A CONSISTENT AND EFFICIENT METHOD FOR IMPOSING MESHFREE ESSENTIAL BOUNDARY CONDITIONS VIA HELLINGER-REISSNER VARIATIONAL PRINCIPLE
-
摘要: 无网格法具有高阶连续光滑的形函数, 在结构分析中呈现出显著的精度优势. 但无网格形函数在节点处一般没有插值性, 导致伽辽金无网格法难以直接施加本质边界条件. 采用变分一致尼兹法施加边界条件的数值解具有良好的收敛性和稳定性, 因而得到了非常广泛的应用, 然而该方法仍然需要引入人工参数来保证算法的稳定性. 本文以赫林格−赖斯纳变分原理为基础, 建立了一种变分一致的本质边界条件施加方法. 该方法采用混合离散近似赫林格−赖斯纳变分原理弱形式中的位移和应力, 其中位移采用传统无网格形函数进行离散, 而应力则在背景积分单元中近似为相应阶次的多项式. 此时的无网格离散方程可视为一种新型的尼兹法施加本质边界条件, 其中修正变分项采用再生光滑梯度和无网格形函数进行混合离散, 稳定项则内嵌于赫林格−赖斯纳变分原理弱形式中, 无需额外增加稳定项, 消除了对人工参数的依赖性. 该方法无需计算复杂耗时的形函数导数, 并满足积分约束条件, 保证了数值求解的精度. 数值结果表明, 所提方法能够保证伽辽金无网格法的计算精度最优误差收敛率, 与传统的尼兹法相比明显提高了计算效率.
-
关键词:
- 无网格法 /
- 赫林格−赖斯纳变分原理 /
- 本质边界条件 /
- 再生光滑梯度 /
- 变分一致性
Abstract: Galerkin meshfree methods with arbitrary order smooth shape functions exhibit superior accuracy advantages in structural analysis. However, the smooth meshfree shape functions generally do not have the interpolatory property and thus the enforcement of essential boundary conditions in Galerkin meshfree methods is not trivial. The variationally consistent Nitsche’s method shows very good performance regarding convergence and stability and is widely used to impose essential boundary conditions. In this work, a consistent and efficient method is proposed to impose meshfree essential boundary conditions. The proposed method is based upon the Hellinger-Reissner (HR) principle, where the displacements are represented by the conventional meshfree shape functions and the stresses are approximated by reproducing kernel smoothed gradients defined in each background integration cells. The resulting meshfree discrete equations share almost identical forms with those derived from Nitsche’s method. It is shown that the stabilized term in Nitsche’s method is a natural outcome from the HR variational principle, but there is absolutely no need to use any artificial parameter to maintain the coercivity of stiffness matrix. Moreover, under the reproducing kernel gradient smoothing framework, the costly derivatives of conventional meshfree shape functions are completely avoided and the integration constraint is automatically fulfilled. Numerical results demonstrate that the proposed approach and Nitsche’s method yield comparable solution accuracy, nonetheless, much higher efficiency is observed for the proposed methodology that imposes the essential boundary conditions for Galerkin meshfree formulation via the HR variational principle. -
表 1 二次基函数无网格法分片试验结果
Table 1. The results of patch test with quadratic basis functions
Linear patch test Quadratic patch test L2-Err He-Err L2-Err He-Err GI-penalty $ 7.7 \times {10^{ - 6}} $ $ 2.7 \times {10^{ - 4}} $ $ 1.2 \times {10^{ - 5}} $ $ 2.6 \times {10^{ - 4}} $ GI-LM $ 1.0 \times {10^{ - 4}} $ $ 4.7 \times {10^{ - 3}} $ $ 1.5 \times {10^{ - 4}} $ $ 4.3 \times {10^{ - 3}} $ GI-Nitsche $ 8.1 \times {10^{ - 6}} $ $ 2.8 \times {10^{ - 4}} $ $ 1.3 \times {10^{ - 5}} $ $ 2.8 \times {10^{ - 4}} $ RKGSI-penalty $ 7.9 \times {10^{ - 8}} $ $ 2.0 \times {10^{ - 6}} $ $ 1.4 \times {10^{ - 7}} $ $ 2.1 \times {10^{ - 6}} $ RKGSI-LM $ 8.6 \times {10^{ - 5}} $ $ 4.0 \times {10^{ - 3}} $ $ 1.4 \times {10^{ - 4}} $ $ 3.7 \times {10^{ - 3}} $ RKGSI-Nitsche $ 2.1 \times {10^{ - 15}} $ $ 4.0 \times {10^{ - 14}} $ $ 2.2 \times {10^{ - 15}} $ $ 2.7 \times {10^{ - 14}} $ RKGSI-HR $ 2.0 \times {10^{ - 15}} $ $ 3.2 \times {10^{ - 14}} $ $ 2.2 \times {10^{ - 15}} $ $ 2.1 \times {10^{ - 14}} $ 表 2 三次基函数无网格法分片试验结果
