EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冲击波诱发含孔Mg-3 Al-1 Zn合金位错形核及演化行为研究

杨晓悦 徐爽 刘立胜

杨晓悦, 徐爽, 刘立胜. 冲击波诱发含孔Mg-3 Al-1 Zn合金位错形核及演化行为研究. 力学学报, 2022, 54(9): 1-12 doi: 10.6052/0459-1879-22-125
引用本文: 杨晓悦, 徐爽, 刘立胜. 冲击波诱发含孔Mg-3 Al-1 Zn合金位错形核及演化行为研究. 力学学报, 2022, 54(9): 1-12 doi: 10.6052/0459-1879-22-125
Yang Xiaoyue, Xu Shuang, Liu Lisheng. Shock-induced dislocation nucleation and evolution in mg-3 al-1 zn alloy with initial void. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 1-12 doi: 10.6052/0459-1879-22-125
Citation: Yang Xiaoyue, Xu Shuang, Liu Lisheng. Shock-induced dislocation nucleation and evolution in mg-3 al-1 zn alloy with initial void. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 1-12 doi: 10.6052/0459-1879-22-125

冲击波诱发含孔Mg-3 Al-1 Zn合金位错形核及演化行为研究

doi: 10.6052/0459-1879-22-125
基金项目: 国家自然科学基金资助项目(11402183, 51604206, 51974217)
详细信息
    作者简介:

    徐爽, 副教授, 主要研究方向: 材料变形机制与力学行为 . E-mail: xu_shuang@whut.edu.cn

  • 中图分类号: O34

SHOCK-INDUCED DISLOCATION NUCLEATION AND EVOLUTION IN MG-3 AL-1 ZN ALLOY WITH INITIAL VOID

  • 摘要: 由于汽车和航空航天领域对轻量化材料的需求, 镁及其合金因其具有低密度、高强度等一系列优点而拥有难以替代的地位. 目前, Mg-3Al-1Zn合金是目前应用最广泛的一种商用镁合金, 研究其在冲击载荷作用下的变形机理和冲击响应, 对促进镁合金在汽车和航空航天领域的应用具有重要意义. 本文针对$ {\text{[0001]}} $${\text{[10}}\bar {\text{1}} {\text{0]}}$两种不同冲击晶向, 采用分子动力学方法讨论了含有圆柱形孔洞的Mg-3Al-1Zn合金模型在冲击波作用下孔洞表面位错形核与演化的过程. 研究表明, 孔洞附近滑移系的激活强烈依赖于冲击晶向, 当沿着$ {\text{[0001]}} $晶向冲击时, 基面位错在孔洞表面优先形核, 随后沿着与之前21°的夹角方向滑移形成一个大角度晶界; 对于${\text{[10}}\bar {\text{1}} {\text{0]}}$晶向的冲击, 孔洞附近的变形最初由柱面位错主导, 随后大量的基面位错分布在孔洞周围. 基于应力波理论进一步讨论了冲击波前沿导致的孔洞附近晶格转向行为, 发现孔洞表面的反射等容波(SV2)决定了孔洞表面位错的形核位置和滑移方向, 而反射无旋波(P2)决定了孔洞附近与坍缩有关的塑性变形行为. 最后, 结合孔洞周围应力场分布分析了两种冲击晶向下孔洞表面位错的分布规律. 总的来说, 本文的分子动力学模拟结果与基于应力波理论的分析、孔洞周围应力场的分析均吻合较好, 获得了孔洞附近的位错形核及演化规律.

     

  • 图  1  含有圆柱形孔洞的Mg-3Al-1Zn模型图

    Figure  1.  The MD model of Mg-3Al-1Zn alloy with cylindrical nano-void in the simulations

    图  2  不同冲击时间下含有圆柱形孔洞的Mg-3Al-1Zn模型的应力分布曲线

    Figure  2.  The stress distribution of the Mg-3Al-1Zn alloy with cylindrical void at different shock time

    图  3  沿$ {\text{[0001]}} $晶向的冲击压缩下, Mg-3Al-1Zn模型孔洞附近微观缺陷图

    Figure  3.  Microstructure evolution near the void in Mg-3Al-1Zn under $ {\text{[0001]}} $shock

