EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自由场中液氮单空泡动力学特性的实验研究

陈家成 陈泰然 韩磊 耿昊 谭树林

陈家成, 陈泰然, 韩磊, 耿昊, 谭树林. 自由场中液氮单空泡动力学特性的实验研究. 力学学报, 2022, 54(9): 2387-2400 doi: 10.6052/0459-1879-22-144
引用本文: 陈家成, 陈泰然, 韩磊, 耿昊, 谭树林. 自由场中液氮单空泡动力学特性的实验研究. 力学学报, 2022, 54(9): 2387-2400 doi: 10.6052/0459-1879-22-144
Chen Jiacheng, Chen Tairan, Han Lei, Geng Hao, Tan Shulin. Experimental investigation on dynamic characteristics of liquid nitrogen single bubble in the free field. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 2387-2400 doi: 10.6052/0459-1879-22-144
Citation: Chen Jiacheng, Chen Tairan, Han Lei, Geng Hao, Tan Shulin. Experimental investigation on dynamic characteristics of liquid nitrogen single bubble in the free field. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 2387-2400 doi: 10.6052/0459-1879-22-144

自由场中液氮单空泡动力学特性的实验研究

doi: 10.6052/0459-1879-22-144
基金项目: 国家自然科学基金 (52009001, 52079004), 中国博士后科学基金(2020M680380), 重庆市自然科学基金(cstc2021jcyj-msxmX1046)和北京理工大学青年教师学术启动计划(XSQD-202003008)资助项目
详细信息
    作者简介:

    陈泰然, 助理教授, 主要研究方向: 低温(超低温)相变与传热. E-mail: chentairan@bit.edu.cn

  • 中图分类号: O352

EXPERIMENTAL INVESTIGATION ON DYNAMIC CHARACTERISTICS OF LIQUID NITROGEN SINGLE BUBBLE IN THE FREE FIELD

  • 摘要: 本文专门设计搭建了低温介质空泡演化实验测试平台, 对液氮单空泡非定常演化过程和动力学特性开展了实验研究. 实验中利用电火花瞬态放电激发液氮汽化形成单空泡, 通过高速摄影系统对单空泡的瞬态特征进行了精细化捕捉. 为了进一步揭示低温介质独特的物理性质以及强热力学效应对单空泡演化过程的影响机制, 对比分析了在相同环境压力下, 77.41 K液氮和298.36 K水单空泡的演化过程和动力学特性. 基于实验得到空泡半径与界面速度等定量数据, 阐明了液氮单空泡球形与非球形演化阶段的非定常特性. 研究结果表明: (1) 在相同输入电压下, 液氮单空泡的整体尺寸比常温水更小, 当输入电压为400 V时, 液氮空泡的最大半径约为常温水空泡的0.69倍; 同时, 液氮单空泡经历了膨胀阶段−收缩阶段−振荡阶段以及上升阶段的演化过程. (2)液氮空泡的收缩过程主要由相界面的热传导主导, 没有明显的塌陷现象, 收缩阶段液氮空泡的最小收缩半径约为常温水的5.5倍. (3)在液氮空泡振荡初期, 空泡相界面传热增强, Rayleigh-Taylor不稳定与热力学效应共同引起了空泡界面的表面粗化效应; 在整个振荡阶段, 空泡界面附近存在破碎的小泡. 当输入电压较高时, 空泡底部的小泡数量显著增多. (4)由于液氮空泡浮力系数较大, 液氮空泡在演化后期空泡整体向上迁移显著, 液氮空泡底部收缩更快产生凹陷, 促使空泡变为环状.

