LM. Boundary-layer linear stability theory. AGARD Special Course on Stability and Transition of Laminar Flow, 1984
    [19] Saric WS. Görtler vortices. Annual Review of Fluid Mechanics, 1994, 26: 379­409
    [20] Ren J, Fu S. Competition of the multiple Görtler modes in hypersonic boundary layer flows. Science China Physics Mechanics & Astronomy, 2014, 57(6): 1178­1193
    [21] Reed HL, Saric WS. Stability of three-dimensional boundary layers. Annual Review of Fluid Mechanics, 1989, 21: 235­284
    [22] Xu GL, Chen JQ, Liu G, et al. The secondary instabilities of stationary cross-flow vortices in a Mach 6 swept wing flow. Journal of Fluid Mechanics, 2019, 873: 914­941
    [23] Schneider SP. Effects of roughness on hypersonic boundary-layer transition. Journal of Spacecraft & Rockets, 2008, 45(2): 193­209
    [24] Xue YF, Wang L, Wang ZJ, et al. Gap-induced transition via oblique breakdown at Mach 6. Shock Waves, 2019, 29(8): 1181­1190
    [25] Reed HL, Saric WS, Arnal D. Linear stability theory applied to boundary layers. Annual Review of Fluid Mechanics, 1996, 28: 389­428
    [26] Herbert T. Parabolized stability equations. Annual Review of Fluid Mechanics, 1997, 29: 245­283
    [27] Herbert T. Secondary instability of boundary layers. Annual Review of Fluid Mechanics, 1988, 20: 487­526
    [28] Theofilis V. Global linear instability. Annual Review of Fluid Mechanics, 2011, 43: 319­352
    [29] 周恒, 赵耕夫. 流动稳定性. 北京: 国防工业出版社, 2004

    Zhou Heng, Zhao Gengfu. Flow Stabilities. Beijing: Press of National Industrial, 2004 (in Chinese)
    [30] 黄章峰, 万兵兵, 段茂昌. 高超声速流动稳定性及转捩工程应用若干研究进展. 空气动力学学报, 2020, 38(2): 368-378 (Huang Zhangfeng, Wan Bingbing, Duan Maochang. Progresses in engineering application research on hypersonic flow stability and transition. Acta Aerodynamica Sinica, 2020, 38(2): 368-378 (in Chinese) doi: 10.7638/kqdlxxb-2020.0047
    [31] Fu S, Wang L. RANS modeling of high-speed aerodynamic flow transition with consideration of stability theory. Progress in Aerospace Sciences, 2013, 58(2): 36­59
    [32] Menter FR, Langtry RB, Likki SR, et al. A correlation-based transition model using local variables —part I: Model formulation. Journal of Turbomachinery, 2006, 128(3): 413­422
    [33] Walters DK, Cokljat D. A three-equation eddy-viscosity model for Reynolds-averaged Navier-Stokes simulations of transitional flow. Journal of Fluids Engineering, 2008, 130(12): 121401 doi: 10.1115/1.2979230
    [34] Wang GX, Xiao ZX, Chen LZ. Simultaneous simulation of transition and massive separation by RANS-LES-Tr model. Aerospace Science and Technology, 2020, 105: 106026 doi: 10.1016/j.ast.2020.106026
    [35] Zhong XL, Wang XW. Direct numerical simulation on the receptivity, instability and transition of hypersonic boundary layers. Annual Review of Fluid Mechanics, 2012, 44: 527­561
    [36] 罗纪生. 高超声速边界层的转捩及预测. 航空学报, 2015, 36(1): 357-372 (Luo Jisheng. Transition and prediction for hypersonic boundary layers. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 357-372 (in Chinese)
    [37] 解少飞, 杨武兵, 沈清. 高超声速边界层转捩机理及应用的若干进展回顾. 航空学报, 2015, 36(3): 714-723 (Xie Shaofei, Yang Wubing, Shen Qing. Review of progresses in hypersonic boundary layer transition mechanism and its applications. Acta Aeronautica et Astronautica Sinica, 2015, 36(3): 714-723 (in Chinese)
    [38] 陈坚强, 涂国华, 张毅锋等. 高超声速边界层转捩研究现状与发展趋势. 空气动力学学报, 2017, 35(3): 311-337 (Chen Jianqiang, Tu Guohua, Zhang Yifeng, et al. Hypersonic boundary layer transition: what we know, where shall we go. Acta Aerodynamica Sinica, 2017, 35(3): 311-337 (in Chinese)
    [39] 杨武兵, 沈清, 朱德华等. 高超声速边界层转捩研究现状与趋势. 空气动力学学报, 2018, 36(2): 183-195 (Yang Wubing, Shen Qing, Zhu Dehua, et al. Tendency and current status of hypersonic boundary layer transition. Acta Aerodynamica Sinica, 2018, 36(2): 183-195 (in Chinese)