Table 2. The results of patch test with cubic basis functions
Quadratic patch test Cubic patch test L2-Err He-Err L2-Err He-Err GI-penalty $ 9.1 \times {10^{ - 6}} $ $ 2.1 \times {10^{ - 4}} $ $ 1.2 \times {10^{ - 5}} $ $ 2.0 \times {10^{ - 4}} $ GI-LM $ 2.9 \times {10^{ - 4}} $ $ 9.3 \times {10^{ - 3}} $ $ 4.0 \times {10^{ - 4}} $ $ 9.3 \times {10^{ - 3}} $ GI-Nitsche $ 1.1 \times {10^{ - 5}} $ $ 2.8 \times {10^{ - 4}} $ $ 1.4 \times {10^{ - 5}} $ $ 2.7 \times {10^{ - 4}} $ RKGSI-penalty $ 1.4 \times {10^{ - 7}} $ $ 2.1 \times {10^{ - 6}} $ $ 2.0 \times {10^{ - 7}} $ $ 2.7 \times {10^{ - 6}} $ RKGSI-LM $ 3.0 \times {10^{ - 4}} $ $ 9.8 \times {10^{ - 3}} $ $ 4.2 \times {10^{ - 4}} $ $ 9.8 \times {10^{ - 3}} $ RKGSI-Nitsche $ 3.6 \times {10^{ - 15}} $ $ 1.0 \times {10^{ - 13}} $ $ 4.6 \times {10^{ - 15}} $ $ 9.5 \times {10^{ - 14}} $ RKGSI-HR $ 3.1 \times {10^{ - 15}} $ $ 1.0 \times {10^{ - 13}} $ $ 3.5 \times {10^{ - 15}} $ $ 7.4 \times {10^{ - 14}} $ B1 二次基函数无网格法优化的数值积分方案
B1. The optimized quadrature rules for quadratic basis function
$ \xi $ $ \eta $ $ \gamma $ $ w $ $ {w_B} $ $\dfrac{ {\text{2} } }{ {\text{3} } }$ $ \dfrac{{\text{1}}}{{\text{6}}} $ $ \dfrac{{\text{1}}}{{\text{6}}} $ $ \dfrac{{\text{1}}}{{\text{3}}} $ − $ \dfrac{{\text{1}}}{{\text{2}}} $ $ \dfrac{{\text{1}}}{{\text{2}}} $ 0 $ \dfrac{{\text{1}}}{{\text{6}}} $ − 1 0 0 $ \dfrac{{\text{2}}}{{\text{3}}} $ $ \dfrac{{\text{1}}}{{\text{3}}} $ B2 三次基函数无网格法优化的数值积分方案
B2. The optimized quadrature rules for cubic basis function
$ \xi $ $ \eta $ $ \gamma $ $ w $ $ {w_B} $ $\eta_a $ $ \dfrac{1-\xi_{a}}{2} $ $ \dfrac{1-\xi_{a}}{2} $ ${w}_{a}$ − $ \eta_b $ $ \eta_b $ $ \dfrac{1-\xi_{b}}{2} $ ${w}_{b}$ − $\begin{aligned}{\xi_{a}=0.108\;103\;018\;168\;070}, \quad {w_{a}=0.223\;381\;589\;678\;011} \\{\xi_{b}=0.816\;847\;572\;980\;459}, \quad w_{b}=0.109\;951\;743\;655\;322\end{aligned}$ $\dfrac{{\text{1}}}{{\text{3}}} $ $ \dfrac{{\text{1}}}{{\text{3}}} $ $ \dfrac{{\text{1}}}{{\text{3}}} $ $ \dfrac{{\text{9}}}{{\text{20}}} $ − 1 0 0 $ -\dfrac{{\text{1}}}{{\text{30}}} $ $ \dfrac{{\text{1}}}{{\text{20}}} $ $ \dfrac{{\text{1}}}{{\text{2}}} $ $ \dfrac{{\text{1}}}{{\text{2}}} $ 0 $ \dfrac{{\text{4}}}{{\text{135}}} $ $ \dfrac{{\text{16}}}{{\text{46}}} $ $ \dfrac{7+\sqrt{21}}{14} $ $ \dfrac{7+\sqrt{21}}{14} $ 0 $ \dfrac{{\text{49}}}{{\text{540}}} $ $ \dfrac{{\text{49}}}{{\text{180}}} $ -
[1] Belytschko T, Lu YY, Gu L. Element-free Galerkin methods. International Journal for Numerical Methods in Engineering, 1994, 37(2): 229-256 doi: 10.1002/nme.1620370205 [2] Liu WK, Jun S, Zhang YF. Reproducing kernel particle methods. International Journal for Numerical Methods in Fluids, 1995, 20(8-9): 1081-1106 doi: 10.1002/fld.1650200824 [3] 张雄, 刘岩, 马上. 无网格法的理论及应用. 力学进展, 2009, 39(1): 1-36 (Zhang Xiong, Liu Yan, Ma Shang. Meshfree methods and their applications. Advances in Mechanics, 2009, 39(1): 1-36 (in Chinese) doi: 10.3321/j.issn:1000-0992.2009.01.001 [4] Chen JS, Hillman M, Chi SW. Meshfree methods: progress made after 20 years. Journal of Engineering Mechanics-ASCE, 2017, 143(4): 04017001 doi: 10.1061/(ASCE)EM.1943-7889.0001176 [5] Belytschko T, Krongauz Y, Organ D, et al. Meshless methods: An overview and recent developments. