EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

LNG耐超低温柔性管道研究进展综述

杨亮 刘淼儿 范嘉堃 李方遒 英玺蓬 步宇峰 曹慧鑫 张凯仑 杨建业 杨志勋

杨亮, 刘淼儿, 范嘉堃, 李方遒, 英玺蓬, 步宇峰, 曹慧鑫, 张凯仑, 杨建业, 杨志勋. LNG耐超低温柔性管道研究进展综述. 力学学报, 2022, 54(10): 1-18 doi: 10.6052/0459-1879-22-115
引用本文: 杨亮, 刘淼儿, 范嘉堃, 李方遒, 英玺蓬, 步宇峰, 曹慧鑫, 张凯仑, 杨建业, 杨志勋. LNG耐超低温柔性管道研究进展综述. 力学学报, 2022, 54(10): 1-18 doi: 10.6052/0459-1879-22-115
Yang Liang, Liu Miaoer, Fan Jiakun, Li Fangqiu, Ying Xipeng, Bu Yufeng, Cao Huixin, Zhang Kailun, Yang Jianye, Yang Zhixun. Summary of development of lng cryogenic flexible hose—industrial application and structural analysis. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 1-18 doi: 10.6052/0459-1879-22-115
Citation: Yang Liang, Liu Miaoer, Fan Jiakun, Li Fangqiu, Ying Xipeng, Bu Yufeng, Cao Huixin, Zhang Kailun, Yang Jianye, Yang Zhixun. Summary of development of lng cryogenic flexible hose—industrial application and structural analysis. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 1-18 doi: 10.6052/0459-1879-22-115

LNG耐超低温柔性管道研究进展综述工业应用与结构设计分析

doi: 10.6052/0459-1879-22-115
基金项目: 国家自然科学基金项目(U1906233, 52001088)资助.
详细信息
    作者简介:

    杨志勋, 博士, 教授, 主要研究方向: 海洋柔性管缆的优化设计和工程应用. E-mail: yangzhixun@hrbeu.edu.cn

  • 中图分类号: O342

SUMMARY OF DEVELOPMENT OF LNG CRYOGENIC FLEXIBLE HOSEINDUSTRIAL APPLICATION AND STRUCTURAL ANALYSIS

  • 摘要: LNG(液化天然气)耐超低温柔性管道是开采、运输、存储LNG过程中的关键装备之一, 被誉为是LNG外输系统的“血管”. 近年来, 随着LNG的开发逐渐由近海走向深远海, 耐超低温柔性管道作为LNG外输系统中的核心输运装备迎来了更加广阔的发展前景, 同时也面临着由更加严苛的海洋环境带来的结构失效的挑战. 本文针对LNG耐超低温柔性管道的工程应用背景、结构设计、内流分析等方面进行了调研与综述, 总结了LNG耐超低温柔性管道上述各项技术的研究进展. 分析了LNG耐超低温柔性管道的波纹管状结构、螺旋缠绕结构和高分子材料的柔顺性结构特征的力学机理, 总结了实现柔顺性结构的方法, 梳理了LNG耐超低温柔性管道管内流体计算分析的规律, 并对LNG耐超低温柔性管道相关技术的未来研究热点提出了展望. 我国在LNG耐超低温柔性管道相关技术的研究工作中起步相对较晚, 突破LNG耐超低温柔性管道的结构设计分析与工业应用中的关键力学问题, 实现LNG耐超低温柔性管道的国产化研制, 对于实现我国深远海天然气资源开发的“卡脖子”技术的自主可控, 助力“碳达峰”国家战略目标的实现具有重要意义.

