STUDY ON REBOUND BEHAVIOUR AND MAXIMUM SPREADING OF SHEAR-THINNING FLUID DROPLET IMPACTING ON A HYDROPHOBIC SURFACE
-
摘要: 非牛顿流体液滴撞击固体表面的行为广泛存在于多种工农业生产中, 然而目前相关研究主要关注牛顿流体, 非牛顿流变特性对液滴撞击动力学的影响机制还有待探索. 本文研究了纯剪切变稀流体(质量分数≤ 0.03%的黄原胶水溶液)液滴撞击疏水表面后的最大铺展及回弹行为. 通过高速摄像技术捕获液滴撞击疏水表面的运动过程及形态变化, 研究了液滴的铺展回缩过程. 实验结果表明, 在相同We下, 剪切变稀特性对液滴撞击疏水表面后的铺展阶段影响很小, 但对回缩阶段影响很大. 黄原胶浓度增加使得液滴依次表现出部分回弹、完全回弹和表面沉积三种不同的回弹行为. 利用能量守恒定律推导出了液滴能在疏水表面上回弹的临界无量纲高度ξc理论值. 发现牛顿流体与非牛顿流体液滴最大无量纲高度ξmax均符合标度律ξmax ~ αWe斜率随黄原胶浓度增大而减小. 基于有效雷诺数Reeff, 提出了一种有效黏度μeff表达式, 并据此建立了剪切变稀流体的最大无量纲直径βmax预测模型. 该模型在较广We区间与实验测量值取得了良好一致.Abstract: Controlling the non-Newtonian fluid droplet impact process is of profound importance not only in academic interesting but also in the practice applications. However, the existing research about droplet impacting on solid surface mainly focuses on the Newtonian fluid, and the mechanism of non-Newtonian properties on droplet impact dynamics remains to be explored. In this study, the maximum spreading and rebound behaviour of shear-thinning fluids (xanthan gum aqueous solution with mass fraction ≤ 0.03%) droplets impacting on hydrophobic surface have been investigated experimentally. The morphological changes of droplets impact onto hydrophobic surface were captured by means of high-speed imaging technology, the spreading and recoiling process were studied. The experimental results show that under the same We, xanthan gum concentration showed little effect on the maximum spreading of droplets. However, the droplets differed greatly with different concentration in the recoiling stage, and with the increase of xanthan gum concentration three kinds of rebound behaviours, namely partial rebound, full rebound and deposition, were exhibited. The theoretical value of critical dimensionless recoiling height ξc for droplet rebound on the hydrophobic surface was obtained by using the energy conservation law, and the maximum dimensionless recoiling height ξmax of droplets was found to be consistent with the scalar law ξmax ~ αWe, with the slope decreasing with increasing xanthan gum concentration. Based on the effective Reynolds number Reeff, an effective viscosity μeff expression was proposed, and the maximum dimensionless diameter βmax prediction model of shear-thinning fluid droplets was established. The predicted value of βmax obtained by the model achieved good agreement with the experimental measured value over a wide range of We.
-
Key words:
- droplet impact /
- non-Newtonian fluid /
- maximum spreading /
- rebound /
- maximum recoiling
-
表 1 实验流体物性参数及Carreau模型参数
Table 1. Properties and Carreau model parameters of test fluids
Test fluids Water XG0.005 XG0.015 XG0.03 $\rho\left(\mathrm{kg} / \mathrm{m}^{3}\right) $ 998.0 998.0 998.0 998.0 $\sigma ({\rm{mN}}/{\rm{m}}) $ 72.10 72.05 71.95 71.50 $\sigma \;{\rm{or}} \;({\rm{mPa} }\cdot{\rm{s} })$ 0.89 1.41 1.81 3.27 $\mu_{0}(\mathrm{mPa}\cdot\mathrm{s})$ − 58.21 159.21 954.52 $\lambda \;{\rm{in} }\; \mathrm{Eq} .(3)$ − 383.93 362.23 356.93 $n \;{\rm{in} }\; {\rm{Eq}}.(3)$ − 0.54 0.53 0.42 -
[1] Lohse D. Fundamental fluid dynamics challenges in inkjet printing. Annual Review of Fluid Mechanics, 2022, 54: 349-382 [2] Deng HX, Huang YL, Wu SB, et al. Binder jetting additive manufacturing: Three-dimensional simulation of micro-meter droplet impact and penetration into powder bed. Journal of Manufacturing Processes, 2022, 74: 365-373 doi: 10.1016/j.jmapro.2021.12.019 [3] 尚超, 阳倦成, 张杰等. 镓铟锡液滴撞击泡沫金属表面的运动学特性研究. 力学学报, 2019, 51(2): 380-391 (Shang Chao, Yang Juancheng, Zhang Jie, et al. Experimental study on the dynamic characteristics of Galinstan droplet impacting on the metal foam surface. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 380-391 (in Chinese) doi: 10.6052/0459-1879-18-307 [4] 孟旭, 王增辉, 蔡志洋等. 