EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大型空间结构热−动力学耦合分析方法综述

薛明德 向志海

薛明德, 向志海. 大型空间结构热−动力学耦合分析方法综述. 力学学报, 2022, 54(7): 1-16 doi: 10.6052/0459-1879-22-171
引用本文: 薛明德, 向志海. 大型空间结构热−动力学耦合分析方法综述. 力学学报, 2022, 54(7): 1-16 doi: 10.6052/0459-1879-22-171
Xue Mingde, Xiang Zhihai. Review of thermal-dynamical analysis methods for large space structures. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(7): 1-16 doi: 10.6052/0459-1879-22-171
Citation: Xue Mingde, Xiang Zhihai. Review of thermal-dynamical analysis methods for large space structures. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(7): 1-16 doi: 10.6052/0459-1879-22-171

大型空间结构热−动力学耦合分析方法综述

doi: 10.6052/0459-1879-22-171
基金项目: 本研究始于国家高技术研究发展计划(863-2-4-1-5)
详细信息
    作者简介:

    薛明德, 教授, 主要研究方向: 固体力学. E-mail:xuemd@tsinghua.edu.cn

  • 中图分类号: V414.1

REVIEW OF THERMAL-DYNAMICAL ANALYSIS METHODS FOR LARGE SPACE STRUCTURES

  • 摘要: 近年来, 各种大型空间结构逐渐在我国航天工程中得到应用, 相应的热诱发振动问题也日益受到重视. 在此背景下, 有必要进一步梳理热诱发振动的机理和分析设计中的关键问题. 本文将结合作者的研究工作对此问题进行全面介绍, 并主要强调在分析复杂工程结构的热诱发振动问题时需要注意的特殊问题. 本文首先介绍了可以高效地分析空间薄壁杆件结构(包含开口和闭口薄壁杆件)在辐射换热条件下的瞬态温度场的Fourier有限元方法; 随后介绍了热诱发振动的线性和非线性分析方法, 强调了热−动力学耦合效应. 为了对复杂空间结构产生热诱发振动的必要条件给出解析表达式, 本文将瞬态温度场与振动位移场统一在模态空间中进行分析, 从而得到评价热诱发振动剧烈程度的一般性条件. 在此基础上, 本文进一步讨论了热诱发振动的运动稳定性问题, 以悬臂杆件的热颤振准则为例揭示了热诱发振动发散的物理机理, 并给出了评定复杂工程结构热颤振的分析方法. 论文最后概要地指出了在热诱发振动的地面试验和抑制方法中需要注意的问题, 并对将来的研究工作进行了展望.

     

  • 图  1  薄壁杆件温度单元及其单元局部坐标系

    Figure  1.  thin-walled bar temperature element and its local coordinate system

    图  2  薄壁梯形杆的温度计算结果

    Figure  2.  Temperature of a thin-walled trapezium cross-section bar

    图  3  薄壁C形杆的温度计算结果

    Figure  3.  Temperature of a thin-walled C-shaped cross-section bar

    图  4  杆单元的变形过程

    Figure  4.  Deformation of the bar element

    图  5  杆单元的构型转换

    Figure  5.  Configuration change of the bar element

    图  6  哈勃太空望远镜太阳翼模型

    Figure  6.  The model of the HST solar array

    图  7  哈勃太空望远镜太阳翼的模拟结果

    Figure  7.  The simulation results of the HST solar array

    图  8  杆端部的热诱发振动剧烈程度随B的变化

    Figure  8.  The bar tip TIV intensity changes with B

    图  9  突加热流作用下的半刚性太阳翼

    Figure  9.  A semi-stiff solar panel subjected to suddenly applied heat flux

    图  10  帆板框(结构1)和支承杆的摄动温度时间历程

    Figure  10.  Change of perturbation temperatures of the frame and boom

    图  11  突加热流作用下太阳翼端部的法向位移

    Figure  11.  Tip displacement of the solar panel subjected to suddenly applied heat flux

    图  12  经典理论、等效和实测振动比的比较[28]

    Figure  12.  Comparison among the original, effective and actual ratio of dmax / dst[28]

    图  13  悬臂梁受突加热流作用

    Figure  13.  A cantilever beam subjected to suddenly applied thermal flux

    图  14  突加太阳热流作用下的环状天线

    Figure  14.  Circular antenna under the incident heat flux

    图  15  环状天线的稳定性边界

    Figure  15.  Stability boundary of the circular antenna

    图  16  α 的根轨迹图

    Figure  16.  The locus of α

    图  17  A点Z向振动

    Figure  17.  The vibration in Z direction at point A

    表  1  太阳能帆板各构件的尺寸及其材料

    Table  1.   Dimension and material of the solar panel

    ElementDimension/mmMaterial
    FrameSquare tubeStructure 1: 16 × 0.8FRP
    Structure 2: 8 × 0.8
    BoomCircular tubeR10 × 0.5Aluminum
    StringRodR0.5Kevlar
    下载: 导出CSV