     

  • 图  1  悬跨型LNG耐低温柔性管道[5]

    Figure  1.  Suspended span LNG cryogenic flexible hose[5]

    图  2  漂浮型LNG耐低温柔性管道[6]

    Figure  2.  Floating LNG cryogenic flexible hose[6]

    图  3  典型的悬跨型LNG耐超低温柔性管道应用系统[4,7]

    Figure  3.  Typical suspension span LNG cryogenic flexible hose system[4,7]

    图  4  典型的漂浮型LNG耐超低温柔性管道应用系统[4,8]

    Figure  4.  Typical floating LNG cryogenic flexible hose system[4,8]

    图  5  FLNG旁靠卸载系统的工作原理

    Figure  5.  Schematic diagram of FLNG side-by-side transmission system

    图  6  FLNG串靠卸载系统的工作原理

    Figure  6.  Schematic diagram of FLNG system in series connection

    图  7  传统码头船对岸传输作业形式[12]

    Figure  7.  Traditional ship-to-shore transmission operation form[12]

    图  8  Bluewater公司的无码头传输系统[13]

    Figure  8.  Bluewater’s dockless transmission system[13]

    图  9  无码头耐超低温柔性管道传输作业系统[15-17]

    Figure  9.  Dockless low temperature transmission system[15-17]

    图  10  Technip-FMC公司的LNG耐超低温柔性管道结构[7]

    Figure  10.  LNG cryogenic flexible hose structure of Technip-FMC[7]

    图  11  Nexans公司的LNG耐超低温柔性管道结构[19]

    Figure  11.  LNG cryogenic flexible hose structure of Nexans[19]

    图  12  Gutteling B.V.公司复合LNG耐超低温柔性管道结构[4]

    Figure  12.  LNG cryogenic composite hose of Gutteling B.V.[4]

    图  13  SBM Offshore公司复合软管结构[20]

    Figure  13.  LNG cryogenic composite hose of SBM Offshore[20]

    图  14  Dunlop公司复合软管结构[18]

    Figure  14.  LNG cryogenic composite hose of Dunlop[18]

    图  15  Trelleborg公司复合软管结构[4]

    Figure  15.  LNG cryogenic composite hose of Trelleborg[4]

    图  16  典型柔性结构示意图

    Figure  16.  Schematic diagram of typical flexible structure

    图  17  实现柔顺性结构特性的原理图

    Figure  17.  Schematic diagram of achieving flexible structure

    图  18  内衬金属波纹管的截面示意图[6]

    Figure  18.  Schematic diagram of the cross-section of the lined metal bellow[6]

    图  19  内压载荷下金属波纹管层间无摩擦系数的应变[22]

    Figure  19.  Strain with no friction coefficient between lower layers under internal pressure load[22]

    图  20  多层金属波纹软管在循环内压作用下爆破失效[22]

    Figure  20.  Burst failure of the structure[22]

    图  21  典型的C型金属波纹管截面结构[23]

    Figure  21.  Typical cross-section of C-shaped metal bellow [23]

    图  22  考虑冷成形和温度影响的波纹管材料本构模型[23]

    Figure  22.  Material constitutive model considering the influence of cold forming and temperature[23]

    图  23  常温与低温环境下拉伸性能的对比[24]

    Figure  23.  Comparison of tensile properties at room temperature and low temperature[24]

    图  24  低温环境实验系统示意图[24]

    Figure  24.  Schematic diagram of low temperature environment experiment system forming and temperature[24]

    图  25  弯曲载荷下低温螺旋金属波纹管应力分布[27]

    Figure  25.  Stress distribution of cryogenic spiral metal bellow under bending load[27]

    图  26  单个波纹结构拉伸刚度变化趋势图[28]

    Figure  26.  Trend chart of tensile stiffness of single structure[28]

    图  27  U型波纹管截面几何形状[29]

    Figure  27.  U-shaped bellow cross-section geometry[29]

    图  28  弯曲载荷下U型波纹管应力分布[29]

    Figure  28.  Stress distribution of U-shaped bellow under bending load[29]

    图  29  不同波高波纹管的弯矩−弯曲转角曲线[29]

    Figure  29.  Bending moment-angle curve of bellows with different wave heights[29]

    图  30  波纹管弯曲失效的微观机理图[32]

    Figure  30.  Microcosmic mechanism diagram of bellow bending failure[32]

    图  31  波纹管反复弯曲的数值模拟过程[32]

    Figure  31.  Numerical simulation of repeated bending of bellow[32]

    图  32  金属波纹管的理论模型图[33]

    Figure  32.  Diagram of theoretical model of metal bellow[33]

    图  33  金属波纹管的数值模拟结果[33]

    Figure  33.  Numerical simulation results of metal bellows[33]

    图  34  应力测量点位置示意图[34]

    Figure  34.  Schematic diagram of the location of the stress measurement point[34]