     

  • 图  1  低温介质单空泡演化观测实验平台总体示意图(左)和实物图(右) (1.实验罐 2.真空隔热层 3.真空泵 4.高速相机5.电火花空泡发生器6. LED灯 7.柔光布 8.真空罐 9.电脑 10.低温电极)

    Figure  1.  Schematic (left) and physical (right) picture of cryogenic single bubble test rig (1. test tank 2. vacuum insulation chamber 3. vacuum pump 4. high speed camera 5. bubble generator 6. LED lamp 7. frosted glass 8. vacuum tank 9. computer 10. vacuum electrodes)

    图  2  不同放电电压下液氮和常温水空泡最大半径对比图

    Figure  2.  Comparison of the maximum radius between liquid nitrogen and normal temperature water at different discharge voltages

    图  3  自由场中常温水和液氮空泡瞬态特征的演化过程(水: T = 298.36 K, pair = 118.325 kPa; 液氮: T = 298.36 K, pair = 118.325 kPa)

    Figure  3.  Unsteady evolution of ambient water and liquid nitrogen single bubble in free field (water: T = 298.36 K, pair = 118.325 kPa; liquid nitrogen: T = 298.36 K, pair = 118.325 kPa)

    图  4  自由场中常温水和液氮空泡半径的变化曲线

    Figure  4.  Single bubble radius curves of ambient water and liquid nitrogen in free field

    图  5  自由场中常温水和液氮单空泡球形演化阶段空泡半径、速度以及加速度的变化曲线

    Figure  5.  Radius, velocity, and acceleration curve of single bubble in ambient water and liquid nitrogen during spherical evolution in free field

    图  6  自由场中液氮空泡收缩过程典型的空泡形态

    Figure  6.  Typical shape during liquid nitrogen bubble shrinking stage

    图  7  自由场中常温水和液氮单空泡振荡阶段空泡无量纲半径变化曲线

    Figure  7.  Dimensionless radius curve of single bubble in ambient water and liquid nitrogen during oscillation stage in free field

    图  8  液氮单空泡振荡初期空泡半径变化曲线

    Figure  8.  Radius curve of liquid nitrogen bubble at the beginning of oscillation stage

    图  9  液氮单空泡振荡初期t6 ~ t15时刻分别对应的瞬态实验图像

    Figure  9.  Transient images of liquid nitrogen bubble corresponding to moments t6 ~ t15 at the beginning of oscillation stage

    图  10  不同输入电压下液氮空泡在振荡阶段典型的空泡形态

    Figure  10.  Typical shape of liquid nitrogen bubble in the oscillation stage at different input voltages

    图  11  液氮单空泡上升阶段空泡半径的变化曲线

    Figure  11.  Radius curve of liquid nitrogen single bubble during up stage

    图  12  液氮单空泡上升阶段t16~t31时刻分别对应的瞬态实验图像

    Figure  12.  Transient images of liquid nitrogen bubble corresponding to moments t16~t31 at the beginning of up stage

    图  13  空泡图像沿选定直线Line1上的灰度分布得到的时空处理结果

    Figure  13.  Temporal-spatial processing results obtained from the grayscale distribution along the selected Line1 on the single bubble image

    图  14  自由场中常温水和液氮单空泡沿特定直线的灰度值时空分布云图

    Figure  14.  Temporal-spatial processing results obtained from the grayscale distribution along the selected line for single bubble of ambient water and liquid nitrogen in free field

    表  1  输入电压400 V时实验参数与实验结果

    Table  1.   Experimental conditions and results when the input voltage is 400 V

    CaseTemperature
    Tl/K
    Pressure
    pair/kPa
    Vapor pressure
    pv/kPa
    Density
    ρ/(kg·m−3)
    Maximum radius
    Rm/mm
    Vertical distance
    h/mm
    water298.36118.3253.21996.9513.76100
    liquid
    nitrogen
    77.41118.325101.98806.389.48100
    下载: 导出CSV
  • [1] Brennen CE. Cavitation and Bubble Dynamics. Oxford: Oxford University Press, 1995
    [2] 季斌, 程怀玉, 黄彪, 罗先武, 彭晓星, 龙新平. 空化水动力学非定常特性研究进展及展望. 力学进展, 2019, 49: 201906 doi: 10.6052/1000-0992-17-012

