EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

W25Fe25Ni25Mo25高熵合金高速侵彻时的细观结构演化特性

陈海华 张先锋 赵文杰 高志林 刘闯 谈梦婷 熊玮 汪海英 戴兰宏

陈海华, 张先锋, 赵文杰, 高志林, 刘闯, 谈梦婷, 熊玮, 汪海英, 戴兰宏. W25Fe25Ni25Mo25高熵合金高速侵彻时的细观结构演化特性. 力学学报, 2022, 54(8): 1-12 doi: 10.6052/0459-1879-22-128
引用本文: 陈海华, 张先锋, 赵文杰, 高志林, 刘闯, 谈梦婷, 熊玮, 汪海英, 戴兰宏. W25Fe25Ni25Mo25高熵合金高速侵彻时的细观结构演化特性. 力学学报, 2022, 54(8): 1-12 doi: 10.6052/0459-1879-22-128
Chen Haihua, Zhang Xianfeng, Zhao Wenjie, Gao Zhilin, Liu Chuang, Tan Mengting, Xiong Wei, Wang Haiying, Dai Lanhong. Effect of microstructure on flow behavior during penetration of w25fe25ni25mo25 high-entropy alloy projectile. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 1-12 doi: 10.6052/0459-1879-22-128
Citation: Chen Haihua, Zhang Xianfeng, Zhao Wenjie, Gao Zhilin, Liu Chuang, Tan Mengting, Xiong Wei, Wang Haiying, Dai Lanhong. Effect of microstructure on flow behavior during penetration of w25fe25ni25mo25 high-entropy alloy projectile. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 1-12 doi: 10.6052/0459-1879-22-128

W25Fe25Ni25Mo25高熵合金高速侵彻时的细观结构演化特性

doi: 10.6052/0459-1879-22-128
基金项目: 国家自然科学基金(11790292); 国家自然科学基金委员会与中国工程物理研究院联合基金(U1730101)资助项目
详细信息
    作者简介:

    张先锋, 教授, 主要研究方向: 冲击动力学. E-mail: lynx@njust.edu.cn

  • 中图分类号: O382;TJ410

EFFECT OF MICROSTRUCTURE ON FLOW BEHAVIOR DURING PENETRATION OF W25Fe25Ni25Mo25 HIGH-ENTROPY ALLOY PROJECTILE

  • 摘要: 为了探究W25Fe25Ni25Mo25高熵合金弹体在侵彻过程中宏观变形行为与材料微细观结构之间的联系, 基于对两相流动模型的简化, 建立了考虑软、硬相密度、流速以及浓度差异的等截面直管两相流动演化模型. 类比宏观状态下侵彻弹体头部材料的流入流出特性, 选定分析区域, 建立两相细观结构下材料在分析区域的流入流出关系, 再结合细观结构演化方程, 给出了分析区域中浓度演化结果, 提出了表征材料浓度演化速率的流动稳定系数t/llength. 为了对比不同细观结构弹体的侵彻行为, 选取典型两相材料钨铜合金(W70Cu30), 基于小口径弹道枪发射平台开展两种弹体侵彻半无限钢靶试验, 对比两种合金弹体细观结构演化行为. 结果表明, 硬相浓度分布总体上体现“中心浓, 边缘稀”的特点; 硬相的浓度越高, 密度越大, 驱动速度越快, 则流动稳定系数t/llength值越小, 侵彻过程中弹体的流动稳定性越好, 弹体头部材料越容易形成连续的塑性流动带. 等截面直管两相流动演化模型可用于描述侵彻过程中弹体头部材料的流动稳定性, 揭示了侵彻过程中弹体头部变形与细观两相结构之间的关联机制.

