EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

剪切变稀流体液滴撞击疏水表面回弹现象及最大铺展的研究

郑诺 刘海龙

郑诺, 刘海龙. 剪切变稀流体液滴撞击疏水表面回弹现象及最大铺展的研究. 力学学报, 待出版 doi: 10.6052/0459-1879-22-135
引用本文: 郑诺, 刘海龙. 剪切变稀流体液滴撞击疏水表面回弹现象及最大铺展的研究. 力学学报, 待出版 doi: 10.6052/0459-1879-22-135
ZHENG Nuo, LIU Hailong. Study on rebound behaviour and maximum spreading of shear-thinning fluid droplet impacting on a hydrophobic surface. Chinese Journal of Theoretical and Applied Mechanics, in press doi: 10.6052/0459-1879-22-135
Citation: ZHENG Nuo, LIU Hailong. Study on rebound behaviour and maximum spreading of shear-thinning fluid droplet impacting on a hydrophobic surface. Chinese Journal of Theoretical and Applied Mechanics, in press doi: 10.6052/0459-1879-22-135

剪切变稀流体液滴撞击疏水表面回弹现象及最大铺展的研究

doi: 10.6052/0459-1879-22-135
基金项目: 国家自然科学资助项目 (51876086)
详细信息
    作者简介:

    刘海龙, 教授, 主要研究方向: 多相流测试技术及工程应用, 非牛顿流体测试及分析模拟. E-mail: leo@ujs.edu.cn

  • 中图分类号: O359 + .1

STUDY ON REBOUND BEHAVIOUR AND MAXIMUM SPREADING OF SHEAR-THINNING FLUID DROPLET IMPACTING ON A HYDROPHOBIC SURFACE

  • 摘要: 非牛顿流体液滴撞击固体表面的行为广泛存在于多种工农业生产中, 然而目前相关研究主要关注牛顿流体, 非牛顿流变特性对液滴撞击动力学的影响机制还有待探索. 本文研究了纯剪切变稀流体(质量分数≤ 0.03%的黄原胶水溶液)液滴撞击疏水表面后的最大铺展及回弹行为. 通过高速摄像技术捕获液滴撞击疏水表面的运动过程及形态变化, 研究了液滴的铺展回缩过程. 实验结果表明, 在相同We下, 剪切变稀特性对液滴撞击疏水表面后的铺展阶段影响很小, 但对回缩阶段影响很大. 黄原胶浓度增加使得液滴依次表现出部分回弹、完全回弹和表面沉积三种不同的回弹行为. 利用能量守恒定律推导出了液滴能在疏水表面上回弹的临界无量纲高度ξc理论值. 发现牛顿流体与非牛顿流体液滴最大无量纲高度ξmax均符合标度律ξmax ~ αWe斜率随黄原胶浓度增大而减小. 基于有效雷诺数Reeff, 提出了一种有效黏度μeff表达式, 并据此建立了剪切变稀流体的最大无量纲直径βmax预测模型. 该模型在较广We区间与实验测量值取得了良好一致.

     

  • 图  1  实验装置示意图

    Figure  1.  Schematic diagram of the experimental setup

    图  2  液滴直径与高度定义

    Figure  2.  Measurements of the droplet diameter and height

    图  3  实验流体剪切黏度随剪切速率的变化

    Figure  3.  Variation of test fluids shear viscosity with shear rate

    图  4  去离子水液滴在疏水表面的平衡、铺展和回缩接触角

    Figure  4.  Equilibrium, spreading and recoiling contact angle of water droplet on hydrophobic surface

    图  5  不同浓度液滴在We = 34.5时撞击疏水表面的形态变化及回弹行为

    Figure  5.  Morphological changes and rebound behavior of droplets with different concentrations impacting on hydrophobic surface at We = 34.5

    图  6  不同浓度液滴在We = 34.5时撞击疏水表面的无量纲直径$ \beta $随无量纲时间$ t $的变化

    Figure  6.  Variation of dimensionless spreading diameter $ \beta $ of droplets impacting on hydrophobic surface at We = 34.5 for different concentrations with dimensionless time $ t $