    Ji Bin, Cheng Huaiyu, Huang Biao, Luo Xianwu, Peng Xiaoxing, Long Xinping. Research progresses and prospects of unsteady hydrodynamics characteristics for cavitation. Advances in Mechanics, 2019, 49: 201906 (in Chinese) doi: 10.6052/1000-0992-17-012
    [3] Huang B, Young YL. Combined experimental and computational investigation of unsteady structure of sheet/cloud cavitation. Journal of Fluids Engineering, 2013, 135(7): 071301 doi: 10.1115/1.4023650
    [4] Fan YD, Chen TR, Liang WD, et al. Numerical and theoretical investigations of the cavitation performance and instability for the cryogenic inducer. Renewable Energy, 2022, 184: 291-305 doi: 10.1016/j.renene.2021.11.076
    [5] 王一伟, 黄晨光, 杜特专, 方新, 梁乃刚. 航行体垂直出水载荷与空泡溃灭机理分析. 力学学报, 2012, 44(1): 39-48 doi: 10.6052/0459-1879-2012-1-lxxb2011-139

    Wang Yiwei, Huang Chenguang, Du Tezhuan, Fang Xin, Liang Naigang. Mechanism analysis about cavitation collapse load of underwater vehicles in a vertical launching process. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(1): 39-48 (in Chinese) doi: 10.6052/0459-1879-2012-1-lxxb2011-139
    [6] Hung CF, Hwangfu JJ. Experimental study of the behaviour of mini-charge underwater explosion bubbles near different boundaries. Journal of Fluid Mechanics, 2010, 651: 55-80
    [7] Zhang AM, Wang SP, Huang C, et al. Influences of initial and boundary conditions on underwater explosion bubble dynamics. European Journal of Mechanics, B/Fluids, 2013, 42: 69-91 doi: 10.1016/j.euromechflu.2013.06.008
    [8] Pröbsting S, Yarusevych S. Laminar separation bubble development on an airfoil emitting tonal noise. Journal of Fluid Mechanics, 2015, 780: 167-191
    [9] 程怀玉, 季斌, 龙新平, 槐文信. 空化对叶顶间隙泄漏涡演变特性及特征参数影响的大涡模拟研究. 力学学报, 2021, 53(05): 1268-1287 doi: 10.6052/0459-1879-20-415

    Cheng Huaiyu, Ji Bin, Long Xinping, Huai Wenxin. LES investigation on the influence of cavitation on the evolution and characteristics of tip leakage vortex. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1268-1287 (in Chinese) doi: 10.6052/0459-1879-20-415
    [10] Yang J, Xie T, Liu XH, et al. Study of unforced unsteadiness in centrifugal pump at partial flow rates. Journal of Thermal Science, 2021, 30: 88-99 doi: 10.1007/s11630-019-1241-2
    [11] Wang CM, Xiang L, Tan YH, et al. Experimental investigation of thermal effect on cavitation characteristics in a liquid rocket engine turbopump inducer. Chinese Journal of Aeronautics, 2021, 34(8): 48-57 doi: 10.1016/j.cja.2021.03.035
    [12] 黄彪, 樊亚丁, 梁文栋, 吴钦, 王国玉. 诱导轮液氧空化热力学效应数值计算研究. 北京理工大学学报, 2021, 41(01): 53-58