强磁场影响下镓液滴撞击固壁的实验研究. 力学学报, 2022, 54(2): 396-404 (Meng Xu, Wang Zenghui, Cai Zhiyang, et al. Experimental study of gallium droplet impacting on solid wall under the strong magnetic field. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 396-404 (in Chinese) doi: 10.6052/0459-1879-21-513 [5] Shen MG, Li BQ, Bai Y. Numerical modeling of YSZ droplet impact/spreading with solidification microstructure formation in plasma spraying. International Journal of Heat and Mass Transfer, 2020, 150: 119267.1-119267.13 [6] Melayil KR, Mitra SK. Wetting, adhesion, and droplet impact on face masks. Langmuir, 2021, 37(8): 2810-2815 doi: 10.1021/acs.langmuir.0c03556 [7] Rioboo R, Tropea C, Marengo M. Outcomes from a drop impact on solid surfaces. Atomization Spray, 2001, 11(2): 155-165 [8] Wang H, Wu Q, Okagaki J, et al. Bouncing behavior of a water droplet on a super-hydrophobic surface near freezing temperatures. International Journal of Heat and Mass Transfer, 2021, 174: 121304.1-121304.14 [9] Kumar B, Chatterjee S, Agrawal A, et al. Evaluating a transparent coating on a face shield for repelling airborne respiratory droplets. Physics of Fluids, 2021, 33(11): 111705.1-111705.10 [10] 康峰, 吴潇逸, 王亚雄等. 农药雾滴沉积特性研究进展与展望. 农业工程学报, 2021, 37(20): 1-14 (Kang Feng, Wu Xiaoyi, Wang Yaxiong, et al. Research progress and prospect of pesticide droplet deposition characteristics. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(20): 1-14 (in Chinese) doi: 10.11975/j.issn.1002-6819.2021.20.001 [11] An SM, Lee SY. Observation of the spreading and receding behavior of a shear-thinning liquid drop impacting on dry solid surfaces. Experimental Thermal and Fluid Science, 2012, 37: 37-45 doi: 10.1016/j.expthermflusci.2011.09.018 [12] 春江, 王瑾萱, 徐晨等. 液滴撞击超亲水表面的最大铺展直径预测模型. 物理学报, 2021, 70(10): 106801.1-106801.11 (Chun Jiang, Wang Jinxuan, Xu Chen, et al. Theoretical model of maximum spreading diameter on superhydrophilic surfaces. Acta Physica Sinica, 2021, 70(10): 106801.1-106801.11 (in Chinese) [13] Šikalo š, Wilhelm H-D, Roisman I V, et al. Dynamic contact angle of spreading droplets: Experiments and simulations. Physics of Fluids, 2005, 17(6): 062103.1-062103.13 [14] Mao T, Kuhn DCS, Tran H. Spread and rebound of liquid droplets upon impact on flat surfaces. AIChE Journal, 1997, 43(9): 2169-2179 doi: 10.1002/aic.690430903 [15] Lin SJ, Zhao BY, Zou S, et al. Impact of viscous droplets on different wettable surfaces: Impact phenomena, the maximum spreading factor, spreading time and post-impact oscillation. Journal of colloid and interface science, 2018, 516: 86-97 doi: 10.1016/j.jcis.2017.12.086 [16] Lee JB, Laan N, de Bruin KG, et al. Universal rescaling of drop impact on smooth and rough surfaces. Journal of Fluid Mechanics, 2016, 786: R4.1-R4.11 [17] Laan N, de Bruin KG, Bartolo D, et al. Maximum diameter of impacting liquid droplets. Physical Review Applied, 2014, 2(4): 044018.1-044018.7 [18] Roisman IV. Inertia dominated drop collisions. II. An analytical solution of the Navier–Stokes equations for a spreading viscous film. Physics of Fluids, 2009, 21(5): 052104.1-052104.11 [19] Du J, Wang X, Li Y, et al. Analytical consideration for the maximum spreading factor of liquid droplet impact on a smooth solid surface. Langmuir, 2021, 37(24): 7582-7590 doi: 10.1021/acs.langmuir.1c01076 [20] Bergeron V, Bonn D, Martin JY, et al. Controlling droplet deposition with polymer additives. Nature, 2000, 405(6788): 772-775 doi: 10.1038/35015525 [21] Smith MI, Bertola V. Effect of polymer additives on the wetting of impacting droplets. Physical Review Letters, 2010, 104(15): 154502.1-154502.4 [22] Zang D, Zhang W, Song J, et al. Rejuvenated bouncing of non-Newtonian droplet via nanoparticle enwrapping. Applied Physics Letters, 2014, 105(23): 231603.1-231603.3 [23] Huh HK, Jung S, Seo KW, et al. Role of polymer concentration and molecular weight on the rebounding behaviors of polymer solution droplet impacting on hydrophobic surfaces. Microfluid Nanofluid, 2015, 18(5): 1221-1232 [24] Izbassarov D, Muradoglu M. Effects of viscoelasticity on drop impact and spreading on a solid surface. Physical Review Fluids, 2016, 1(2): 023302.1-023302.18 [25] 韩丁丁, 刘浩然, 刘难生等. 