    [40] 刘向宏, 赖光伟, 吴杰. 高超声速边界层转捩实验综述. 空气动力学学报, 2018, 36(2): 196-212 (Liu Xianghong, Lai Guangwei, Wu Jie. Boundary layer transition experiments in hypersonic flow. Acta Aerodynamica Sinica, 2018, 36(2): 196-212 (in Chinese)
    [41] Scoggins JB, Magin TE. Development of Mutation++ : multicomponent thermodynamic and transport properties for ionized plasmas written in C++//11th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, 2014
    [42] Leyva IA. The relentless pursuit of hypersonic flight. Physics Today, 2017, 70(11): 30­36
    [43] Candler GV. Rate effects in hypersonic flows. Annual Review of Fluid Mechanics, 2019, 51: 379­402
    [44] Hilsenrath J, Klein M. Tables of thermodynamic properties of air in chemical equilibrium including second virial corrections from 1500 K to 15000 K. National Bureau of Standards, 1965
    [45] Tannehill JC, Mugge PH. Improved curve fits for the thermodynamic properties of equilibrium air suitable for numerical computation using time-dependent or shock-capturing methods. Iowa State University, 1974
    [46] Srinivasan S, Tannehill JC. Simplified curve fits for the transport properties of equilibrium air. Iowa State University, 1987
    [47] Wittliff CE, Curtis JT. Normal shock wave parameters in equilibrium air. Cornell Aeronautical Laboratory, 1961
    [48] 陈贤亮, 符松. 热化学非平衡高超声速平板边界层线性稳定性分析. 空气动力学学报, 2020, 38(2): 316-325 (Chen Xianliang, Fu Song. Linear stability analysis of hypersonic boundary layer on a flat-plate with thermal-chemical non-equilibrium effects. Acta Aerodynamica Sinica, 2020, 38(2): 316-325 (in Chinese) doi: 10.7638/kqdlxxb-2019.0155
    [49] Gnoffo PA, Gupta RN, Shinn JL. Conservation equations and physical models for hypersonic air flows in thermal and chemical nonequilibrium. NASA Langley Research Center, 1989
    [50] Gupta RN, Yos JM, Thompson RA. A review of reaction rates and thermodynamic and transport properties for the 11­species air model for chemical and thermal nonequilibrium calculations to 30000 K. Scientific Research and Technology Inc, 1990
    [51] Park C, Yoon S. A fully coupled implicit method for thermochemical nonequilibrium air at suborbital flight speeds. Journal of Spacecraft & Rockets, 1989, 28(1): 31­39
    [52] Candler GV. On the computation of shock shapes in nonequilibrium hypersonic flows//27th Aerospace Sciences Meeting, 1989
    [53] Edquist KT, Liechty DS, Hollis BR, et al. Aeroheating environments for a Mars smart lander. Journal of Spacecraft & Rockets, 2006, 43(2): 330­339
    [54] 唐伟, 杨肖峰, 桂业伟等. 火星进入器高超声速气动力/热研究综述. 宇航学报, 2017, 38(3): 230-239 (Tang Wei, Yang Xiaofeng, Gui Yewei, et al. Review of hypersonic aerodynamics and aerothermodynamics for Mars entries. Journal of Astronautics, 2017, 38(3): 230-239 (in Chinese)
    [55] 刘君, 董海波, 张文昊. 化学非平衡解耦算法精度分析及其改进. 空气动力学学报, 2018, 36(4): 634-641 (Liu Jun, Dong Haibo, Zhang Wenhao. Precision analysis and improvement of chemical non-equilibrium uncoupled method. Acta Aerodynamica Sinica, 2018, 36(4): 634-641 (in Chinese)
    [56] Park C. On convergence of computation of chemically reacting flows//23rd Aerospace Sciences Meeting, 1985
    [57] Park C. Review of chemical-kinetic problems of future NASA missions. I ­ Earth entries. Journal of Thermophysics & Heat Transfer, 1993, 7(3): 385
    [58] Park C, Jaffe RL, Partridge H. Chemical-kinetic parameters of hyperbolic Earth entry. Journal of Thermophysics & Heat Transfer, 2001, 15(1): 76­90
    [59] Park C. Assessment of two-temperature kinetic model for ionizing air. Journal of Thermophysics & Heat Transfer, 1989, 3(3): 233­244
    [60] Candler GV, MacCormack R. The computation of hypersonic ionized flows in chemical and thermal nonequlibrium//26th Aerospace Sciences Meeting, 1988
    [61] Capitelli M, Colonna G, D ’Angola A. Fundamental Aspects of Plasma Chemical Physics. New York: Springer, 2012