    图  4  孔洞附近的原子尺度微观结构图

    Figure  4.  Snapshots showing microstructure near the void

    图  5  沿${\text{[10}}\bar {\text{1}} {\text{0]}}$晶向的冲击压缩下, Mg-3Al-1Zn模型孔洞附近微观缺陷图

    Figure  5.  Microstructure evolution near the void in Mg-3Al-1Zn under ${\text{[10}}\bar {\text{1}} {\text{0]}}$shock

    图  6  B/P界面的的原子尺度微观结构图(t = 12 ps)

    Figure  6.  Snapshots showing microstructure of B/P interface. (t = 12 ps)

    图  7  弹性平面波斜入射到自由表面的示意图及反射系数($ {\delta _{{\rm{shear}}}} $)与入射角($ {\alpha _{\text{1}}} $)的关系

    Figure  7.  Reflection of an irrotational plane wave obliquely incident at a free surface and the predicted result relation between the shear reflection coefficient ($ {\delta _{{\rm{shear}}}} $) and the incident angle ($ {\alpha _{\text{1}}} $)

    图  8  沿(a)$ {\text{[0001]}} $和(b)${\text{[10}}\bar {\text{1}} {\text{0]}}$晶向冲击时, 孔洞附近位错形核位置示意图(t = 10 ps)

    Figure  8.  The snapshots of dislocation nucleation near void under $ {\text{[0001]}} $ (a) and ${\text{[10}}\bar {\text{1}} {\text{0]}}$ (b) orientation. (t = 10 ps)

    图  9  均匀双轴压缩载荷下无限介质中无应力孔的二维示意图

    Figure  9.  A two dimensional representation of a stress-free void in infinite medium under uniform biaxial far-field compression

    图  10  不同冲击晶向下, 在滑移面上$ {\tau _\theta }{\text{/}}{T_X} $与入射角的关系曲线

    Figure  10.  The relation between the value of $ {\tau _\theta }{\text{/}}{T_X} $ and the incident angle ($ \alpha $) on the slip plane

    图  11  沿晶向冲击时, 孔洞附近位错分布图

    Figure  11.  The distribution of dislocation nucleation near void under orientation

    图  12  沿$ {\text{[0001]}} $晶向冲击时, 孔洞附近的原子尺度变形行为(a)及相应的剪切应力分布图(b) (t = 10 ps)

    Figure  12.  Deformation behavior at the atomic scale (a) and shear stress distribution (b) near the void under$ {\text{[0001]}} $shock (t = 10 ps)

    图  13  沿${\text{[10}}\bar {\text{1}} {\text{0]}}$晶向冲击时, 孔洞附近的原子尺度变形行为(a)及剪切应力分布图(b) (t = 11 ps)

    Figure  13.  Deformation behavior at the atomic scale (a) and shear stress distribution (b) near the void under ${\text{[10}}\bar {\text{1}} {\text{0]}}$shock (t = 11 ps)

    图  14  沿晶向冲击时, 孔洞坍缩过程

    Figure  14.  The void collapse process under shock

    表  1  Dickel等提出的MEAM作用势[41]所预测的结合能($E_{{\rm{coh}}}^{}$)和弹性模量($ E $)

    Table  1.   Cohesive energy ($E_{{\rm{coh}}}^{}$) and Elastic modulus ($ E $) from Dickel’s MEAM potential[41]

