EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气泡碰撞亲疏水曲壁的行为特性研究

唐子建 杜伟 杜鹏 胡海豹 陈效鹏 文俊 谢络

唐子建, 杜伟, 杜鹏, 胡海豹, 陈效鹏, 文俊, 谢络. 气泡碰撞亲疏水曲壁的行为特性研究. 力学学报, 2022, 54(9): 2401-2408 doi: 10.6052/0459-1879-22-116
引用本文: 唐子建, 杜伟, 杜鹏, 胡海豹, 陈效鹏, 文俊, 谢络. 气泡碰撞亲疏水曲壁的行为特性研究. 力学学报, 2022, 54(9): 2401-2408 doi: 10.6052/0459-1879-22-116
Tang Zijian, Du Wei, Du Peng, Hu Haibao, Chen Xiaopeng, Wen Jun, Xie Luo. Study on the behavior of bubbles colliding with hydrophilic and hydrophobic curved walls. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 2401-2408 doi: 10.6052/0459-1879-22-116
Citation: Tang Zijian, Du Wei, Du Peng, Hu Haibao, Chen Xiaopeng, Wen Jun, Xie Luo. Study on the behavior of bubbles colliding with hydrophilic and hydrophobic curved walls. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 2401-2408 doi: 10.6052/0459-1879-22-116

气泡碰撞亲疏水曲壁的行为特性研究

doi: 10.6052/0459-1879-22-116
基金项目: 国家自然科学基金(52071272, 12102358), 基础前沿项目(JCKY2018*18)和陕西省自然科学基础研究计划(2020JC-18)资助
详细信息
    作者简介:

    杜鹏, 副教授, 主要研究方向: 复杂流体动力与新型航行技术. E-mail: dupeng@nwpu.edu.cn

  • 中图分类号: O35

STUDY ON THE BEHAVIOR OF BUBBLES COLLIDING WITH HYDROPHILIC AND HYDROPHOBIC CURVED WALLS

  • 摘要: 气泡碰撞固壁行为和影响因素的研究一直以来都是科学界关注的重点之一, 其在矿物浮选、气膜减阻等工业领域中的应用也极具科研价值. 论文聚焦曲壁对于气泡撞击行为特性的影响研究. 采用高速摄像技术记录气泡碰撞不同曲率半径下亲疏水曲壁的撞击过程, 分析了曲壁润湿性、曲率半径对气泡碰撞固体曲壁的影响规律. 结果表明, 气泡碰撞亲水曲壁时会发生多次弹跳直至离开曲壁; 曲率半径越大, 弹跳次数越少, 且第一次反弹的最远距离越近, 再次发生碰壁时的速度越小. 而碰撞疏水曲壁时会出现碰撞−滑移−附着的现象, 此外针对液膜挤压破裂的现象, 建立理论模型推导出液膜诱导时间的预测公式, 其主要与液膜厚度、液膜临界破裂厚度和液膜被压缩速度有关, 预测误差小于5.0%.

     

  • 图  1  气泡撞击曲壁实验装置图

    (a) 1气泡发生器; 2微量注射泵; 3 LED平板灯; 4高速摄像机; 5计算机;6实验曲壁; 7水箱; 8支架. (b)实验曲壁二维局部放大图

    Figure  1.  Diagram of the experimental device of bubble impact on curved wall

    (a) 1 Bubble generator; 2 micro syringe pump; 3 LED flat panel lamp; 4 high-speed camera; 5 computer; 6 experimental curved wall; 7 water tank; 8 stand. (b) Two-dimensional partial magnification of the experimental curved wall

    图  2  一次实验中气泡外形变化可视化图

    Figure  2.  Visualization of bubble shape changes in an experiment

    图  3  气泡碰壁反弹的最大距离与时间关系图

    Figure  3.  Relationship between the maximum distance of bubble hitting the wall and time

    图  4  气泡反弹后碰壁速度与时间关系图

    Figure  4.  Relationship between wall impact velocity and time after bubble rebound

    5  气泡碰撞R22.5超疏水壁面可视化图

    5.  Visualization of bubble collision on the hydrophobic wall of R22.5

    图  6  气泡上升碰壁示意图

    Figure  6.  Schematic diagram of bubble rising and hitting the wall

    图  7  液膜所需诱导时间理论值与实验值比较

    Figure  7.  Comparison between theoretical value and experimental value of induction time required for liquid film