    图  35  开展内压载荷下最大应力位置研究的实验装置[34]

    Figure  35.  Experimental device for studying the position of maximum stress under internal pressure[34]

    图  36  层流情况下管壁波峰位置的封闭气泡[37]

    Figure  36.  Streamline showing closed bubble in the bulge part under laminar flow condition[37]

    图  37  湍流情况下波峰位置的流线分布[38]

    Figure  37.  Streamline showing reduced bubble size in the bulge part under turbulent flow condition[38]

    图  38  非定常RANS模型模拟波纹管壁附近漩涡的周期性运动[39]

    Figure  38.  Life cycle of the vortex motion in corrugation predicted by the unsteady RANS model[39]

    图  39  两种波纹高度下, 壁面流动分离与重新附着位置[40](空心为高波高, 实心为低波高)

    Figure  39.  Variation of location of separation and reattachment point for high and low corrugation height[40]

    图  40  波纹管摩擦系数与波高的关系[41]

    Figure  40.  The relationship between friction coefficients and the depth of corrugation[41]

    图  41  氮气压降随雷诺数的变化[42]

    Figure  41.  Pressure drop versus Reynolds number for nitrogen gas[42]

    图  42  Nusselt数随雷诺数的变化(实线为光滑管)[43]

    Figure  42.  The relationship between Nusselt number and Reynolds number (solid line represents smooth pipe)[43]

    图  43  波纹管在波峰波谷处产生二次涡流扰动边界层[44]

    Figure  43.  Boundary layer perturbation by the vortex generated at corrugation crest and trough[44]

    图  44  螺旋波纹管与光滑圆管温度沿径向的分布[45]

    Figure  44.  Radial temperature distribution of the bellow (left) and smooth pipe (right)[45]

    图  45  比较的几种不同波形的波纹管

    (从左至右分别为三角形, 半圆形, U型)[46]

    Figure  45.  Different types of bellows

    (left to right: triangular, semicircular, and U-shaped)[46]

    图  46  沿流动方向的壁面剪切应力曲线[47]

    Figure  46.  Wall shear stress variation along the flow direction[47]

    图  47  输送液体的悬臂管[52]

    Figure  47.  Cantilever pipe for liquid transportation[52]

    图  48  不同流速下端部位移时程[52]

    Figure  48.  Tip displacement under different flow velocity[52]

    图  49  竖直管道内段塞流的形成过程[55]

    Figure  49.  Slug flow formation in vertical pipe[55]

    图  50  竖直管道内两相流致振动响应的情况[55]

    Figure  50.  Time history of the flow-induced vibration[55]

    图  51  U型波纹管流速与响应频谱的关系[56]

    Figure  51.  The relationship between velocity and response spectrum of U-shaped bellows [56]

  • [1] 刘合, 梁坤, 张国生等. 碳达峰、碳中和约束下我国天然气发展策略研究. 中国工程科学, 2021, 23(6): 1-10 doi: 10.15302/J-SSCAE-2021.06.001

    Liu He, Liang Kun, Zhang Guosheng, et al. Research on my country's natural gas development strategy under the constraints of carbon peak and carbon neutrality. Chinese Engineering Science, 2021, 23(6): 1-10 (in Chinese) doi: 10.15302/J-SSCAE-2021.06.001
    [2] 王春节, 魏林瑞, 张磊. 浮式液化天然气液化工艺综述. 化学工业, 2010, 28(Z1): 27-29 + 42 doi: 10.3969/j.issn.1673-9647.2010.02.007

    Wang Chunjie, Wei Linrui, Zhang Lei. Overview of Floating Liquefied Natural Gas Liquefaction Process. Chemical Industry, 2010, 28(Z1): 27-29 + 42 (in Chinese) doi: 10.3969/j.issn.1673-9647.2010.02.007
    [3] 马华伟, 刘春杨, 徐志诚. 液化天然气浮式生产储卸装置研究进展. 油气储运, 2012, 31(10): 721-724 + 732 doi: 10.6047/j.issn.1000-8241.2012.10.001