    Huang Biao, Fan Yading, Liang Wengdong, WU Qin, Wang Guoyu. Numerical Study on Thermodynamic Effect of the Inducer Cavitation in Liquid Oxygen. Transactions of Beijing Institute of Technology, 2021, 41(01): 53-58 (in Chinese)
    [13] Li DY, Ren ZP, Li Y, et al. Thermodynamic effects on the cavitation flow of a liquid oxygen turbopump. Cryogenics, 2021, 116(6): 103302
    [14] Liu YY, Li XJ, Ge MH, et al. Numerical investigation of transient liquid nitrogen cavitating flows with special emphasis on force evolution and entropy features. Cryogenics, 2021, 113: 103225
    [15] Ito Y, Tsunoda A, Kurishita Y, et al. Experimental visualization of cryogenic backflow vortex cavitation with thermodynamic effects. Journal of Propulsion and Power, 2016, 32(1): 71-82
    [16] Liang WD, Chen TR, Wang GY, et al. Investigation of unsteady liquid nitrogen cavitating flows with special emphasis on the vortex structures using mode decomposition methods. International Journal of Heat and Mass Transfer, 2020, 157: 119880 doi: 10.1016/j.ijheatmasstransfer.2020.119880
    [17] Chen TR, Mu ZD, Huang B, et al. Dynamic instability analysis of cavitating flow with liquid nitrogen in a converging−diverging nozzle. Applied Thermal Engineering, 2021, 192: 116870 doi: 10.1016/j.applthermaleng.2021.116870
    [18] Wei AB, Yu LY, Gao R, et al. Unsteady cloud cavitation mechanisms of liquid nitrogen in convergent−divergent nozzle. Physics of Fluids, 2021, 33: 092116
    [19] Zheng ZY, Wang L, Wei TZ, et al. Experimental investigation of temperature effect on hydrodynamic characteristics of natural cavitation in rotational supercavitating evaporator for desalination. Renewable Energy, 2021, 174: 278-292 doi: 10.1016/j.renene.2021.04.038
    [20] 陈家成, 陈泰然, 梁文栋, 谭树林, 耿昊. 收缩扩张管内液氮空化流动演化过程试验研究. 力学学报, 2022, 54(5): 1242-1256 doi: 10.6052/0459-1879-21-614