  • [1] 周欣, 宋宝华, 王中原等. 基于气泡碰撞的筛板曝气试验研究. 环境工程, 2013(S1): 426-429

    Zhou Xin, Song Baohua, Wang Zhongyuan, et al. Study of aeration experiment with sieve based on bubble collision. Environmental Engineering, 2013(S1): 426-429(in Chinese))
    [2] 王静超, 马军, 刘芳. 气浮接触区气泡-颗粒碰撞效率影响因素分析. 工业水处理, 2008, 28(9): 66-69 doi: 10.3969/j.issn.1005-829X.2008.09.020

    Wang Jingchao, Ma Jun, Liu Fang. Influential factor analysis of the bubble-particle collision efficiency in the contactzone of dissolved air flotation. Industrial Water Treatment, 2008, 28(9): 66-69 (in Chinese)) doi: 10.3969/j.issn.1005-829X.2008.09.020
    [3] Hassanzadeh A, Hassas BV, Kouachi S, et al. Effect of bubble size and velocity on collision efficiency in chalcopyrite flotation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 498: 258-267
    [4] Murai Y. Frictional drag reduction by bubble injection. Experiments in Fluids, 2014, 55(7): 1-28
    [5] Tsao HK, Koch DL. Observations of high Reynolds number bubbles interacting with a rigid wall. Physics of Fluids, 1997, 9(1): 44-56 doi: 10.1063/1.869168
    [6] Legendre D, Daniel C, Guiraud P. Experimental study of a drop bouncing on a wall in a liquid. Physics of Fluids, 2005, 17(9): 097105 doi: 10.1063/1.2010527
    [7] Krzan M, Zawala J, Malysa K. Development of steady state adsorption distribution over interface of a bubble rising in solutions of n-alkanols (C5, C8) and n-alkyltrimethylammonium bromides (C8, C12, C16). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 298(1-2): 42-51
    [8] Zhang C, Li J, Luo LS, et al. Numerical simulation for a rising bubble interacting with a solid wall: Impact, bounce, and thin film dynamics. Physics of Fluids, 2018, 30(11): 112106 doi: 10.1063/1.5055671
    [9] Qin T, Ragab S, Yue P. Axisymmetric simulation of the interaction of a rising bubble with a rigid surface in viscous flow. International Journal of Multiphase Flow, 2013, 52: 60-70 doi: 10.1016/j.ijmultiphaseflow.2013.01.001
    [10] Hendrix MHW, Manica R, Klaseboer E, et al. Spatiotemporal evolution of thin liquid films during impact of water bubbles on glass on a micrometer to nanometer scale. Physical Review Letters, 2012, 108(24): 247803 doi: 10.1103/PhysRevLett.108.247803
    [11] Zhang X, Tchoukov P, Manica R, et al. Simultaneous measurement of dynamic force and spatial thin film thickness between deformable and solid surfaces by integrated thin liquid film force apparatus. Soft Matter, 2016, 12(44): 9105-9114 doi: 10.1039/C6SM02067D
    [12] Liu B, Manica R, Zhang XR, et al. Dynamic interaction between a millimeter-sized bubble and surface microbubbles in water. Langmuir, 2018, 34(39): 11667-11675 doi: 10.1021/acs.langmuir.8b01202
    [13] Klaseboer E, Chevaillier JP, Maté A, et al. Model and experiments of a drop impinging on an immersed wall. Physics of Fluids, 2001, 13(1): 45-57 doi: 10.1063/1.1331313
    [14] Klaseboer E, Manica R, Hendrix MHW, et al. A force balance model for the motion, impact, and bounce of bubbles. Physics of Fluids, 2014, 26(9): 092101 doi: 10.1063/1.4894067
    [15] Zenit R, Legendre D. The coefficient of restitution for air bubbles colliding against solid walls in viscous liquids. Physics of Fluids, 2009, 21(8): 083306 doi: 10.1063/1.3210764
    [16] Wang L, Sharp D, Masliyah J, et al. Measurement of interactions between solid particles, liquid droplets, and/or gas bubbles in a liquid using an integrated thin film drainage apparatus. Langmuir, 2013, 29(11): 3594-3603 doi: 10.1021/la304490e
    [17] Zawala J, Dabros T. Analysis of energy balance during collision of an air bubble with a solid wall. Physics of Fluids, 2013, 25(12): 123101 doi: 10.1063/1.4847015
    [18] Krasowska M, Malysa K. Kinetics of bubble collision and attachment to hydrophobic solids: I. Effect of surface roughness. International Journal of Mineral Processing, 2007, 81(4): 205-216 doi: 10.1016/j.minpro.2006.05.003
    [19] Kosior D, Zawala J, Niecikowska A, et al. Influence of non-ionic and ionic surfactants on kinetics of the bubble attachment to hydrophilic and hydrophobic solids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 470: 333-341
    [20] Kosior D, Zawala J, Malysa K. Influence of n-octanol on the bubble impact velocity, bouncing and the three phase contact formation at hydrophobic solid surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 441: 788-795 doi: 10.1016/j.colsurfa.2012.10.025
    [21] Zawala J, Krasowaka M, Dabros T, et al. Influence of bubble kinetic energy on its bouncing during collisions with various interfaces. Canadian Journal of Chemical Engineering, 2007, 85(5): 669-678
    [22] Reynolds O. On the theory of lubrication and its application to Mr. Beauchamp Tower's experiments, including an experimental determination of the viscosity of olive oil. Phil. Trans. Roy. Soc., 1885, 1: 157
    [23] Stöckelhuber KW, Radoev B, Wenger A, et al. Rupture of wetting films caused by nanobubbles. Langmuir, 2004, 20(1): 164-168 doi: 10.1021/la0354887
    [24] Schulze HJ, Stockelhuber KW, Wenger A. The influence of acting forces on the rupture mechanism of wetting films-nucleation or capillary waves. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 192(1-3): 61-72
    [25] Emery TS, Kandlikar SG. Film size during bubble collision with a solid surface. Journal of Fluids Engineering, 2019, 141(7).
    [26] Gu G, Xu Z, Nandakumar K, et al. Effects of physical environment on induction time of ai-bitumen attachment. International Journal of Mineral Processing, 2003, 69(1-4): 235-250 doi: 10.1016/S0301-7516(02)00128-X
    [27] Albijanic B, Ozdemir O, Nguyen AV, et al. A review of induction and attachment times of wetting thin films between air bubbles and particles and its relevance in the separation of particles by flotation. Advances in Colloid and Interface Science, 2010, 159(1): 1-21 doi: 10.1016/j.cis.2010.04.003
    [28] Manica R, Klaseboer E, Chan DYC. The hydrodynamics of bubble rise and impact with solid surfaces. Advances in Colloid and Interface Science, 2016, 235: 214-232 doi: 10.1016/j.cis.2016.06.010
    [29] 罗松, 于勇. 气泡碰壁受力模型和反弹规律. 气体物理, 2019, 4(2): 30-43