    [62] Armenise I, Kustova EV. State-to-state models for CO2 molecules: from the theory to an application to hypersonic boundary layers. Chemical Physics, 2013, 415: 269­281
    [63] Armenise I, Reynier P, Kustova EV. Advanced models for vibrational and chemical kinetics applied to Mars entry aerothermodynamics. Journal of Thermophysics & Heat Transfer, 2015, 30(4): 705­720
    [64] Ninni D, Bonelli F, Colonna G, et al. Unsteady behavior and thermochemical non­equilibrium effects in hypersonic double-wedge flows. Acta Astronautica, 2022, 191: 178­192
    [65] Park C. Nonequilibrium Hypersonic Aerothermodynamics. New York: John Wiley & Sons, 1990
    [66] Paukku Y, Yang KR, Varga Z, et al. Global ab initio ground-state potential energy surface of N4. The Journal of Chemical Physics, 2013, 139(4): 044309 doi: 10.1063/1.4811653
    [67] Bender JD, Valentini P, Nompelis I, et al. An improved potential energy surface and multi-temperature quasi-classical trajectory calculations of N2 + N2 dissociation reactions. The Journal of Chemical Physics, 2015, 143(5): 054304 doi: 10.1063/1.4927571
    [68] McBride BJ, Zehe MJ, Gordon S. NASA Glenn coefficients for calculating thermodynamic properties of individual species. NASA Glenn Research Center, 2002
    [69] Bottin B, Abeele DV, Magin TE, et al. Transport properties of collision-dominated dilute perfect gas mixtures at low pressures and high temperatures. Progress in Aerospace Sciences, 2006, 42(1): 38­83
    [70] Herdrich G, Fertig M, Petkow D, et al. Experimental and numerical techniques to assess catalysis. Progress in Aerospace Sciences, 2012, 48­49(2): 27­41
    [71] 唐志共, 张益荣, 陈坚强等. 更准确、更精确、更高效——高超声速流动数值模拟研究进展. 航空学报, 2015, 36(1): 120-134 (Tang Zhigong, Zhang Yirong, Chen Jianqiang, et al. More fidelity, more accurate, more efficient—progress on numerical simulations for hypersonic flow. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 120-134 (in Chinese)
    [72] Cheatwood FM, Gnoffo PA. User’s manual for the Langley aerothermodynamic upwind relaxation algorithm (LAURA). NASA Langley Research Center, 1996
    [73] Srinivasan S, Bittner R, Bobskill G. Summary of the GASP code application and evaluation effort for scramjet combustor flow fields//29th Joint Propulsion Conference and Exhibit, 1993
    [74] Baurle RA, White JA, Drozda TG, et al. VULCAN­CFD theory manual: Ver. 7.1. 0. NASA Langley Research Center, 2020
    [75] 陈坚强, 吴晓军, 张健等. FlowStar: 国家数值风洞(NNW)工程非结构通用CFD软件. 航空学报, 2021, 42(9): 9-30, 2 (Chen Jianqiang, Wu Xiaojun, Zhang Jian, et al. FlowStar: General unstructured-grid CFD software for National Numerical Wind Tunnel (NNW) Project. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 9-30, 2 (in Chinese)
    [76] Liu Y, Vinokur M. Nonequilibrium flow computations. I. an analysis of numerical formulations of conservation laws. Journal of Computational Physics, 1989, 83(2): 373­397
    [77] Shuen JS, Liou MS, Van Leer B. Inviscid flux-splitting algorithms for real gases with non-equilibrium chemistry. Journal of Computational Physics, 1990, 90(2): 371­395
    [78] Kim KH, Kim C, Rho OH. Methods for the accurate computations of hypersonic flows: I. AUSMPW + scheme. Journal of Computational Physics, 2001, 174(1): 81­119
    [79] Tchuen G. Computation of non­equilibrium hypersonic flow with artificially upstream flux vector splitting (AUFS) schemes. International Journal of Computational Fluid Dynamics, 2008, 22(4): 209­220
    [80] Wang XW, Zhong XL. Nonequilibrium and reactive high-speed flow simulations with a fifth-order WENO scheme//39th Fluid Dynamics Conference, 2009
    [81] Marxen O, Magin TE, Shaqfeh ESG, et al. A method for the direct numerical simulation of hypersonic boundary-layer instability with finite rate chemistry. Journal of Computational Physics, 2013, 255(6): 572­589