    $E_{{\rm{coh}}}^{Mg - Mg}$/eV$E_{{\rm{coh}}}^{Mg - Al}$/eV$E_{{\rm{coh}}}^{Mg - Zn}$/eV$ E $/GPa
    Dickel’ MEAM−1.510−1.746−1.72546.3
    Ref.−1.510[43]−1.725[44], −1.75[45]−1.666[44]43.8[45]
    下载: 导出CSV
  • [1] Lee SE, Kim MS, Chae YW, et al. Effect of intermediate heat treatment during hot rolling on the texture and formability of annealed AZ31 Mg alloy sheets. Journal of Alloys and Compounds, 2022, 897(15): 163238
    [2] Wang JY, Song HY, An MR, et al. Balancing strength and plasticity of dualphase amorphous/crystalline nanostructured Mg alloys. Chinese Physics B, 2020, 29(6): 066201 doi: 10.1088/1674-1056/ab84d5
    [3] Dai JL, Song HY, An MR, et al. Atomic simulation of interaction mechanism between dislocation and amorphous phase in dual-phase crystalline/amorphous Mg/MgAl alloys. Journal of Applied Physics, 2020, 127(13): 135105 doi: 10.1063/1.5143721
    [4] Wei YK, Luo XT, Ge Y, et al. Deposition of fully dense Al-based coatings via in-situ micro-forging assisted cold spray for excellent corrosion protection of AZ31 B magnesium alloy. Journal of Alloys and Compounds, 2019, 806(25): 1116-1126
    [5] Aitken ZH, Fan HD, El-awady JA, et al. The effect of size, orientation and alloying on the deformation of AZ31 nanopillars. Journal of the Mechanics and Physics of Solids, 2015, 76(3): 208-223
    [6] Yu MD, Cui ZY, Ge F, et al. Facile fabrication of hydrophobic polysiloxane coatings for protection of AZ31 magnesium alloy. Journal of Materials Science, 2019, 54(13): 1-16
    [7] Lee GM, Lee JU, Park SH, et al. Effects of surface roughness on bending properties of rolled AZ31 alloy. Journal of Magnesium and Alloys, 2022.https://doi.org/10.1016/j.jma.2021.11.029
    [8] Fang XW, Yang JN, Wang SP, et al. Additive manufacturing of high performance AZ31 magnesium alloy with full equiaxed grains: microstructure, mechanical property, and electromechanical corrosion performance. Journal of Materials Processing Technology, 2022, 300(1): 117430
    [9] He R, Wang MT, Jin JF, et al. Effect of elastic strain energy on grain growth and texture in AZ31 magnesium alloy by phase-field simulation. Chinese Physics B, 2017, 26(12): 1-9
    [10] Wu W, Zhang F, Li Y, et al. Corrosion resistance of dodecanethiol-modified magnesium hydroxide coating on AZ31 magnesium alloy. Applied Physics A, 2019, 126(1): 1-8
    [11] Kang L, Liu WR, Zhang XB, et al. Evolution of microstructure, texture and residual stress of AZ31 Mg alloy in hot extrusion process. Materials Research Express, 2021, 8(6): 066519 doi: 10.1088/2053-1591/ac0736
    [12] Erien DE, Zhang YQ, Zhang BC, et al. Biosafety and biodegradation studies of AZ31 B magnesium alloy carotid artery stent in vitro and in vivo. Journal of Biomedical Materials Research Part B Applied Biomaterials, 2022, 110(1): 239-248 doi: 10.1002/jbm.b.34907
    [13] Bringa EM, Caro A, Wang YM, et al. Ultrahigh strength in nanocrystalline materials under shock loading. Science, 2005, 309(5742): 1838-1841 doi: 10.1126/science.1116723
    [14] Peng Q, Meng FJ, Yang YZ, et al. Shockwave generates dislocation loops in bcc iron. Nature Communications, 2018, 9(1): 1-6 doi: 10.1038/s41467-017-02088-w
    [15] 侯先苇, 熊玮, 戴兰宏等. 两种典型高熵合金冲击释能及毁伤特性研究. 力学学报, 2021, 53(9): 2528-2540 (Hou Xianwei, Xiong Wei, Dai Lanhong, et al. Impact energy release and damage characteristics of two high-entropy alloys. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2528-2540 (in Chinese) doi: 10.6052/0459-1879-21-327

    Hou Xianwei, Xiong Wei, Dai Lanhong, et al. Impact energy release and damage characteristics of two high-entropy alloys. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2528-2540 (in Chinese) doi: 10.6052/0459-1879-21-327
    [16] 杜欣, 熊启林, 周留成等. 激光冲击下CoCrFeMnNi高熵合金微观塑性变形的分子动力学模拟. 力学学报, 2021, 53(12): 1-10 (Du Xin, Xiong Qilin, Zhou Liucheng, et al. Microplastic deformation of cocrfemnni high-entropy alloy under laser shock: a molecular dynamics simulation. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 1-10 (in Chinese)