    表  2  A点的主要特征量 (t = 2000 s)

    Table  2.   Main features of point A at t = 2000 s

    Structure 1Structure 2
    ${\tau _1}$/s10.502.68
    $ {\omega _1} $/(rad·s−1)0.085 × 2π0.052 × 2π
    B5.6200.876
    $ 1 + 1/\sqrt {1 + {B^2}} $1.1751.752
    $ {d_{\max }}/{d_{{\text{st}}}} $1.0891.180
    下载: 导出CSV

    表  3  环状天线的单元类型, 尺寸与材料

    Table  3.   Dimension and material of the circular antenna

    Diameter·thickness/mmMaterial
    Beam30.0 × 5.0FRP
    C rod7.5 × 0.5FRP
    V rod15.0 × 1.0FRP
    Net5.0 × 0.1Stainless steel
    下载: 导出CSV
  • [1] Thomson WT, Reiter GS. Attitude drift of space vehicles. The Journal of the Astronautical Sciences, 1960, 7: 29-36
    [2] Etkin B, Hughes PC. Explanation of the anomalous spin behavior of satellites with long flexible antennae. Journal of Spacecraft and Rockets, 1967, 9(4): 1139-1145
    [3] Foster RS. Thermally induced vibrations of spacecraft booms[PhD Thesis]. Virginia, US: University of Virginia, 1998.
    [4] Thornton EA, Kim YA. Thermally induced bending vibrations of a flexible rolled-up solar array. Journal of Spacecraft and Rockets, 1993, 30(4): 438-448 doi: 10.2514/3.25550
    [5] Hawley SA. Hubble space telescope solar array concerns and consequence for service mission 2. Journal of Spacecraft and Rockets, 2016, 53(1): 15-24
    [6] Corbacho VV, Kuiper H, Gill E. Review on thermal and mechanical challenges in the development of deployable space optics. Journal of Astronomical Telescopes, Instruments, and Systems, 2020, 6(1): 010902
    [7] Boley BA. Thermally induced vibrations of bars. Journal of the Aeronautical Sciences, 1956, 23(2): 179-181
    [8] Boley BA. Approximate analyses of thermally induced vibrations of bars and plates. Journal of Applied Mechanics, 1972, 39(3): 212-216
    [9] Boley BA. A communication quasi una fantasìa. Mechanics Research Communications, 2015, 68(9): 2-4
    [10] Augusti G. Instability of struts subject to radiant heat. Meccanica, 1968, 3(9): 167-176
    [11] Donohue JH, Frisch HP. Thermoelastic instability of open-section booms. NASA Technical Note, D-5310, 1969.
    [12] Yu YY. Thermally induced vibration and flutter of a flexible boom. Journal of Spacecraft and Rockets, 1969, 6(8): 902-910 doi: 10.2514/3.29725
    [13] Graham JD. Solar induced bending vibrations of a flexible member. AIAA Journal, 1970, 8(11): 2031-2036 doi: 10.2514/3.6042
    [14] Rimrott F, Abdel-Sayed R. Flexural thermal flutter under laboratory conditions. Transactions of the Canadian Society for Mechanical Engineering, 1976, 4(4): 189-196 doi: 10.1139/tcsme-1976-0027
    [15] Zhang JH, Xiang ZH, Liu YH, et al. Stability of thermally induced vibration of a bar subjected to solar heating. AIAA Journal, 2014, 52(3): 660-665 doi: 10.2514/1.J052574
    [16] Mason JB. Analysis of thermally induced structural vibrations by finite element techniques. NASA Technical Memorandum, X-321-68-333, 1968
    [17] Namburu RR, Tamma KK. Thermally-induced structural dynamic response of flexural configurations influenced by linear/non-linear thermal effects. AIAA Paper, 91-1175, 1991
    [18] Givoli D, Rand O. Harmonic finite element thermo-elastic analysis of space frames and trusses. Journal of Thermal Stresses, 1993, 16(3): 233-248 doi: 10.1080/01495739308946228
    [19] Xue MD, Ding Y. Two kinds of tube elements for transient thermal–structural analysis of large space structures. International Journal for Numerical Methods in Engineering, 2004, 59(10): 1335-1353 doi: 10.1002/nme.918
    [20] Xue MD, Duan J, Xiang ZH. Thermally-induced bending-torsion coupling vibration of large scale space structures. Computational Mechanics, 2007, 40(4): 707-723 doi: 10.1007/s00466-006-0134-x
    [21] Duan J, Xiang ZH, Xue MD. Thermal-dynamic coupling analysis of large space structures considering geometric nonlinearity. International Journal of Structural Stability and Dynamics, 2008, 8(4): 569-596 doi: 10.1142/S0219455408002806
    [22] Thornton EA. Thermal structures for aerospace applications. Virginia, US: AIAA Education Series, 1996
    [23] 胡斌, 李创, 相萌等. 可展开空间光学望远镜技术发展及展望. 红外与激光工程, 2021, 50(11): 20210199 (Hu Bin, Li Chuang, Xiang Meng, et al. Development and prospects of deployable space optical telescope technology. Infrared and Laser Engineering, 2021, 50(11): 20210199 (in Chinese)
    [24] Chamberlain MK, Kiefer SH, LaPointe M, et al. On-orbit flight testing of the Roll-Out Solar Array. Acta Astronautica, 2021, 179(2): 407-414
    [25] https://www.nasa.gov/feature/dart-gets-its-wings-spacecraft-integrated-with-innovative-solar-array-technology-and-camera
    [26] Su XM, Zhang JH, Wang J, et al. Experimental investigation of the thermally-induced vibration of a space boom section. Science China Physics, Mechanics & Astronomy, 2015, 58(4): 044601
    [27] Fan C, Bi YQ, Wang J, et al. Experimental investigation of heat flux characteristics on the thermally induced vibration of a slender thin-walled bar. International Journal of Applied Mechanics, 2020, 12(5): 2050053 doi: 10.1142/S1758825120500532
    [28] Wang J, Jin DG, Fan C, et al. Predicting the on-orbit thermally induced vibration through the integrated numerical and experimental approach. Acta Astronautica, 2022, 192(3): 341-350
    [29] Jin DG, Fan C, Wang J, et al. Experimental verification of the thermal flutter criterion for a slender cantilever boom. AIAA Journal, 2022, in press
    [30] Liu L, Sun SP, Cao DQ, et al. Thermal-structural analysis for flexible spacecraft with single or double solar panels: A comparison study. Acta Astronautica, 2019, 154(1): 33-43
    [31] Cao YT, Cao DQ, He GQ, et al. Thermal alternation induced vibration analysis of spacecraft with lateral solar arrays in orbit. Applied Mathematical Modelling, 2020, 86(10): 166-184
    [32] 丁勇. 大型空间结构的热-结构有限元分析[博士论文]. 北京: 清华大学, 2002