    图  7  不同浓度液滴在We = 34.5时撞击疏水表面的无量纲回缩高度$ \xi $随无量纲时间$ t $的变化

    Figure  7.  Variation of dimensionless spreading diameter $ \xi $ of droplets impacting on hydrophobic surface at We = 34.5 for different concentrations with dimensionless time $ t $

    图  8  液滴在最高回缩与临界回弹时的示意图

    Figure  8.  Schematic diagram of droplet at maximum recoiling and critical rebound

    图  9  不同浓度液滴最大无量纲高度随We变化

    Figure  9.  Variation of maximum dimensionless recoiling height of droplets with We

    图  10  最大无量纲直径$ \beta_{\mathrm{m}} $预测值与测量值的对比

    Figure  10.  Comparison of predicted and measured maximum dimensionless spreading diameter $ \beta_{\mathrm{m}} $

    表  1  实验流体物性参数及Carreau模型参数

    Table  1.   Properties and Carreau model parameters of test fluids

    Test fluidsWaterXG0.005XG0.015XG0.03
    $\rho\left(\mathrm{kg} / \mathrm{m}^{3}\right) $998.0998.0998.0998.0
    $\sigma ({\rm{mN}}/{\rm{m}}) $72.1072.0571.9571.50
    $\sigma \;{\rm{or}} \;({\rm{mPa} }\cdot{\rm{s} })$0.891.411.813.27
    $\mu_{0}(\mathrm{mPa}\cdot\mathrm{s})$58.21159.21954.52
    $\lambda \;{\rm{in} }\; \mathrm{Eq} .(3)$383.93362.23356.93
    $n \;{\rm{in} }\; {\rm{Eq}}.(3)$0.540.530.42
    下载: 导出CSV
  • [1] Lohse D. Fundamental fluid dynamics challenges in inkjet printing. Annual Review of Fluid Mechanics, 2022, 54: 349-382
    [2] Deng HX, Huang YL, Wu SB, et al. Binder jetting additive manufacturing: Three-dimensional simulation of micro-meter droplet impact and penetration into powder bed. Journal of Manufacturing Processes, 2022, 74: 365-373 doi: 10.1016/j.jmapro.2021.12.019
    [3] 尚超, 阳倦成, 张杰等. 镓铟锡液滴撞击泡沫金属表面的运动学特性研究. 力学学报, 2019, 51(2): 380-391 (Shang Chao, Yang Juancheng, Zhang Jie, et al. Experimental study on the dynamic characteristics of Galinstan droplet impacting on the metal foam surface. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 380-391 (in Chinese) doi: 10.6052/0459-1879-18-307
    [4] 孟旭, 王增辉, 蔡志洋等. 强磁场影响下镓液滴撞击固壁的实验研究. 力学学报, 2022, 54(2): 396-404 (Meng Xu, Wang Zenghui, Cai Zhiyang, et al. Experimental study of gallium droplet impacting on solid wall under the strong magnetic field. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 396-404 (in Chinese) doi: 10.6052/0459-1879-21-513
    [5] Shen MG, Li BQ, Bai Y. Numerical modeling of YSZ droplet impact/spreading with solidification microstructure formation in plasma spraying. International Journal of Heat and Mass Transfer, 2020, 150: 119267.1-119267.13
    [6] Melayil KR, Mitra SK. Wetting, adhesion, and droplet impact on face masks. Langmuir, 2021, 37(8): 2810-2815 doi: 10.1021/acs.langmuir.0c03556
    [7] Rioboo R, Tropea C, Marengo M. Outcomes from a drop impact on solid surfaces. Atomization Spray, 2001, 11(2): 155-165
    [8] Wang H, Wu Q, Okagaki J, et al. Bouncing behavior of a water droplet on a super-hydrophobic surface near freezing temperatures. International Journal of Heat and Mass Transfer, 2021, 174: 121304.1-121304.14
    [9] Kumar B, Chatterjee S, Agrawal A, et al. Evaluating a transparent coating on a face shield for repelling airborne respiratory droplets. Physics of Fluids, 2021, 33(11): 111705.1-111705.10