    Du Xin, Xiong Qilin, Zhou Liucheng, et al. Microplastic deformation of cocrfemnni high-entropy alloy under laser shock: a molecular dynamics simulation. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 1-10 (in Chinese)
    [17] 王寅凯, 张兴权, 左立生等. 基于有限差分法薄板激光冲击响应的数值模拟. 力学学报, 2022, 54(4): 1063-1074 (Wang Yinkai, Zhang Xingquan, Zuo Lisheng, et al. Numerical simulation of response of sheet metal subjected to laser shock with finite difference method. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 1063-1074 (in Chinese)

    Wang Yinkai, Zhang Xingquan, Zuo Lisheng, et al. Numerical simulation of response of sheet metal subjected to laser shock with finite difference method. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 1-12 (in Chinese)
    [18] 施瑶, 刘振鹏, 潘光等. 航行体梯度密度式头帽结构设计及降载性能分析. 力学学报, 2022, 54(4): 939-953 (Shi Yao, Liu Zhenpeng, Pan Guang, et al. Structural design and load reduction performance analysis of gradient density head cap of vehicle. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 939-953 (in Chinese)

    Shi Yao, Liu Zhenpeng, Pan Guang, et al. Structural design and load reduction performance analysis of gradient density head cap of vehicle. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 1-15 (in Chinese)
    [19] Dai ZH, Lu L, Chai HW, et al. Mechanical properties and fracture behavior of Mg-3 Al-1 Zn alloy under high strain rate loading. Materials Science and Engineering:A, 2020, 789(1): 1-8
    [20] Liu YX, Li YX, Zhu QC, et al. Twin recrystallization mechanisms in a high strain rate compressed Mg-Zn alloy. Journal of Magnesium and Alloys, 2020, 9(2): 499-504
    [21] Liu YX, Li YX, Zhang H, et al. Influence of twinning-induced recrystallization on texture evolution in a high strain rate compressed Mg-Zn alloy. Materials Characterization, 2020, 162: 1-9
    [22] Liu YX, Li YX, Zhu QC, et al. Kinking-facilitated nano-crystallization in a shock compressed Mg-1 Zn alloy. Journal of Magnesium and Alloys, 2021.https://doi.org/10.1016/j.jma.2021.06.020
    [23] Lloyd JT, Williams CL, Clayton JD. Dynamic strength of AZ31 B-4 E and AMX602 magnesium alloys under shock loading. Journal of Dynamic Behavior of Materials, 2020, 6(4): 403-422 doi: 10.1007/s40870-019-00230-x
    [24] Agarwal G, Dongare AM. Shock wave propagation and spall failure in single crystal Mg at atomic scales. Journal of Applied Physics, 2016, 119(14): 1-10
    [25] Yang XY, Xu S, Liu LS. The shock response and spall mechanism of Mg-Al-Zn alloy: molecular dynamics study. Acta Mechanica Solida Sinica, 2022.https://doi.org/10.1007/s10338-021-00301-4
    [26] Gogulya MF, Voskoboinikov IM, Prostoserdov AI. Shock compression of porous aluminum. Combustion Explosion and Shock Waves, 1985, 21(3): 373-375 doi: 10.1007/BF01463861
    [27] Kazemi-kamyab V, Subramaniam K, Andreopoulos Y. Stress transmission in porous materials impacted by shock waves. Journal of Applied Physics, 2011, 109(1): 168-177
    [28] Lubarda VA, Schneider MS, Kalantar DH, et al. Void growth by dislocation emission. Acta Materialia, 2004, 52(6): 1397-1408 doi: 10.1016/j.actamat.2003.11.022
    [29] 邓小良, 祝文军, 贺红亮等. 〈111〉晶向冲击加载下单晶铜中纳米孔洞增长的早期动力学行为. 物理学报, 2006, 55(9): 4767-4773 (Deng Xiaoliang, Zhu Wenjun, He Hongliang, et al. Intial dynamic behavior of nano-void growth in single-crystal copper under shock loading along 〈111〉 direction. Acta Physica Sinica, 2006, 55(9): 4767-4773 (in Chinese) doi: 10.3321/j.issn:1000-3290.2006.09.064