     

  • 图  1  等截面直管内两相的流动

    Figure  1.  Two-phase flow in a straight pipe with equal cross section

    图  2  Wright-Frank的侵彻模型[31]

    Figure  2.  Penetration model of Wright-Frank[31]

    图  3  基于宏观侵彻模型的细观尺度结构演化推导过程

    Figure  3.  Derivation of microstructure evolution based on macro penetration model

    图  4  分析区域内两相流动特性

    Figure  4.  Two-phase flow characteristics in the analyzed region

    图  5  分析区域内两相流动的简化

    Figure  5.  Simplification of two-phase flow in the analyzed region

    图  6  两相流动模型

    Figure  6.  Two-phase flow model

    图  7  钨铜合金弹体

    Figure  7.  Tungsten-copper alloy projectile

    图  8  试验布局

    Figure  8.  Test layout

    图  9  铝弹托

    Figure  9.  Aluminum sabot

    图  10  弹体飞行姿态

    Figure  10.  Projectile flying attitude

    图  11  钨铜合金弹体侵彻后靶体状态

    Figure  11.  Target of tungsten-copper alloy projectile after penetration

    图  12  钨铜合金侵彻后残余弹体状态

    Figure  12.  Residual projectile of tungsten-copper alloy projectile after penetration

    图  13  W25Fe25Ni25Mo25高熵合金弹体侵彻后靶体状态[29]

    Figure  13.  Target of W25Fe25Ni25Mo25 high-entropy alloy projectile after penetration[29]

    13  W25Fe25Ni25Mo25高熵合金弹体侵彻后靶体状态[29] (续)

    13.  Target of W25Fe25Ni25Mo25 high-entropy alloy projectile after penetration[29] (continued)

    图  14  W25Fe25Ni25Mo25高熵合金侵彻后残余弹体状态[29]

    Figure  14.  Residual projectile of W25Fe25Ni25Mo25 high-entropy alloy projectile after penetration[29]

    图  15  W25Fe25Ni25Mo25高熵合金残余弹体[29]相浓度分布

    Figure  15.  Phase concentration distribution of W25Fe25Ni25Mo25 high-entropy alloy residual projectile[29]

    图  16  钨铜合金残余弹体相浓度分布

    Figure  16.  Phase concentration distribution of tungsten-copper alloy residual projectile

    图  17  各相浓度演化计算流程

    Figure  17.  Calculation process of concentration evolution

    图  18  不同驱动速度下BCC相的浓度演化

    Figure  18.  Phase evolution of BCC phase by different driven velocities

    图  19  不同驱动速度下W相的浓度演化图

    Figure  19.  Phase evolution of W phase by different driven velocities

    图  20  初始浓度对硬相浓度演化的影响

    Figure  20.  Effect of initial concentration on concentration evolution of hard phase

    图  21  密度对硬相浓度演化的影响

    Figure  21.  Effect of density on concentration evolution of hard phase

    图  22  钨铜合金残余弹体(V0 = 1079 m/s)

    Figure  22.  Tungsten-copper alloy residual projectile(V0 = 1079 m/s)

    图  23  W25Fe25Ni25Mo25高熵合金残余弹体(V0 = 1090 m/s)

    Figure  23.  W25Fe25Ni25Mo25 high-entropy alloy residual projectile (V0 = 1090 m/s)

    表  1  W25Fe25Ni25Mo25高熵合金残余弹体相浓度分布

    Table  1.   Phase concentration distribution of W25Fe25Ni25Mo25 high-entropy alloy residual projectile

    Region
    axial direction of head(a)BCC phase831784207866800677757379
    total102121021210212103231034010323
    percentage81.4%82.5%77.0%77.6%75.2%71.5%
    radial direction of head(b)BCC phase124021170914368151451690116341
    total198802030620306204482044820163
    percentage62.4%57.7%70.8%74.1%82.7%81.0%
    middle part of projectile (c)BCC phase663667078661455586635333546082
    total11699112908112326112326112908109431
    percentage59.4%62.7%54.7%52.2%47.2%42.1%
    下载: 导出CSV

    表  2  钨铜合金残余弹体相浓度分布

    Table  2.   Phase concentration distribution of tungsten-copper alloy residual projectile

