EI、Scopus 收录

 引用本文: 陈皓, 郭明明, 田野, 陈尔达, 邓雪, 乐嘉陵, 李林静. 卷积神经网络在流场重构研究中的进展. 力学学报, 2022, 54(9): 2343-2360.
Chen Hao, Guo Mingming, Tian Ye, Chen Erda, Deng Xue, Le Jialing, Li Linjing. Progress of convolution neural networks in flow field reconstruction. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 2343-2360.
 Citation: Chen Hao, Guo Mingming, Tian Ye, Chen Erda, Deng Xue, Le Jialing, Li Linjing. Progress of convolution neural networks in flow field reconstruction. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 2343-2360.

## PROGRESS OF CONVOLUTION NEURAL NETWORKS IN FLOW FIELD RECONSTRUCTION

• 摘要: 近年来, 随着深度学习在图像处理、语音识别、自动驾驶、自然语言处理等领域迅速发展, 该技术也被越来越广泛地应用于处理具有复杂非线性、高维度、大数据量等特点的流体力学方向. 传统的方法无法有效地处理这些庞大的数据, 深度学习因其具有强大的函数拟合能力, 可以从大量的数据中挖掘有用的信息. 当前, 流体力学深度学习技术有了初步的一些研究成果, 在流动信息特征提取、多源数据信息融合及流场的智能重构等方面具有重要的工程价值, 其应用潜力逐渐得到证实. 如何利用地面风洞试验、数值模拟及飞行试验获取的数据进行深入挖掘, 快速智能感知及重构流场, 可为主动流动控制提供重要指导. 本文主要从深度学习不同类型的网络结构出发探讨了卷积神经网络在流场重构中的研究进展, 文章首先介绍卷积神经网络的一些基本概念以及基本网络结构, 之后简要介绍流场超分辨率重构网络、端到端的映射网络、长短期记忆网络的基本结构与理论, 并详细归纳出他们的改进形式在流场重构领域的一系列研究进展与成果, 最后对文章做出总结并探讨了流场重构深度学习技术所面临的挑战与展望.

Abstract: In recent years, with the rapid development of deep learning in image processing, speech recognition, automatic driving, natural language processing, and other fields, this technology is also more and more widely used to process fluid mechanics direction with the characteristics of complex non-linearity, high latitude and a large amount of data. Traditional methods can not effectively deal with these huge data. Due to its powerful function fitting ability, deep learning can mine useful information from a large amount of data. At present, the deep learning technology of fluid mechanics has some preliminary research results, it has important engineering value in flow information feature extraction, multi-sensor data information fusion and intelligent reconstruction of flow field, and its potential of application has been gradually confirmed. How to use the data obtained from ground wind tunnel test, numerical simulation and flight test to carry out in-depth mining, fast intelligent perception and reconstruction of flow field can provide important guidance for active flow control. Starting from different types of network structures of deep learning, this paper discusses the research progress of convolutional neural network in flow field reconstruction. Firstly, In this paper, we introduce some basic concepts and basic network structure of convolutional neural network, and then we briefly introduce the basic structure and theory of flow field super-resolution reconstruction network, end-to-end mapping network and short-term memory network (LSTM), a series of research progress and achievements of their improved forms in the field of flow field reconstruction are summarized in detail. Finally, we summarize the article and discuss the challenges and prospects of deep learning technology of flow field reconstruction.

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