    [82] 葛明明, 曾明, 赵小宇. 加权紧致非线性格式在热化学非平衡流数值模拟中的应用. 国防科技大学学报, 2016, 38(5): 163-169 (Ge Mingming, Zeng Ming, Zhao Xiaoyu. Applications of high-order weighted compact nonlinear scheme for thermos-chemical nonequilibrium flow. Journal of National University of Defense Technology, 2016, 38(5): 163-169 (in Chinese) doi: 10.11887/j.cn.201605026
    [83] Di Renzo M, Fu L, Urzay J. HTR solver: An open-source exascale-oriented task-based multi-GPU high-order code for hypersonic aerothermodynamics. Computer Physics Communications, 2020, 255: 107262 doi: 10.1016/j.cpc.2020.107262
    [84] Moretti G, Abbett M. A time-dependent computational method for blunt body flows. AIAA Journal, 1966, 4(12): 2136­2141
    [85] Hussaini MY, Kopriva DA, Salas MD, et al. Spectral methods for the Euler equations. I ­ Fourier methods and shock capturing. AIAA Journal, 1985, 23(1): 64-70
    [86] Zhong XL. High-order finite-difference schemes for numerical simulation of hypersonic boundary-layer transition. Journal of Computational Physics, 1998, 144(2): 662­709
    [87] Brooks GP, Powers JM. Standardized pseudo-spectral formulation of the inviscid supersonic blunt body problem. Journal of Computational Physics, 2004, 197(1): 58­85
    [88] Prakash A, Parsons N, Wang XW, et al. High-order shock-fitting methods for direct numerical simulation of hypersonic flow with chemical and thermal nonequilibrium. Journal of Computational Physics, 2011, 230(23): 8474­8507
    [89] Chen XL, Fu S. Convergence acceleration for high-order shock-fitting methods in hypersonic flow applications with efficient implicit time-stepping schemes. Computers & Fluids, 2020, 210: 104668
    [90] Paciorri R, Bonfiglioli A. Shock interaction computations on unstructured, two-dimensional grids using a shock-fitting technique. Journal of Computational Physics, 2011, 230(8): 3155­3177
    [91] Zou DY, Xu CG, Dong HB, et al. A shock-fitting technique for cell-centered finite volume methods on unstructured dynamic meshes. Journal of Computational Physics, 2017, 345: 866­882
    [92] Moretti G, Salas MD. The blunt body problem for a viscous rarefied gas flow//7th Aerospace Sciences Meeting, 1969
    [93] Probstein RF, Elliott D. The transverse curvature effect in compressible axially symmetric laminar boundary-layer flow. Journal of the Aeronautical Sciences, 1956, 23(3): 208­224
    [94] Blottner FG. Chemical nonequilibrium boundary layer. Journal of Spacecraft & Rockets, 1963, 2(2): 232­240
    [95] Prabhu DK, Tannehill JC, Marvin JG. A new PNS code for chemical nonequilibrium flows//25th Aerospace Sciences Meeting, 1987
    [96] Hornung HG. Role and techniques of ground testing for simulation of flows up to orbital speed//16th Aerodynamic Ground Testing Conference, 1990
    [97] Dunn M, Moller J, Steele R. Development of a new high-enthalpy shock tunnel//23rd Thermophysics, Plasma-dynamics and Lasers Conference, 1988
    [98] Eitelberg G. First results of calibration and use of the HEG//25th Plasmadynamics and Lasers Conference, 1994
    [99] Itoh K, Ueda S, Komuro T, et al. Improvement of a free piston driver for a high-enthalpy shock tunnel. Shock Waves, 1998, 8(4): 215­233
    [100] 姜宗林, 李进平, 赵伟等. 长试验时间爆轰驱动激波风洞技术研究. 力学学报, 2012, 44(5): 824­831

    Jiang Zonglin, Li Jinping, Zhao Wei, et al. Investigating into techniques for extending the test-duration of detonation-driven shock tunnels. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(5): 824­831 (in Chinese))
    [101] 中国空气动力研究与发展中心超高速试验设备介绍, 2022, http://www.cardc.cn/dev.asp?ChannelId=4&ClassId=20

    Introduction of the super-high-speed experimental equipment in China Aerodynamics Research and Development Center, 2022, http://www.cardc.cn/dev.asp?ChannelId=4&ClassId=20 (in Chinese)
    [102] Dufrene A, MacLean M, Parker R, et al. Characterization of the new LENS expansion tunnel facility//48th Aerospace Sciences Meeting and Exhibit, 2010