    Deng Xiaoliang, Zhu Wenjun, He Hongliang, et al. Intial dynamic behavior of nano-void growth in single-crystal copper under shock loading along < 111 > direction. Acta Physica Sinica, 2006, 55(9): 4767-4773 (in Chinese) doi: 10.3321/j.issn:1000-3290.2006.09.064
    [30] 邓小良, 祝文军, 贺红亮等. 沿〈111〉晶向冲击加载下铜中纳米孔洞增长的塑性机制研究. 高压物理学报, 2008, 21(1): 17-19 (Deng Xiaoliang, Zhu Wenjun, He Hongliang, et al. Plasticity mechanism associated with nano-void growth under impact loading along 〈111〉 direction in coppe. Chinese Journal of High Pressure Physics, 2008, 21(1): 17-19 (in Chinese)

    Deng Xiaoliang, Zhu Wenjun, He Hongliang, et al. Plasticity mechanism associated with nano-void growth under impact loading along < 111 > direction in coppe. Chinese Journal of High Pressure Physics, 2008, 21(1): 17-19 (in Chinese)
    [31] 邓小良, 祝文军, 宋振飞等. 冲击加载下孔洞贯通的微观机理研究. 物理学报, 2009, 58(7): 1-7 (Deng Xiaoliang, Zhu Wenjun, Song Zhenfei, et al. Microscopic mechanism of void coalescence under shock loading. Acta Physica Sinica, 2009, 58(7): 1-7 (in Chinese)

    Deng Xiaoliang, Zhu Wenjun, Song Zhenfei, et al. Microscopic mechanism of void coalescence under shock loading. Acta Physica Sinica, 2009, 58(7): 1-7 (in Chinese)
    [32] 崔新林, 李英骏, 祝文军等. 冲击加载下铝中孔洞长大的微观机理分析. 高压物理学报, 2009, 23(1): 39-43 (Cui Xinlin, Li Yingjun, Zhu Wenjun, et al. Micro-analysis of the void growth of aluminum under shock loading. Chinese Journal of High Pressure Physics, 2009, 23(1): 39-43 (in Chinese)

    Cui Xinlin, Li Yingjun, Zhu Wenjun, et al. Micro-analysis of the void growth of aluminum under shock loading. Chinese Journal of High Pressure Physics, 2009, 23(1): 39-43 (in Chinese)
    [33] Erhart P, Bringa EM, Kumar M, et al. Atomistic mechanism of shock-induced void collapse in nanoporous metals. Physical Review B, 2005, 72(5): 161902-1619023
    [34] 第伍旻杰, 胡晓棉. 高应变率压缩下纳米孔洞对金属铝塑性变形的影响研究. 物理学报, 2015, 64(17): 1-8 (Diwu Minjie, Hu Xiaomian. Plastic deformation in nanoporous aluminum subjected to high-rate uniaxial compression. Acta Physica Sinica, 2015, 64(17): 1-8 (in Chinese)