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1-4): 3-47 doi: 10.1016/S0045-7825(96)01078-X [6] 高效伟, 徐兵兵, 吕军等. 自由单元法及其在结构分析中的应用. 力学学报, 2019, 51(3): 703-713 (Gao Xiaowei, Xu Bingbing, Lü Jun, et al. Free element method and its application in structural analysis. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 703-713 (in Chinese) doi: 10.6052/0459-1879-19-011 [7] 王莉华, 阮剑武. 配点型无网格法理论和研究进展. 力学季刊, 2021, 42: 613-632 (Wang Lihua, Ruan Jianwu. Theory and research progress of the collocation-type meshfree methods. Chinese Quarterly of Mechanics, 2021, 42: 613-632 (in Chinese) [8] 陈嵩涛, 段庆林, 马今伟. 几何非线性分析的高效高阶无网格法. 计算力学学报, 2020, 37(6): 694-699 (Chen Songtao, Duan Qinglin, Ma Jinwei. Efficient high order meshfree method for geometrically non-linear analysis. Chinese Journal of Computational Mechanics, 2020, 37(6): 694-699 (in Chinese) [9] 邓立克, 王东东, 王家睿等. 薄板分析的线性基梯度光滑伽辽金无网格法. 力学学报, 2019, 51(3): 690-702 (Deng Like, Wang Dongdong, Wang Jiarui, et al. A gradient smoothing Galerkin meshfree method for thin plate analysis with linear basis function. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 690-702 (in Chinese) doi: 10.6052/0459-1879-19-004 [10] 高欣, 段庆林, 李书卉等. 裂纹问题的一致性高阶无网格法. 计算力学学报, 2018, 35(3): 1007-4708 (Gao Xin, Duan Qinglin, Li Shuhui et al. Consistent high order meshfree method for crack problems. Chinese Journal of Computational Mechanics, 2018, 35(3): 1007-4708 (in Chinese) [11] Fernández-Méndez S, Huerta A. Imposing essential boundary conditions in mesh-free methods. Computer Methods in Applied Mechanics and Engineering, 2004, 193(12-14): 1257-1275 doi: 10.1016/j.cma.2003.12.019 [12] 曹阳, 陈莹婷, 姚林泉. 无单元Galerkin方法施加本质边界条件研究进展. 力学季刊, 2020, 41(4): 5-26 (Cao Yang, Chen Yingting, Yao Linquan. Advances in implementation of essential boundary conditions for element-free Galerkin method. Chinese Quarterly of Mechanics, 2020, 41(4): 5-26 (in Chinese) [13] Chen JS, Wu CT, Yoon S, et al. A stabilized conforming nodal integration for Galerkin mesh-free methods. International Journal for Numerical Methods in Engineering, 2001, 50(2): 435-466 doi: 10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO;2-A [14] Wu J, Wang D. An accuracy analysis of Galerkin meshfree methods accounting for numerical integration. Computer Methods in Applied Mechanics and Engineering, 2021, 375: 113631 doi: 10.1016/j.cma.2020.113631 [15] Kaljević I, Saigal S. An improved element free Galerkin formulation. International Journal for Numerical Methods in Engineering, 1997, 40(16): 2953-2974 doi: 10.1002/(SICI)1097-0207(19970830)40:16<2953::AID-NME201>3.0.CO;2-S [16] Liu D, Cheng YM. The interpolating element-free Galerkin (IEFG) method for three-dimensional potential problems. Engineering Analysis with Boundary Elements, 2019, 108: 115-123 doi: 10.1016/j.enganabound.2019.08.021 [17] 陈莘莘, 周文博, 胡常福. 基于插值型无单元Galerkin法的复合材料层合板自由振动分析. 应用力学学报, 2021, 38(3): 1280-1285 (Chen Shenshen, Zhou Wenbo, Hu Changfu. Free vibration analysis of laminated composite plates based on the interpolating element-free Galerkin method. Chinese Journal of Applied Mechanics, 2021, 38(3): 1280-1285 (in Chinese) [18] 程玉民, 彭妙娟, 李九红. 