    Ma Huawei, Liu Chunyang, Xu Zhicheng. Research progress of LNG floating production storage and unloading equipment. Oil & Gas Storage and Transportation, 2012, 31(10): 721-724 + 732 (in Chinese) doi: 10.6047/j.issn.1000-8241.2012.10.001
    [4] 杨亮, 刘淼儿, 刘云等. 浮式LNG生产储卸装置卸料系统研究. 船舶与海洋工程, 2018, 34(03): 8-14

    Yang Liang, Liu Miaoer, Liu Yun, et al. Research on Unloading System of Floating LNG Production, Storage and Unloading Device. Ship and Ocean Engineering, 2018, 34(03): 8-14 (in Chinese)
    [5] EN. Installation and equipment for liquefied natural gas-design and testing of marine transfer systems-Part 2: Design and testing of transfer hoses: EN1474-2. 2008
    [6] Bardi F C, Tang H, Kulkarni M, et al. Structural analysis of cryogenic flexible hose//International Conference on Ocean, Offshore and Arctic Engineering, 2011
    [7] 杨亮, 刘淼儿, 刘云等. FLNG低温软管技术现状与应用前景分析. 海洋工程装备与技术, 2019, 6(06): 810-818

    Yang Liang, Liu Miaoer, Liu Yun, et al. FLNG cryogenic hose technology status and application prospect analysis. Ocean Engineering Equipment and Technology, 2019, 6(06): 810-818 (in Chinese)
    [8] 谢彬, 喻西崇, 韩旭亮等. FLNG研究现状及在中国南海深远海气田开发中的应用前景. 中国海上油气, 2017, 29(02): 127-134

    Xie Bin, Yu Xichong, Han Xuliang, et al. Research status of FLNG and its application prospects in the development of deep sea gas fields in the South China Sea. China Offshore Oil & Gas, 2017, 29(02): 127-134 (in Chinese)
    [9] 徐岸南, 宋丽君, 钱强. 低温软管在海上LNG输送领域的应用研究. 船舶与海洋工程, 2015, 31(01): 41-44 doi: 10.3969/j.issn.2095-4069.2015.01.009

    Xu Annan, Song Lijun, Qian Qiang. Research on the application of cryogenic hoses in the field of offshore LNG transportation. Ship and Ocean Engineering, 2015, 31(01): 41-44 (in Chinese) doi: 10.3969/j.issn.2095-4069.2015.01.009
    [10] 许佳伟. LNG串靠软管卸料系统关键技术浅析. 黑龙江科技信息, 2017(13): 31

    Xu Jiawei. Analysis of the key technology of the LNG stringing hose unloading system. Heilongjiang Science and Technology Information, 2017(13): 31 (in Chinese)
    [11] 谢彬, 赵晶瑞, 喻西崇. FLNG外输系统在中国南海的适用性分析及国产化研究思考. 中国海上油气, 2020, 32(05): 152-158

    Xie Bin, Zhao Jingrui, Yu Xichong. Applicability analysis and localization research thinking of FLNG export system in South China Sea. China Offshore Oil & Gas, 2020, 32(05): 152-158 (in Chinese)
    [12] Fæhn A. K. H. Dynamic Analysis and Verification of the Universal Buoyancy System. [PhD Thesis]. Trondheim: Norwegian University of Science and Technology, 2014
    [13] T’Joen C, Van K J, Maijenburg A. Going ‘Jettyless’ Opens New Markets//International Conference & Exhibition on Liquefied National Gas, 2019
    [14] Cox PJC, Gerez JM, Biaggi JP. Cryogenic flexible for offshore LNG transfer//Offshore Technology Conference, 2003
    [15] Günther F C, Sprenger F, Testa D, et al. Motion Behavior of a New Offshore LNG Transfer System at Harsh Operational Conditions//Offshore Technology Conference, 2009
    [16] Morilhat E. Flng offloading for real-verdict from the field//International Conference & Exhibition on Liquefied National Gas, 2019
    [17] Dupont B, Cox P, Garrigues J C. Key Cryogenic Components for Dynamic Marine LNG Transfer at Sea: Development and Tests Completed// Offshore Technology Conference, 2003
    [18] 张进, 安晨, 高强等. 海洋LNG低温软管结构设计与试验研究现状. 海洋工程装备与技术, 2020, 7(05): 300-310