    [103] Wadhams T, MacLean M, Holden M, et al. A review of transition studies on full-scale flight vehicles at duplicated flight conditions in the LENS tunnels and comparisons with prediction methods and flight measurement//48th Aerospace Sciences Meeting and Exhibit, 2010
    [104] Holden M. Experimental studies in the LENS shock tunnel and expansion tunnel to examine real-gas effects in hypervelocity flows//42nd Aerospace Sciences Meeting and Exhibit, 2004
    [105] MacLean M, Marineau E, Parker R, et al. Effect of surface catalysis on measured heat transfer in expansion tunnel facility. Journal of Spacecraft and Rockets, 2013, 50(2): 470­475
    [106] Johnson CB, Stainback PC, Wicker KC, et al. Boundary-layer edge conditions and transition Reynolds number data for a flight test at Mach20 (Reentry F). NASA Langley Research Center, 1972
    [107] Nakamura T, Sherman MM. Flight test measurements of boundary layer transition on a non-ablating 22 deg cone. Journal of Spacecraft& Rockets, 1970, 7(2): 137­142
    [108] Kimmel RL, Adamczak DW, Borg MP, et al. First and fifth hypersonic international flight research experimentation ’s flight and ground tests. Journal of Spacecraft & Rockets, 2019, 56(2): 421­431
    [109] Tu GH, Chen JQ, Yuan XX, et al. Progress in flight tests of hypersonic boundary layer transition. Acta Mechanica Sinica, 2022, 37: 1589­1609
    [110] Malik MR, Anderson EC. Real gas effects on hypersonic boundary layer stability. Physics of Fluids, 1991, 3(5): 803­821
    [111] Stuckert G, Reed HL. Linear disturbances in hypersonic, chemically reacting shock layers. AIAA Journal, 1994, 32(7): 1384­1393
    [112] Bertolotti FP. The influence of rotational and vibrational energy relaxation on boundary-layer stability. Journal of Fluid Mechanics, 1998, 372: 93­118
    [113] Hudson ML, Chokani N, Candler GV. Linear stability of hypersonic flow in thermochemical nonequilibrium. AIAA Journal, 1997, 35(6): 958­964
    [114] Chang CL, Vinh H, Malik MR. Hypersonic boundary-layer stability with chemical reactions using PSE//28th Fluid Dynamics Conference, 1997
    [115] Ma Y, Zhong X. Receptivity to freestream disturbances of a Mach 10 nonequilibrium reacting oxygen flow over a flat plate//42nd Aerospace Sciences Meeting and Exhibit, 2004
    [116] Miró Miró F, Beyak ES, Pinna F, et al. Ionization and dissociation effects on boundary-layer stability. Journal of Fluid Mechanics, 2021, 907: A13
    [117] He Y, Morgan RG. Transition of compressible high enthalpy boundary layer flow over a flat plate. The Aeronautical Journal, 1994, 98(972): 25­34
    [118] Germain PD, Hornung HG. Transition on a slender cone in hypervelocity flow. Experiments in Fluids, 1997, 22(3): 183­190
    [119] Adam PH, Hornung HG. Enthalpy effects on hypervelocity boundary layer transition: ground test and flight data. Journal of Spacecraft & Rockets, 1997, 34(5): 614­619
    [120] Johnson HB, Seipp TG, Candler GV. Numerical study of hypersonic reacting boundary layer transition on cones. Physics of Fluids, 1998, 10(10): 2676­2685
    [121] Bitter NP, Shepherd JE. Stability of highly cooled hypervelocity boundary layers. Journal of Fluid Mechanics, 2015, 778: 586­620
    [122] Johnson HB, Candler GV. Hypersonic boundary layer stability analysis using PSE­Chem//35th Fluid Dynamics Conference and Exhibit, 2005
    [123] Kline HL, Chang CL, Li F. Hypersonic chemically reacting boundary layer stability using LASTRAC//2018 Fluid Dynamics Conference, 2018
    [124] Zanus L, Knisely CP, Miró Miró F, et al. Multiple-tool stability analysis of supersonic modes in thermo­chemical nonequilibrium boundary layers//AIAA Aviation 2020 Forum, 2020
    [125] Fan M, Cao W, Fang XJ. Prediction of hypersonic boundary layer transition with variable specific heat on plane flow. Science China Physics, Mechanics & Astronomy, 2011, 54(11): 2064­2070