    Region
    axial direction of head(a)BCC phase98532101109891009749899027
    total131904140067138171138171138060
    percentage74.7%72.2%64.5%70.6%71.7%
    radial direction of head(b)BCC phase230581214228193637215289199344
    total344256346480343964336030343380
    percentage67.0%61.8%56.3%64.1%58.1%
    middle part of projectile (c)BCC phase9814395875905098863580767
    total137588138060137088136512127827
    percentage71.3%69.4%66.0%64.9%63.2%
    下载: 导出CSV
  • [1] 谈梦婷, 张先锋, 包阔等. 装甲陶瓷的界面击溃效应. 力学进展, 2019, 49(00): 392-427 (Tan Mengting, Zhang Xianfeng, Bao Kuo, et al. Interface defeat of ceramic armor. Advances in Mechanics, 2019, 49(00): 392-427 (in Chinese)

    Tan Mengting, Zhang Xianfeng, Bao Kuo, et al. Interface defeat of ceramic armor. Advances in Mechanics, 2019, 49 (00): 392-427(in Chinese) )
    [2] Sun YX, Wang X, Ji C, et al. Experimental investigation on anti-penetration performance of polyurea coated ASTM1045 steel plate subjected to projectile impact. Defence Technology, 2021, 17(4): 18
    [3] 李想, 严子铭, 柳占立等. 基于仿真和数据驱动的先进结构材料设计. 力学进展, 2021, 51(1): 82-105 (Li Xiang, Yan Ziming, Liu Zhanli, et al. Advanced structural material design based on simulation and data-driven method. Advances in Mechanics, 2021, 51(1): 82-105 (in Chinese) doi: 10.6052/1000-0992-20-012

    Li Xiang, Yan Ziming, Liu Zhanli, et al. Advanced structural material design based on simulation and data-driven method. Advances in Mechanics, 2021, 51(1): 82-105(in Chinese) ) doi: 10.6052/1000-0992-20-012
    [4] 陈海华, 张先锋, 刘闯等. 高熵合金冲击变形行为研究进展. 爆炸与冲击, 2021, 41(04): 30-53 (Chen Haihua, Zhang Xianfeng, Liu Chuang, et al. Research progress on impact deformation behavior of high-entropy alloys. Explosion and Shock Waves, 2021, 41(04): 30-53 (in Chinese)

    Chen Haihua, Zhang Xianfeng, Liu Chuang, et al. Research progress on impact deformation behavior of high-entropy alloys. Explosion and Shock Waves, 2021, 41(04): 30-53(in Chinese) )
    [5] 陈海华, 张先锋, 熊玮等. WFeNiMo高熵合金动态力学行为及侵彻性能研究. 力学学报, 2020, 52(05): 1443-1453 (Chen Haihua, Zhang Xianfeng, Xiong Wei, et al. Dynamic mechanical behavior and penetration performance of WFeNiMo high-entropy alloy. Journal of Theoretical and Applied Mechanics, 2020, 52(05): 1443-1453 (in Chinese)

    Chen Haihua, Zhang Xianfeng, Xiong Wei, et al. Dynamic mechanical behavior and penetration performance of WFeNiMo high-entropy alloy. Journal of Theoretical and Applied Mechanics, 2020, 52(05): 1443-1453(in Chinese) )
    [6] 李建国, 黄瑞瑞, 张倩等. 高熵合金的力学性能及变形行为研究进展. 力学学报, 2020, 52(2)

    Li Jianguo, Huang Ruirui, Zhang Qian, et al. Mechnical properties and behaviors of high entropy alloys. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2)(in Chinese)
    [7] 陈泽坤, 蒋佳希, 王宇嘉等. 金属增材制造中的缺陷、组织形貌和成形材料力学性能. 力学学报, 2021, 53(12): 3190-3205 (Chen Zekun, Jiang Jiaxi, Wang Yujia, et al. Defects, microstructures and mechanical properties of materials fabricated by metal additive manufacturing. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3190-3205 (in Chinese) doi: 10.6052/0459-1879-21-472