黏弹性液滴撞击疏水壁面的动力学研究. 中国科学:物理学 力学 天文学, 2018, 48(09): 250-257 (Han Dingding, Liu Haoran, Liu Nansheng, et al. Dynamics of viscoelastic drops impacting onto a hydrophobic solid substrate. Scientia Sinica (Physica,Mechanica &Astronomica) , 2018, 48(09): 250-257 (in Chinese) [26] 沈学峰, 刘海龙, 王建成等. 高分子材料添加物对液滴撞击超疏水壁面后奇异射流行为的抑制机制研究. 工程热物理学报, 2022, 43(01): 123-127 (Shen Xuefeng, Liu Hailong, Wang Jiancheng, et al. Investigation on the suppression mechanism of singular jet behavior after droplets impact on superhydrophobic surfaces by adding polymer additives. Journal of Engineering Thermophysics, 2022, 43(01): 123-127 (in Chinese) [27] Varagnolo S, Mistura G, Pierno M, et al. Sliding droplets of Xanthan solutions: A joint experimental and numerical study. The European Physical Journal E, 2015, 38(11): 1-8 [28] Lindner A, Bonn D, Meunier J. Viscous fingering in a shear-thinning fluid. Physics of Fluids, 2000, 12(2): 256-261 doi: 10.1063/1.870303 [29] German G, Bertola V. Impact of shear-thinning and yield-stress drops on solid substrates. Journal of Physics:Condensed Matter, 2009, 21(37): 375111.1-375111.16 [30] An SM, Lee SY. Maximum spreading of a shear-thinning liquid drop impacting on dry solid surfaces. Experimental Thermal and Fluid Science, 2012, 38: 140-148 doi: 10.1016/j.expthermflusci.2011.12.003 [31] Dechelette A, Sojka P E, Wassgren C R. Non-Newtonian drops spreading on a flat surface. Journal of Fluids Engineering, 2010, 132(10): 101302.1-101302.7 [32] 沈学峰, 曹宇, 王军锋等. 剪切变稀液滴撞击不同浸润性壁面的数值模拟研究. 物理学报, 2020, 69(6): 064702.1-064702.10 (Shen Xuefeng, Cao Yu, Wang Junfeng, et al. Numerical simulation of shear-thinning droplet impact on surfaces with different wettability. Acta Physica Sinica, 2020, 69(6): 064702.1-064702.10 (in Chinese) [33] Carreau PJ. Rheological equations from molecular network theories. Transactions of the Society of Rheology, 1972, 16(1): 99-127 doi: 10.1122/1.549276 [34] Wilamowski BM, Yu H. Improved computation for Levenberg–Marquardt training. IEEE Transactions on Neural Networks, 2010, 21(6): 930-937 doi: 10.1109/TNN.2010.2045657 [35] Gao LC, McCarthy TJ. Contact angle hysteresis explained. Langmuir, 2006, 22(14): 6234-6237 doi: 10.1021/la060254j [36] Papageorgiou DT. On the breakup of viscous liquid threads. Physics of fluids, 1995, 7(7): 1529-1544 doi: 10.1063/1.868540 [37] Shen C, Zhang CC, Gao MH, et al. Investigation of effects of receding contact angle and energy conversion on numerical prediction of receding of the droplet impact onto hydrophilic and superhydrophilic surfaces. International Journal of Heat and Fluid Flow, 2018, 74: 89-109 doi: 10.1016/j.ijheatfluidflow.2018.09.015 [38] Andrade R, Skurtys O, Osorio F. Development of a new method to predict the maximum spread factor for shear thinning drops. Journal of Food Engineering, 2015, 157: 70-76 doi: 10.1016/j.jfoodeng.2015.02.017 [39] Chandra S, Avedisian CT. On the collision of a droplet with a solid surface. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 1991, 432(1884): 13-41 [40] Yonemoto Y, Kunugi T. Analytical consideration of liquid droplet impingement on solid surfaces. Scientific Reports, 2017, 7(1): 1-11 doi: 10.1038/s41598-016-0028-x -