    [126] 万兵兵, 韩宇峰, 樊宇等. 高温空气传输特性对边界层稳定性及转捩预测的影响. 航空动力学报, 2017, 32(1): 188-195 (Wan Bingbing, Han Yufeng, Fan Yu, et al. Effect of transport properties of high-temperature air on boundary layer stability and transition prediction. Journal of Aerospace Power, 2017, 32(1): 188-195 (in Chinese) doi: 10.13224/j.cnki.jasp.2017.01.025
    [127] 韩宇峰. 考虑真实气体效应的高超声速边界层多模态失稳及转捩预测研究. [博士论文]. 天津: 天津大学, 2018

    Han Yufeng. Study on multi-mode instabilities and transition prediction in hypersonic boundary layers considering real gas effects. [PhD Thesis]. Tianjin: Tianjin University, 2018 (in Chinese)
    [128] Malik MR. Hypersonic flight transition data analysis using parabolized stability equations with chemistry effects. Journal of Spacecraft & Rockets, 2003, 40(3): 332­344
    [129] Parziale NJ, Shepherd JE, Hornung HG. Observations of hypervelocity boundary-layer instability. Journal of Fluid Mechanics, 2015, 781: 87­112
    [130] Johnson HB, Alba C, Candler GV, et al. Boundary-layer stability analysis of the hypersonic international flight research transition experiments. Journal of Spacecraft & Rockets, 2008, 45(2): 228­236
    [131] Gronvall JE, Johnson HB, Candler GV. Boundary-layer stability analysis of the high enthalpy shock tunnel transition experiments. Journal of Spacecraft & Rockets, 2014, 51(2): 455­467
    [132] Grossir G, Pinna F, Bonucci G, et al. Hypersonic boundary layer transition on a 7 degree half-angle cone at Mach 10//7th AIAA Theoretical Fluid Mechanics Conference, 2014
    [133] Chen XL, Wang L, Fu S. Secondary instability of the hypersonic high-enthalpy boundary layers with thermal-chemical nonequilibrium effects. Physics of Fluids, 2021, 33(3): 034132 doi: 10.1063/5.0045184
    [134] Fedorov AV, Tumin A. High-speed boundary-layer instability: old terminology and a new framework. AIAA Journal, 2011, 49(8): 1647­1657
    [135] Chuvakhov PV, Fedorov AV. Spontaneous radiation of sound by instability of a highly cooled hypersonic boundary layer. Journal of Fluid Mechanics, 2016, 805: 188­206
    [136] Knisely CP, Zhong X. Significant supersonic modes and the wall temperature effect in hypersonic boundary layers. AIAA Journal, 2019, 57(4): 1552­1566
    [137] Han YF, Liu JX, Xu DD, et al. Instability of supersonic radiation mode in hypersonic boundary layers. AIAA Journal, 2021, 59(11): 4544­4555
    [138] Chen XL, Wang L, Fu S. Parabolized stability analysis of hypersonic thermal-chemical nonequilibrium boundary-layer flows. AIAA Journal, 2021, 59(7): 2382­2395
    [139] Mortensen CH. Toward an understanding of supersonic modes in boundary-layer transition for hypersonic flow over blunt cones. Journal of Fluid Mechanics, 2018, 846: 789­814
    [140] Lyttle IJ, Reed HL. Sensitivity of second-mode linear stability to constitutive models within hypersonic flow//43rd Aerospace Sciences Meeting and Exhibit, 2005
    [141] Franko KJ. Linear and nonlinear processes in hypersonic boundary layer transition to turbulence. [PhD Thesis]. Stanford University, 2011
    [142] Miró Miró F, Beyak ES, Pinna F, et al. High-enthalpy models for boundary-layer stability and transition. Physics of Fluids, 2019, 31(4): 044101 doi: 10.1063/1.5084235
    [143] Pierce AD. Acoustics: An Introduction to Its Physical Principles and Applications, 3rd ed. Berlin: Springer, 2019
    [144] Fujii K, Hornung HG. A procedure to estimate absorption rate of sound propagating through high temperature gas. California Institute of Technology, 2001
    [145] Ulker E, Klentzman J, Tumin A. Stability of boundary layers in binary mixtures of oxygen and nitrogen//48th Aerospace Sciences Meeting and Exhibit, 2011
    [146] Bitter NP. Stability of hypervelocity boundary layers. [PhD Thesis]. California Institute of Technology, 2015