    Chen Zekun, Jiang Jiaxi, Wang Yujia, et al. Defects, microstructures and mechanical properties of materials fabricated by metal additive manufacturing. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3190-3205(in Chinese) ) doi: 10.6052/0459-1879-21-472
    [8] 侯先苇, 熊玮, 陈海华等. 两种典型高熵合金冲击释能及毁伤特性研究. 力学学报, 2021, 53(9): 2528-2540 (Hou Xianwei, Xiong Wei, Chen Haihua, et al. Impact energy release and damage characteristics of two high-entropy alloys. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2528-2540 (in Chinese) doi: 10.6052/0459-1879-21-327

    Hou Xianwei, Xiong Wei, Chen Haihua, et al. Impact energy release and damage characteristics of two high-entropy alloys. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2528-2540(in Chinese) ) doi: 10.6052/0459-1879-21-327
    [9] 卜叶强, 王宏涛. 多主元合金中的化学短程有序. 力学进展, 2021, 51(4): 915-919 (Bu Yeqiang, Wang Hongtao. Short-range order in multicomponent alloys. Advances in Mechanics, 2021, 51(4): 915-919 (in Chinese) doi: 10.6052/1000-0992-21-027

    Bu Yeqiang, Wang Hongtao. Short-range order in multicomponent alloys. Advances in Mechanics, 2021, 51(4): 915-919(in Chinese) ) doi: 10.6052/1000-0992-21-027
    [10] 焦文俊, 陈小伟. 长杆高速侵彻问题研究进展. 力学进展, 2019, 49(00): 312-391 (Jiao Wenjun, Chen Xiaowei. Review on long-rod penetration at hypervelocity. Advances in Mechanics, 2019, 49(00): 312-391 (in Chinese)

    Jiao Wenjun, Chen Xiaowei. Review on long-rod penetration at hypervelocity. Advances in Mechanics, 2019, 49(00): 312-391(in Chinese) )
    [11] Liu XF, Tian ZL, Zhang XF, et al. "Self-sharpening" tungsten high-entropy alloy. Acta Materialia, 2020, 186: 257-266 doi: 10.1016/j.actamat.2020.01.005
    [12] Chen HH, Zhang XF, Liu C, et al. Theoretical analysis for self-sharpening penetration of tungsten high-entropy alloy into steel target with elevated impact velocities. Acta Mechanica Sinica, 2021, 37(6): 14
    [13] Jiao WJ, Chen XW. Influence of the mushroomed projectile's head geometry on long-rod penetration. International Journal of Impact Engineering, 2021, 148(2): 103769
    [14] Rubin MB. A simplified and modified model for long rod penetration based on ovoids of Rankine. International Journal of Impact Engineering, 2021, 156(2): 103927
    [15] Tang Q, Chen X, Deng Y, et al. An approximate compressible fluid model of long-rod hypervelocity penetration. International Journal of Impact Engineering, 2021
    [16] Tate A. A theory for the deceleration of long rods after impact. Journal of the Mechanics & Physics of Solids, 1967, 15(6): 387-399
    [17] Tate A. Long rod penetration models—Part II. Extensions to the hydrodynamic theory of penetration. International Journal of mechanical sciences, 1986, 28(9): 599-612
    [18] Alekseevskii VP. Penetration of a rod into a target at high velocity. Combustion Explosion & Shock Waves, 1966, 2(2): 63-66
    [19] Rosenberg Z, Marmor E, Mayseless M. On the hydrodynamic theory of long-rod penetration. International Journal of Impact Engineering, 1990, 10(1-4): 483-486 doi: 10.1016/0734-743X(90)90081-6
    [20] Walker JD, Anderson Jr CE. A time-dependent model for long-rod penetration. International Journal of Impact Engineering, 2015, 16(1): 19-48
    [21] 孙庚辰, 吴锦云, 赵国志等. 长杆弹垂直侵彻半无限厚靶板的简化模型. 兵工学报, 1981, 2(4): 1-8 (Sun Gengchen, Wu Jinyun, Zhao Guozhi, et al. A simplified model of the penetration of the long-rod penetrator against the plates with semi-infinite thickness at normal angle. Acta Armammentarii, 1981, 2(4): 1-8 (in Chinese)