    Luo Song, Yu Yong. Force model and rebound law of bubble hitting wall. Physics of Gases, 2019, 4(2): 30-43(in Chinese))
    [30] Chan DYC, Klaseboer E, Manica R. Film drainage and coalescence between deformable drops and bubbles. Soft Matter, 2011, 7(6): 2235-2264 doi: 10.1039/C0SM00812E
    [31] Vinogradova OI. Drainage of a thin liquid film confined between hydrophobic surfaces. Langmuir, 1995, 11(6): 2213-2220 doi: 10.1021/la00006a059
    [32] Leal LG. Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes. Cambridge: Cambridge University Press, 2007
    [33] Wang W, Zhou Z, Nandakumar K, et al. An induction time model for the attachment of an air bubble to a hydrophobic sphere in aqueous solutions. International Journal of Mineral Processing, 2005, 75(1-2): 69-82 doi: 10.1016/j.minpro.2004.04.009
    [34] Reuter F, Kaiser SA. High-speed film-thickness measurements between a collapsing cavitation bubble and a solid surface with total internal reflection shadowmetry. Physics of Fluids, 2019, 31(9): 097108 doi: 10.1063/1.5095148
  • 加载中
图(8)
计量
  • 文章访问数:  174
  • HTML全文浏览量:  56
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-21
  • 录用日期:  2022-06-01
  • 网络出版日期:  2022-06-02
  • 刊出日期:  2022-09-18

目录

    /

    返回文章
    返回