    [147] Chen XL, Wang L, Fu S. Energy transfer of hypersonic and high-enthalpy boundary layer instabilities and transition. Physical Review Fluids, 2022, 7(3): 033901 doi: 10.1103/PhysRevFluids.7.033901
    [148] Fujii K, Hornung HG. Experimental investigation of high-enthalpy effects on attachment-line boundary-layer transition. AIAA Journal, 2003 41(7): 1282­1291
    [149] Yang XF, Xiao GM, Du YX, et al. Heat transfer with interface effects in high-enthalpy and high-speed flow: Modelling review and recent progress. Applied Thermal Engineering, 2021, 195: 116721 doi: 10.1016/j.applthermaleng.2021.116721
    [150] Klentzman J, Tumin A. Stability and receptivity of high speed boundary layers in oxygen//43rd Fluid Dynamics Conference, 2013
    [151] Mortensen CH, Zhong XL. Simulation of second-mode instability in a real-gas hypersonic flow with graphite ablation. AIAA Journal, 2014, 52(8): 1632­1652
    [152] Mortensen CH, Zhong XL. Real-gas and surface-ablation effects on hypersonic boundary-layer instability over a blunt cone. AIAA Journal, 2016, 54(3): 980­998
    [153] Miró Miró F, Pinna F. Decoupling ablation effects on boundary-layer stability and transition. Journal of Fluid Mechanics, 2021, 907: A14
    [154] 李瑾, 苏伟, 黄章峰等. 质量引射对边界层稳定性的影响. 航空动力学报, 2020, 35(2): 280-293 (Li Jin, Su Wei, Huang Zhangfeng, et al. Effect of mass ejection on boundary layers stability. Journal of Aerospace Power, 2020, 35(2): 280-293 (in Chinese) doi: 10.13224/j.cnki.jasp.2020.02.007
    [155] Leyva I, Laurence S, Beierholm A, et al. Transition delay in hypervelocity boundary layers by means of CO2/acoustic instability interactions//47th Aerospace Sciences Meeting and Exhibit, 2009
    [156] Johnson HB, Gronvall J, Candler GV. Reacting hypersonic boundary layer stability with blowing and suction//47th Aerospace Sciences Meeting, 2009
    [157] Wang XW. Stabilization of a hypersonic boundary layer using regular porous coating//2018 Aerospace Sciences Meeting, 2018
    [158] Fujii K. Experiment of the two-dimensional roughness effect on hypersonic boundary-layer transition. Journal of Spacecraft and Rockets, 2006, 43(4): 731­738
    [159] Ren J, Fu S, Hanifi A. Stabilization of the hypersonic boundary layer by finite-amplitude streaks. Physics of Fluids, 2016, 28(2): 024110 doi: 10.1063/1.4941989
    [160] Chen XL, Xi YC, Ren J, et al. Crossflow vortices and their secondary instabilities in hypersonic and high-enthalpy boundary layers. Journal of Fluid Mechanics, 2022, 947: A25 doi: 10.1017/jfm.2022.607
    [161] Stemmer C, Birrer M, Adams NA. Disturbance development in an obstacle wake in a reacting hypersonic boundary layer. Journal of Spacecraft & Rockets, 2017, 54(4): 945­960
    [162] Stemmer C, Birrer M, Adams NA. Hypersonic boundary-layer flow with an obstacle in thermochemical equilibrium and nonequilibrium. Journal of Spacecraft & Rockets, 2017, 54(4): 899­915
    [163] Di Giovanni A, Stemmer C. Roughness-induced boundary-layer transition on a hypersonic capsule-like fore body including nonequilibrium. Journal of Spacecraft & Rockets, 2019, 56(6): 1795­1808
    [164] Demange S, Qadri UA, Juniper MP, et al. Global modes of viscous heated jets with real gas effects. Journal of Fluid Mechanics, 2022, 936: A7 doi: 10.1017/jfm.2022.43
    [165] Fu Y, Hall P, Blackaby N. On the Görtler instability in hypersonic flows: Sutherland law fluids and real gas effects. Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences, 1993, 342(1665): 325­377
    [166] Xi YC, Ren J, Wang L, et al. Receptivity and stability of hypersonic leading-edge sweep flows around a blunt body. Journal of Fluid Mechanics, 2021, 916: R2 doi: 10.1017/jfm.2021.217
    [167] 江贤洋, 李存标. 高超声速边界层感受性研究综述. 实验流体力学, 2017, 31(2): 1-11 (Jiang Xianyang, Li Cunbiao. Review of research on the receptivity of hypersonic boundary layer. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 1-11 (in Chinese) doi: 10.11729/syltlx20160129