    Ding Yong. Thermal-structural analysis of large space structure with finite element method[PhD Thesis]. Beijing: Tsinghua University, 2002(in Chinese))
    [33] 段进. 大型柔性空间结构的热-动力学耦合有限元分析[博士论文]. 北京: 清华大学, 2007

    Duan Jin. The Thermal-dynamic coupling analysis of large flexible space structures by finite element method[PhD Thesis]. Beijing: Tsinghua University, 2007(in Chinese))
    [34] 袁小德. 两种热致响应分析新单元及弯扭耦合热颤振准则[硕士论文]. 北京: 清华大学, 2019

    Yuan Xiaode. Two new elements for thermally-induced responses and the bending and torsion coupled thermal-flutter criterion[Master Thesis]. Beijing: Tsinghua University, 2019(in Chinese))
    [35] Huebner KH, Donald LD, Douglas ES, et al. Finite element method for Engineers (4th ed). New York: John Wiley & Sons Inc. , 2001
    [36] Nour-Omid B. Lanczos method for heat conduction analysis. International Journal for Numerical Methods in Engineering, 1987, 24(1): 251-262 doi: 10.1002/nme.1620240117
    [37] 程乐锦. 大型空间结构的热诱发振动有限元分析[博士论文]. 北京: 清华大学, 2003

    Cheng Lejin. Finite element analysis for thermally induced vibrations of large space structures[PhD Thesis]. Beijing: Tsinghua University, 2003(in Chinese))
    [38] 李伟. 卫星刚体-结构附件耦合系统热-动力学有限元分析[博士论文]. 北京: 清华大学, 2007

    Li Wei. The thermal-dynamic analysis of satellites with flexible appendages by finite element method[PhD Thesis]. Beijing: Tsinghua University, 2007(in Chinese))
    [39] Yang YB, Chiou HT. Rigid body motion test for nonlinear analysis with bar elements. Journal of Engineering Mechanics, 1987, 113(9): 1404-1419 doi: 10.1061/(ASCE)0733-9399(1987)113:9(1404)
    [40] 黄彦文. 含开口薄壁杆件的大型空间结构热诱发弯扭耦合振动有限元分析[硕士论文]. 北京: 清华大学, 2004