    Sun Gengchen, Wu Jinyun, Zhao Guozhi, et al. A simplified model of the penetration of the long-rod penetrator against the plates with semi-infinite thickness at normal angle. Acta Armammentarii, 1981, 2(4): 1-8(in Chinese) )
    [22] Zhang LS, Huang FL. Model for long-rod penetration in to semi-infinite targets. Journal of Beijing University of Science and Technology, 2004, 13(3): 285-289
    [23] 李永池, 吴立朋, 罗春涛. 侵彻力学的一种新理论分析方法. 力学与实践, 2009(2): 5 (Li Yongchi, Wu Lipeng, Luo Chuntao. A new theoretical model for armor-piercing mechanics. Mechanics in Engineering, 2009(2): 5 (in Chinese)

    Li Yongchi, Wu Lipeng, Luo Chuntao. A new theoretical model for armor-piercing mechanics. Mechanics in Engineering, 2009(2): 5(in Chinese) )
    [24] Lu ZC, Wen HM. On the penetration of high strength steel rods into semi-infinite aluminium alloy targets. International Journal of Impact Engineering, 2018, 111: 1-10 doi: 10.1016/j.ijimpeng.2017.08.006
    [25] Rosenberg Z, Malka-Markovitz A, Kositski R. Inferring the ballistic resistance of thick targets from static deep indentation tests. International Journal of Protective Structures, 2018: 204141961876392
    [26] Anderson CE, Walker JD, Hauver GE. Target resistance for long-rod penetration into semi-infinite targets. Nuclear Engineering and Design, 1992, 138(1): 93-104 doi: 10.1016/0029-5493(92)90281-Y
    [27] Rosenberg Z, Dekel E. The relation between the penetration capability of long rods and their length to diameter ratio. International Journal of Impact Engineering, 1994, 15(2): 125-129 doi: 10.1016/S0734-743X(05)80025-9
    [28] 陈海华, 张先锋, 刘闯等. 基于弯管-流线模型的长杆弹侵彻头部材料流动过程分析. 兵工学报, 2019, 40(09): 1787-1796 (Chen Haihua, Zhang Xianfeng, Liu Chuang, et al. Analysis of material flow around projectile nose by elbow-streamline model during long-rod projectile penetrating into steel target. Acta Armamentarii, 2019, 40(09): 1787-1796 (in Chinese) doi: 10.3969/j.issn.1000-1093.2019.09.004

    Chen Haihua, Zhang Xianfeng, Liu Chuang, et al. Analysis of material flow around projectile nose by elbow-streamline model during long-rod projectile penetrating into steel target. Acta Armamentarii, 2019, 40(09): 1787-1796(in Chinese) ) doi: 10.3969/j.issn.1000-1093.2019.09.004
    [29] Chen HH, Zhang XF, Dai LH, et al. Experimental study on WFeNiMo high-entropy alloy projectile penetrating semi-infinite steel target. Defence Technology, 2021(6512), DOI: 10.1016/j.dt.2021.06.001
    [30] Li Z, Tasan CC, Pradeep KG, et al. A TRIP-assisted dual-phase high-entropy alloy: grain size and phase fraction effects on deformation behavior. Acta Materialia, 2017, 131: 323-335 doi: 10.1016/j.actamat.2017.03.069
    [31] Wright TW, Frank K. Approaches to penetration problems. Aberdeen Proving Ground, MD 21005-5066: Ballistic Research Laboratory, 1988
  • 加载中
图(24) / 表(2)
计量
  • 文章访问数:  45
  • HTML全文浏览量:  15
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-25
  • 录用日期:  2022-05-31
  • 网络出版日期:  2022-06-01

目录

    /

    返回文章
    返回