    [10] 康峰, 吴潇逸, 王亚雄等. 农药雾滴沉积特性研究进展与展望. 农业工程学报, 2021, 37(20): 1-14 (Kang Feng, Wu Xiaoyi, Wang Yaxiong, et al. Research progress and prospect of pesticide droplet deposition characteristics. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(20): 1-14 (in Chinese) doi: 10.11975/j.issn.1002-6819.2021.20.001
    [11] An SM, Lee SY. Observation of the spreading and receding behavior of a shear-thinning liquid drop impacting on dry solid surfaces. Experimental Thermal and Fluid Science, 2012, 37: 37-45 doi: 10.1016/j.expthermflusci.2011.09.018
    [12] 春江, 王瑾萱, 徐晨等. 液滴撞击超亲水表面的最大铺展直径预测模型. 物理学报, 2021, 70(10): 106801.1-106801.11 (Chun Jiang, Wang Jinxuan, Xu Chen, et al. Theoretical model of maximum spreading diameter on superhydrophilic surfaces. Acta Physica Sinica, 2021, 70(10): 106801.1-106801.11 (in Chinese)
    [13] Šikalo š, Wilhelm H-D, Roisman I V, et al. Dynamic contact angle of spreading droplets: Experiments and simulations. Physics of Fluids, 2005, 17(6): 062103.1-062103.13
    [14] Mao T, Kuhn DCS, Tran H. Spread and rebound of liquid droplets upon impact on flat surfaces. AIChE Journal, 1997, 43(9): 2169-2179 doi: 10.1002/aic.690430903
    [15] Lin SJ, Zhao BY, Zou S, et al. Impact of viscous droplets on different wettable surfaces: Impact phenomena, the maximum spreading factor, spreading time and post-impact oscillation. Journal of colloid and interface science, 2018, 516: 86-97 doi: 10.1016/j.jcis.2017.12.086
    [16] Lee JB, Laan N, de Bruin KG, et al. Universal rescaling of drop impact on smooth and rough surfaces. Journal of Fluid Mechanics, 2016, 786: R4.1-R4.11
    [17] Laan N, de Bruin KG, Bartolo D, et al. Maximum diameter of impacting liquid droplets. Physical Review Applied, 2014, 2(4): 044018.1-044018.7
    [18] Roisman IV. Inertia dominated drop collisions. II. An analytical solution of the Navier–Stokes equations for a spreading viscous film. Physics of Fluids, 2009, 21(5): 052104.1-052104.11
    [19] Du J, Wang X, Li Y, et al. Analytical consideration for the maximum spreading factor of liquid droplet impact on a smooth solid surface. Langmuir, 2021, 37(24): 7582-7590 doi: 10.1021/acs.langmuir.1c01076
    [20] Bergeron V, Bonn D, Martin JY, et al. Controlling droplet deposition with polymer additives. Nature, 2000, 405(6788): 772-775 doi: 10.1038/35015525
    [21] Smith MI, Bertola V. Effect of polymer additives on the wetting of impacting droplets. Physical Review Letters, 2010, 104(15): 154502.1-154502.4
    [22] Zang D, Zhang W, Song J, et al. Rejuvenated bouncing of non-Newtonian droplet via nanoparticle enwrapping. Applied Physics Letters, 2014, 105(23): 231603.1-231603.3
    [23] Huh HK, Jung S, Seo KW, et al. Role of polymer concentration and molecular weight on the rebounding behaviors of polymer solution droplet impacting on hydrophobic surfaces. Microfluid Nanofluid, 2015, 18(5): 1221-1232
    [24] Izbassarov D, Muradoglu M. Effects of viscoelasticity on drop impact and spreading on a solid surface. Physical Review Fluids, 2016, 1(2): 023302.1-023302.18
    [25] 韩丁丁, 刘浩然, 刘难生等. 黏弹性液滴撞击疏水壁面的动力学研究. 中国科学:物理学 力学 天文学, 2018, 48(09): 250-257 (Han Dingding, Liu Haoran, Liu Nansheng, et al. Dynamics of viscoelastic drops impacting onto a hydrophobic solid substrate. Scientia Sinica (Physica,Mechanica &Astronomica), 2018, 48(09): 250-257 (in Chinese)