    Huang Yanwen. Thermally induced vibration analysis of large space structures including thin-walled open section beam by FEM[Master Thesis]. Beijing: Tsinghua University, 2004(in Chinese))
    [41] 黄彦文, 薛明德, 程乐锦等. 含开口薄壁杆的大型空间结构热诱发弯扭振动. 清华大学学报(自然科学版), 2005, 45(2): 262-266 (Huang Yanwen, Xue Mingde, Cheng Lejin, et al. Thermally induced vibrations of large space structures including thin-walled open bar sections. Journal of Tsinghua University (Sci and Tech) , 2005, 45(2): 262-266 (in Chinese) doi: 10.3321/j.issn:1000-0054.2005.02.032
    [42] 黄克智, 薛明德, 陆明万. 张量分析(第3版). 北京: 清华大学出版社, 2020: 71

    Huang Kezhi, Xue Mingde, Lu Mingwan. Tensor Analysis (3rd ed.). Beijing, Tsinghua University Press, 2020: 71(in Chinese)
    [43] 程乐锦, 薛明德, 唐羽烨等. 大型空间结构的热-结构动力学分析. 应用力学学报, 2004, 21(2): 1-9 (Cheng Lejin, Xue Mingde, Tang Yuye, et al. Thermal-dynamic analysis of large scale space structures by FEM. Chinese Journal of Applied Mechanics, 2004, 21(2): 1-9 (in Chinese) doi: 10.3969/j.issn.1000-4939.2004.02.001
    [44] 中国大百科全书, 力学卷, 运动稳定性. 北京: 中国大百科全书出版社, 1985: 570-573

    Encyclopedia of China, Mechanics, Stability of motion. Beijing: Encyclopedia of China Publishing House, 1985: 570-573 (in Chinese))
    [45] Zhang JH, Wang PH, Liu YF, et al. Can Boom-Supported solar sails flutter? AIAA Journal, 2020, 58(10): 4600-4603
    [46] Yuan XD, Xiang ZH. A thermal-flutter criterion for an open thin-walled circular cantilever bar subject to solar heating. Chinese Journal of Aeronautics, 2018, 31(9): 1902-1909 doi: 10.1016/j.cja.2018.07.002
    [47] Shen Z, Hu G. Thermoelastic–structural analysis of space Thin-Walled beam under solar flux. AIAA Journal, 2019, 57(4): 1781-1785 doi: 10.2514/1.J057793
    [48] Li W, Xiang ZH, Chen L, et al. Thermal flutter analysis of large-scale space structures based on finite element method. International Journal for Numerical Methods in Engineering, 2007, 69(5): 887-907 doi: 10.1002/nme.1793
    [49] 樊孝清. 舱体-挠性附件系统的热诱发振动分析与控制[硕士论文]. 北京: 清华大学, 2016

    Fan Xiaoqing. Thermally induced vibration analysis and control of the rigid hub-flexible attachment system[Master Thesis]. Beijing: Tsinghua University, 2016 (in Chinese)
    [50] Zhang JH, Xiang ZH, Liu YH. Control of the thermally induced vibration of space structures by using heaters. Journal of Spacecraft and Rockets, 2014, 51(5): 1454-1463 doi: 10.2514/1.A32601
    [51] Liu CC, Jing XJ, Daley S, et al. Recent advances in micro-vibration isolation. Mechanical Systems and Signal Processing, 2015, 56-57: 55-80 doi: 10.1016/j.ymssp.2014.10.007
    [52] Fan LJ, Xiang ZH, Xue MD, et al. Robust optimization of thermal-dynamic coupling systems using a kriging model. Journal of Spacecraft and Rockets, 2010, 47(6): 1029-1037 doi: 10.2514/1.49307
    [53] Fan LJ, Xiang ZH. Suppressing the thermally induced vibration of large-scale space structures via structural optimization. Journal of Thermal Stresses, 2015, 38(1): 1-21 doi: 10.1080/01495739.2014.950529
    [54] Levine M, Fanson J. Advanced thermo-structural technologies for the NASA terrestrial planet finder mission. Structural Control and Health Monitoring, 2006, 13(1): 190-20 doi: 10.1002/stc.136
  • 加载中
图(17) / 表(3)
计量
  • 文章访问数:  27
  • HTML全文浏览量:  7
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 录用日期:  2022-04-27
  • 网络出版日期:  2022-04-25

目录

    /

    返回文章
    返回