    Chen Jiacheng, Chen Tairan, Liang Wendong, Tan Shulin, Geng Hao. Experimental study on the evolution of liquid nitrogen cavitating flows through converging-diverging nozzle. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1242-1256 (in Chinese) doi: 10.6052/0459-1879-21-614
    [21] Hord J. Cavitation in liquid cryogens. II–Hydrofoil, NASA Contractor Report, NASA CR–2156, 1973
    [22] Hord J. Cavitation in liquid cryogens. III–Ogives, NASA Contractor Report , NASA CR-2242, 1973
    [23] Ohira K, Nakayama T, Nagai T. Cavitation flow instability of subcooled liquid nitrogen in converging-diverging nozzles. Cryogenics, 2012, 52(1): 35-44 doi: 10.1016/j.cryogenics.2011.11.001
    [24] Zhu JK, Xie HJ, Feng KS, et al. Unsteady cavitation characteristics of liquid nitrogen flows through venturi tube. International Journal of Heat and Mass Transfer, 2017, 112: 544-552 doi: 10.1016/j.ijheatmasstransfer.2017.04.036
    [25] Zhu JK, Wang SH, Zhang XB. Influences of thermal effects on cavitation dynamics in liquid nitrogen through venturi tube. Physics of Fluids, 2020, 32: 012105
    [26] Chen TR, Chen H, Liang WD, et al. Experimental investigation of liquid nitrogen cavitating flows in converging-diverging nozzle with special emphasis on thermal transition. International Journal of Heat and Mass Transfer, 2019, 132: 618-630 doi: 10.1016/j.ijheatmasstransfer.2018.11.157
    [27] Liang WD, Chen TR, Wang GY, et al. Experimental investigations on transient dynamics of cryogenic cavitating flows under different free-stream conditions. International Journal of Heat and Mass Transfer, 2021, 178: 121537 doi: 10.1016/j.ijheatmasstransfer.2021.121537
    [28] Lord Rayleigh OM. On the pressure developed in a liquid during the collapse of a spherical cavity. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1917, 34(200): 94-98 doi: 10.1080/14786440808635681
    [29] Yuan H, Prosperetti A. Gas-liquid heat transfer in a bubble collapsing near a wall. Physics of Fluids, 1997, 9(1): 127-142 doi: 10.1063/1.869153
    [30] Blake JR, Taib BB, Doherty G, Transient cavities near boundaries. Part 1. Rigid boundary. Journal of Fluid Mechanics, 1986, 170: 479-497
    [31] Blake JR, Taib BB, Doherty G. Transient cavities near boundaries part 2. Free surface. Journal of Fluid Mechanics, 1987, 181: 197-212
    [32] Lee M, Klaseboer E, Khoo BC. On the boundary integral method for the rebounding bubble. Journal of Fluid Mechanics, 2007, 570: 407-429 doi: 10.1017/S0022112006003296
    [33] Zhang AM, Li S, Cui J. Study on splitting of a toroidal bubble near a rigid boundary. Physics of Fluids, 2015, 27(6): 809-822
    [34] Supponen O, Obreschkow D, Kobel P, et al. Shock waves from nonspherical cavitation bubbles. Physical Review Fluids, 2017, 2(9): 093601
    [35] Obreschkow D, Tinguely M, Dorsaz N, et al. Universal scaling law for jets of collapsing bubbles. Physical Review Letters, 2011, 107(20): 204501 doi: 10.1103/PhysRevLett.107.204501
    [36] Zhang AM, Cui P, Cui J, et al. Experimental study on bubble dynamics subject to buoyancy. Journal of Fluid Mechanics, 2015, 776: 137-160 doi: 10.1017/jfm.2015.323
    [37] Phan TH, Kadivar E. Thermodynamic effects on single cavitation bubble dynamics under various ambient temperature conditions, Physics of Fluids, 2022, 34: 023318
    [38] Florschuetz LW, Chao BT. On the mechanics of vapor bubble collapse. Journal of Heat Transfer, 1965, 87(2): 209
    [39] Barbaglia MO, Bonetto FJ. Dependence on liquid temperature and purity of light emission characteristics in single cavitation bubble luminescence. Journal of Applied Physics, 2004, 95: 1756-1759
    [40] Takada N, Nakano T, Sasaki K. Formation of cavitation-induced pits on target surface in liquid-phase laser ablation. Applied Physics A-Materials Science & Processing, 2010, 101: 255-258
    [41] Dular M, Coutier-Delgosha O. Thermodynamic effects during growth and collapse of a single cavitation bubble. Journal of Fluid Mechanics, 2013, 736: 44-66 doi: 10.1017/jfm.2013.525
    [42] Tomita Y, Tsubota M, Nagane K, et al. Behavior of laser-induced cavitation bubbles in liquid nitrogen. Journal of Applied Physics, 2000, 88(10): 5993-6001 doi: 10.1063/1.1320028
    [43] Ma XJ, Huang B, Zhao X, et al. Comparisons of spark-charge bubble dynamics near the elastic and rigid boundaries. Ultrasonics Sonochemistry, 2018, 43: 80-90
    [44] Turangan CK, Ong GP, Klaseboer E, et al. Experimental and numerical study of transient bubble-elastic membrane interaction. Journal of Applied Physics, 2006, 100(5): 054910 doi: 10.1063/1.2338125
    [45] Huang GH, Zhang MD, Han L, et al. Physical investigation of acoustic waves induced by the oscillation and collapse of the single bubble. Ultrasonics Sonochemistry, 2021, 72: 105440 doi: 10.1016/j.ultsonch.2020.105440
    [46] Refprop N. Reference fluid thermodynamic and transport properties. NIST Reference Database, Version 9, 2013
    [47] 韩磊, 张敏弟, 黄国豪, 黄彪. 自由场空泡溃灭过程能量转化机制研究. 力学学报, 2021, 53(5): 1288-1301 doi: 10.6052/0459-1879-21-006

    Han Lei, Zhang Mindi, Huang Guohao, Huang Biao. Energy transformation mechanism of a gas bubble collapse in the free-field. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1288-1301(in Chinese) doi: 10.6052/0459-1879-21-006
    [48] Plesset SM. On the stability of fluid flows with spherical symmetry. Journal of Applied Physics, 1954, 25(1): 96-99 doi: 10.1063/1.1721529
    [49] Haas JF, Sturtevant B. Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities. Journal of Fluid Mechanics, 1987, 181: 41-76 doi: 10.1017/S0022112087002003
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  220
  • HTML全文浏览量:  83
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-06
  • 录用日期:  2022-06-13
  • 网络出版日期:  2022-06-14
  • 刊出日期:  2022-09-18

目录

    /

    返回文章
    返回