    [26] 沈学峰, 刘海龙, 王建成等. 高分子材料添加物对液滴撞击超疏水壁面后奇异射流行为的抑制机制研究. 工程热物理学报, 2022, 43(01): 123-127 (Shen Xuefeng, Liu Hailong, Wang Jiancheng, et al. Investigation on the suppression mechanism of singular jet behavior after droplets impact on superhydrophobic surfaces by adding polymer additives. Journal of Engineering Thermophysics, 2022, 43(01): 123-127 (in Chinese)
    [27] Varagnolo S, Mistura G, Pierno M, et al. Sliding droplets of Xanthan solutions: A joint experimental and numerical study. The European Physical Journal E, 2015, 38(11): 1-8
    [28] Lindner A, Bonn D, Meunier J. Viscous fingering in a shear-thinning fluid. Physics of Fluids, 2000, 12(2): 256-261 doi: 10.1063/1.870303
    [29] German G, Bertola V. Impact of shear-thinning and yield-stress drops on solid substrates. Journal of Physics:Condensed Matter, 2009, 21(37): 375111.1-375111.16
    [30] An SM, Lee SY. Maximum spreading of a shear-thinning liquid drop impacting on dry solid surfaces. Experimental Thermal and Fluid Science, 2012, 38: 140-148 doi: 10.1016/j.expthermflusci.2011.12.003
    [31] Dechelette A, Sojka P E, Wassgren C R. Non-Newtonian drops spreading on a flat surface. Journal of Fluids Engineering, 2010, 132(10): 101302.1-101302.7
    [32] 沈学峰, 曹宇, 王军锋等. 剪切变稀液滴撞击不同浸润性壁面的数值模拟研究. 物理学报, 2020, 69(6): 064702.1-064702.10 (Shen Xuefeng, Cao Yu, Wang Junfeng, et al. Numerical simulation of shear-thinning droplet impact on surfaces with different wettability. Acta Physica Sinica, 2020, 69(6): 064702.1-064702.10 (in Chinese)
    [33] Carreau PJ. Rheological equations from molecular network theories. Transactions of the Society of Rheology, 1972, 16(1): 99-127 doi: 10.1122/1.549276
    [34] Wilamowski BM, Yu H. Improved computation for Levenberg–Marquardt training. IEEE Transactions on Neural Networks, 2010, 21(6): 930-937 doi: 10.1109/TNN.2010.2045657
    [35] Gao LC, McCarthy TJ. Contact angle hysteresis explained. Langmuir, 2006, 22(14): 6234-6237 doi: 10.1021/la060254j
    [36] Papageorgiou DT. On the breakup of viscous liquid threads. Physics of fluids, 1995, 7(7): 1529-1544 doi: 10.1063/1.868540
    [37] Shen C, Zhang CC, Gao MH, et al. Investigation of effects of receding contact angle and energy conversion on numerical prediction of receding of the droplet impact onto hydrophilic and superhydrophilic surfaces. International Journal of Heat and Fluid Flow, 2018, 74: 89-109 doi: 10.1016/j.ijheatfluidflow.2018.09.015
    [38] Andrade R, Skurtys O, Osorio F. Development of a new method to predict the maximum spread factor for shear thinning drops. Journal of Food Engineering, 2015, 157: 70-76 doi: 10.1016/j.jfoodeng.2015.02.017
    [39] Chandra S, Avedisian CT. On the collision of a droplet with a solid surface. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 1991, 432(1884): 13-41
    [40] Yonemoto Y, Kunugi T. Analytical consideration of liquid droplet impingement on solid surfaces. Scientific Reports, 2017, 7(1): 1-11 doi: 10.1038/s41598-016-0028-x
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  31
  • HTML全文浏览量:  8
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 录用日期:  2022-05-06
  • 网络出版日期:  2022-05-01

目录

    /

    返回文章
    返回