    Diwu Minjie, Hu Xiaomian. Plastic deformation in nanoporous aluminum subjected to high-rate uniaxial compression. Acta Physica Sinica, 2015, 64(17): 1-8 (in Chinese)
    [35] Xiang MZ, Cui JZ, Yang YT, et al. Shock responses of nanoporous aluminum by molecular dynamics simulations. International Journal of Plasticity, 2017, 97(1): 24-45
    [36] Tian X, Ma KP, Ji GY, et al. Anisotropic shock responses of nanoporous Al by molecular dynamics simulations. PLoS ONE, 2021, 16(3): 1-14
    [37] Li GM, Wang YB, Xiang MZ, et al. Shock response of nanoporous magnesium by molecular dynamics simulations. International Journal of Mechanical Sciences, 2018, 141: 143-156 doi: 10.1016/j.ijmecsci.2018.04.008
    [38] Indurkar PP, Joshi SP. Void growth and coalescence in porous plastic solids with sigmoidal hardening. Journal of Applied Mechanics, 2019, 86(9): 1-12
    [39] Selvarajou B, Joshi SP, Benzerga AA. Void growth and coalescence in hexagonal close packed crystals. Journal of the Mechanics and Physics of Solids, 2018, 12(12): 1-38
    [40] Zeng XG, Xu SS, Chen HY, et al. Molecular dynamics simulation on plasticity deformation mechanism and failure near void for magnesium alloy. Transactions of Nonferrous Metals Society of China, 2010, 20(2): 519-522
    [41] Dickel DE, Baskes MI, Aslam I, et al. New interatomic potential for Mg-Al-Zn alloys with specific application to dilute Mg-based alloys. Modelling and Simulation in Materials Science and Engineering, 2018, 26(4): 1-15
    [42] Huang ZW, Zhao YH, Hou H, et al. Electronic structural, elastic properties and thermodynamics of Mg17Al12, Mg2Si and Al2Y phases from first-principles calculations. Physica B:Condensed Matter, 2012, 407(7): 1075-1081 doi: 10.1016/j.physb.2011.12.132
    [43] Yang XM, Hou H, Zhao YH, et al. First-principles investigation of the structural, electronic and elastic properties of MgxAl4 xSr ( x = 0, 0.5, 1) phases. Computational Materials Science, 2014, 84: 374-380 doi: 10.1016/j.commatsci.2013.12.036
    [44] Ganeshan S, Shang SL, Wang Y, et al. Effect of alloying elements on the elastic properties of Mg from first-principles calculations. Acta Materialia, 2009, 57(13): 3876-3884 doi: 10.1016/j.actamat.2009.04.038
    [45] Zhang S, Liu C, Liu S, et al. Effects of temperature and strain rate on elastic modular of extruded AZ31 magnesium alloy. Light Alloy Fabrication Technology, 2016, 44(4): 62-65
    [46] Plimpton S. Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 1995, 117(1): 1-19 doi: 10.1006/jcph.1995.1039
    [47] Martyna GJ, Tobias DJ, Klein ML. Constant pressure molecular dynamics algorithms. The Journal of Chemical Physics, 1994, 101(5): 4177-4190 doi: 10.1063/1.467468
    [48] Xiong QL, Takayuki K, Li ZH. Cylindrical voids induced deformation response of single crystal coppers during low-speed shock compressions: A molecular dynamics study. Mechanics of Materials, 2019, 138: 1-13
    [49] Honeycutt JD, Andersen HC. Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. Journal of Physical Chemistry, 1987, 91(19): 4950-4963 doi: 10.1021/j100303a014
    [50] Stukowski A, Albe K. Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool. Modelling and Simulation in Materials Science and Engineering, 2010, 18: 2154-2162
    [51] Stukowski A, Bulatov V, Arsenlis A. Automated identification and indexing of dislocations in crystal interfaces. Modelling and Simulation in Materials Science and Engineering, 2012, 20(8): 85007 doi: 10.1088/0965-0393/20/8/085007
    [52] Zu Q, Guo YF, Xu S, et al. Molecular dynamics simulations of the orientation effect on the initial plastic deformation of magnesium single crystals. Acta Metallurgica Sinica, 2016, 29(3): 301-312
    [53] Fan HD, El-awady JA. Molecular dynamics simulations of orientation effects during tension, compression, and bending deformations of magnesium nanocrystals. Journal of Applied Mechanics, 2015, 82(10): 101006 doi: 10.1115/1.4030930
    [54] Liu Z, Li H, Zhou H, et al. Study on molecular dynamics of compression deformation mechanism of different orientations of magnesium single crystal. Journal of Plasticity Engineering, 2018, 25(6): 202-207
    [55] Wang LL. Foundations of stress waves. Netherlands: Elsevier, 2007
    [56] 李兴成. 激光冲击强化AZ31镁合金的腐蚀性能研究. [博士论文]. 江苏: 江苏大学, 2014

    Li Xingcheng. Investigation of laser shock processing on corrosion resistance of AZ31 magnesium alloy. [PhD Thesis]. Jiangsu: Jiangsu University, 2014 (in Chinese)
    [57] Zhu W, Song Z, Deng X, et al. Lattice orientation effect on the nanovoid growth in copper under shock loading. Physical Review B, 2007, 75(2): 024104 doi: 10.1103/PhysRevB.75.024104
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  45
  • HTML全文浏览量:  14
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-25
  • 录用日期:  2022-05-27
  • 网络出版日期:  2022-05-28

目录

    /

    返回文章
    返回