复变量移动最小二乘法及其应用. 力学学报, 2005, 37(6): 719-723 (Cheng Yumin, Peng Miaojuan, Li Jiuhong. The complex variable moving least-square approximation and its application. Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(6): 719-723 (in Chinese) doi: 10.3321/j.issn:0459-1879.2005.06.007 [19] 黄娟, 姚林泉. 改进广义移动最小二乘近似的无网格法. 力学季刊, 2007, 28(3): 461-470 (Huang Juan, Yao Linquan. Meshless method with modifying generalized moving least squares approximation. Chinese Quarterly of Mechanics, 2007, 28(3): 461-470 (in Chinese) doi: 10.3969/j.issn.0254-0053.2007.03.018 [20] Chen JS, Wang HP. New boundary condition treatments in meshfree computation of contact problems. Computer Methods in Applied Mechanics and Engineering, 2000, 187(3): 441-468 [21] Duan Q, Li X, Zhang H, et al. Second-order accurate derivatives and integration schemes for meshfree methods. International Journal for Numerical Methods in Engineering, 2012, 92(4): 399-424 doi: 10.1002/nme.4359 [22] Duan Q, Gao X, Wang B, et al. Consistent element-free Galerkin method. International Journal for Numerical Methods in Engineering, 2014, 99(2): 79-101 doi: 10.1002/nme.4661 [23] Chen JS, Hillman M, Rüter M. An arbitrary order variationally consistent integration for Galerkin meshfree methods. International Journal for Numerical Methods in Engineering, 2013, 95(5): 387-418 doi: 10.1002/nme.4512 [24] Wang D, Wu J. An efficient nesting sub-domain gradient smoothing integration algorithm with quadratic exactness for Galerkin meshfree methods. Computer Methods in Applied Mechanics and Engineering, 2016, 298: 485-519 doi: 10.1016/j.cma.2015.10.008 [25] Wang D, Wu J. An inherently consistent reproducing kernel gradient smoothing framework toward efficient Galerkin meshfree formulation with explicit quadrature. Computer Methods in Applied Mechanics and Engineering, 2019, 349: 628-672 doi: 10.1016/j.cma.2019.02.029 [26] 吴俊超, 邓俊俊, 王家睿等. 伽辽金型无网格法的数值积分方法. 固体力学学报, 2016, 3(37): 208-233 (Wu Junchao, Deng Junjun, Wang Jiarui, et al. A review of numerical integration approaches for Galerkin meshfree methods. Chinese Journal of Solid Mechanics, 2016, 3(37): 208-233 (in Chinese) [27] Hillman M, Lin K. Consistent weak forms for meshfree methods: Full realization of h-refinement, p-refinement, and a-refinement in strong-type essential boundary condition enforcement. Computer Methods in Applied Mechanics and Engineering, 2021, 373: 113448 doi: 10.1016/j.cma.2020.113448 [28] Lu YY, Belytschko T, Gu L. A new implementation of the element free Galerkin method. Computer Methods in Applied Mechanics and Engineering, 1994, 113(3-4): 397-414 doi: 10.1016/0045-7825(94)90056-6 [29] Zhu T, Atluri SN. A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method. Computational Mechanics, 1998, 21(3): 211-222 doi: 10.1007/s004660050296 [30] 钱伟长. 广义变分原理. 北京: 知识出版社, 1985Qian Weichang. Generalized Variational Principles. Beijing: Knowledge Press, 1985 (in Chinese) [31] Embar A, Dolbow J, Harari I. Imposing dirichlet boundary conditions with Nitsche's method and spline-based finite elements. International Journal for Numerical Methods in Engineering, 2010, 87(7): 877-898 [32] Timoshenko S, Goodier J. Theory of Elasticity. New York: McGraw-Hill, 1969 -