    [168] Ma YB. Receptivity and stability of supersonic and nonequilibrium hypersonic boundary layers. [PhD Thesis]. University of California, 2004
    [169] Edwards L, Tumin A. Real gas effects on receptivity to kinetic fluctuations: I. mean flow effect//55th Aerospace Sciences Meeting, 2017
    [170] Franko KJ, MacCormack R, Lele SK. Effects of chemistry modeling on hypersonic boundary layer linear stability prediction//40th Fluid Dynamics Conference and Exhibit, 2010
    [171] Kachanov YS. Physical mechanisms of laminar-boundary-layer transition. Annual Review of Fluid Mechanics, 1994, 26: 411­482
    [172] Chang CL, Malik MR. Oblique-mode breakdown and secondary instability in supersonic boundary layers. Journal of Fluid Mechanics, 1994, 273: 323­360
    [173] Berlin S, Wiegel M, Henningson DS. Numerical and experimental investigations of oblique boundary layer transition. Journal of Fluid Mechanics, 1999, 393: 23­57
    [174] Bake S, Fernholz HH, Kachanov YS. Resemblance of K­ and N regimes of boundary-layer transition at late stages. European Journal of Mechanics B-Fluids, 2000, 19(1): 1­22
    [175] Malik MR, Li F, Choudhari MM, et al. Secondary instability of crossflow vortices and swept­wing boundary-layer transition. Journal of Fluid Mechanics, 1999, 399: 85­115
    [176] Ren J, Fu S. Secondary instabilities of Görtler vortices in high-speed boundary layer flows. Journal of Fluid Mechanics, 2015, 781: 388­421
    [177] Chen JQ, Dong SW, Chen X, et al. Stationary cross­flow breakdown in a high-speed swept­wing boundary layer. Physics of Fluids, 2021, 33(2): 024108 doi: 10.1063/5.0039901
    [178] Linn J, Kloker MJ. Investigation of thermal nonequilibrium on hypersonic boundary-layer transition by DNS//7th IUTAM Symposium on Laminar-Turbulent Transition, 2009: 521­524
    [179] Marxen O, Iaccarino G, Magin TE. Direct numerical simulations of hypersonic boundary-layer transition with finite-rate chemistry. Journal of Fluid Mechanics, 2014, 755: 35­49
    [180] Zanus L, Pinna F. Stability analysis of hypersonic flows in local thermodynamic equilibrium conditions by means of nonlinear PSE//2018 Fluid Dynamics Conference, 2018
    [181] Zanus L, Pinna F. Evolution of instability modes in Mach 10 frozen and chemically reacting boundary layers by means of non­linear parabolized stability equations. Physics of Fluids, 2021, 33(6): 064106 doi: 10.1063/5.0049816
    [182] Chen XL, Xu DX, Fu S. Oblique-mode breakdown in hypersonic and high-enthalpy boundary layers over a blunt cone. Advances in Aerodynamics, 2021, 3(1): 24 doi: 10.1186/s42774-021-00076-9
    [183] Di Renzo M, Urzay J. Direct numerical simulation of a hypersonic transitional boundary layer at suborbital enthalpies. Journal of Fluid Mechanics, 2021, 912: A29 doi: 10.1017/jfm.2020.1144
    [184] 刘朋欣, 袁先旭, 孙东等. 高温化学非平衡湍流边界层直接数值模拟. 航空学报, 2022, 43(1): 124877 (Liu Pengxin, Yuan Xianxu, Sun Dong, et al. Direct numerical simulation of high-temperature turbulent boundary layer with chemical non-equilibrium. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 124877 (in Chinese)
    [185] 吴正园, 莫凡, 高振勋等. 湍流边界层与高温气体效应耦合的直接数值模拟. 空气动力学学报, 2020, 38(6): 1111-1119, 1128 (Wu Zhengyuan, Mo Fan, Gao Zhenxun, et al. Direct numerical simulation of turbulent and high-temperature gas effect coupled flow. Acta Aerodynamica Sinica, 2020, 38(6): 1111-1119, 1128 (in Chinese) doi: 10.7638/kqdlxxb-2020.0132
    [186] Passiatore D, Sciacovelli L, Cinnella P, et al. Thermochemical nonequilibrium effects in turbulent hypersonic boundary layers. Journal of Fluid Mechanics, 2022, 941: A21 doi: 10.1017/jfm.2022.283
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  413
  • HTML全文浏览量:  146
  • PDF下载量:  210
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-28
  • 录用日期:  2022-08-24
  • 网络出版日期:  2022-08-25
  • 刊出日期:  2022-11-18

目录

    /

    返回文章
    返回