    Zhang Jin, An Chen, Gao Qiang, et al. Current Status of Structural Design and Experimental Research on Offshore LNG Cryogenic Hose. Ocean Engineering Equipment and Technology, 2020, 7(05): 300-310 (in Chinese)
    [19] Eide J, Framo E, Bemson M, et al. Challenges and solutions in the development of a cryogenic pipe for offshore LNG transfer//Offshore Technology Conference, 2011
    [20] Pierre J Q, Giorgio E T. COOLTM hose qualification process of the first EN 1474-2 LNG floating hose//International Conference on Ocean, Offshore and Arctic Engineering, Netherlands, 2011
    [21] 都仕, 张宋奇, 王立权等. 高分子材料基因组——高分子研发的新方法. 高分子学报, 2022, 1028(02): 1-16 doi: 10.11777/j.issn1000-3304.2021.21404

    Du Shi, Zhang Songqi, Wang Liquan, et al. Polymer Genome Approach: A New Method for Research and Development of Polymers. Acta Polymerica Sinica, 2022, 1028(02): 1-16 (in Chinese) doi: 10.11777/j.issn1000-3304.2021.21404
    [22] Stephen O P, Jeffrey L E. Failure analysis of a metal bellows flexible hose subjected to multiple pressure cycles. Engineering Failure Analysis, 2012: 22
    [23] Srivastava V, Buitrago J, Slocum S T. Stress Analysis of a Cryogenic Corrugated Pipe//ASME 2011 30 th International Conference on Ocean, Offshore and Arctic Engineering, 2011
    [24] 顾明皓, 于淼. 航天用低温弹性元件的刚度研究. 低温工程, 2006(6): 48-52 doi: 10.3969/j.issn.1000-6516.2006.06.011

    Gu Minghao, Yu Miao. Stiffness of cryogenic elastic elements used in aerospace. Cryogenic Engineering, 2006(6): 48-52 (in Chinese) doi: 10.3969/j.issn.1000-6516.2006.06.011
    [25] 杨义俊, 王心丰. 多层波纹管非线性有限元应力分析. 压力容器, 2003(09): 13-16 doi: 10.3969/j.issn.1001-4837.2003.09.005

    Yang Yijun, Wang Xinfeng. Nonlinear finite element stress analysis of multilayer bellows. The Pressure Vessel, 2003(09): 13-16 (in Chinese) doi: 10.3969/j.issn.1001-4837.2003.09.005
    [26] Satoshi I, Hiroshi K, Masanori K. Evaluation of mechanical behavior of new type bellows with two-directional convolutions. Nuclear Engineering and Design, 2000, 197(1): 107-114
    [27] 杨志勋, 阎军, 卢青针等. 结构尺寸对LNG低温螺旋波纹钢管弯曲性能的影响分析. 计算机辅助工程, 2016, 25(06): 14-19

    Yang Zhixun, Yan Jun, Lu Qingzhen, et al. Analysis of the influence of structural dimensions on the bending performance of LNG cryogenic spiral corrugated steel pipes. Computer Aided Engineering, 2016, 25(06): 14-19 (in Chinese)
    [28] Yang Z, Yan J, Chen J, et al. Multi-objective shape optimization design for liquefied natural gas cryogenic helical corrugated steel pipe. Journal of Offshore Mechanics & Arctic Engineering, 2017, 139(5): 051703.1-051703.11
    [29] 杨亮, 胡海涛, 熊飞宇等. 结构尺寸对LNG低温柔性管道内衬层力学性能的敏感性分析. 计算机辅助工程, 2018, 27(02): 23-29

    Yang Liang, Hu Haitao, Xiong Feiyu, et al. Sensitivity analysis of structural size to the mechanical properties of LNG cryogenic flexible pipeline inner lining. Computer Aided Engineering, 2018, 27(02): 23-29 (in Chinese)
    [30] Radhakrishna M, Rao K C. Axial vibrations of U-shaped bellows with elastically restrained end conditions. Thin-Walled Structures, 2004, 42(3): 415-426 doi: 10.1016/S0263-8231(03)00130-7
    [31] 谈卓君, 曹丽亚, 廖日东等. 多层U形波纹管轴向刚度及临界载荷的有限元分析. 机械强度, 2004(01): 49-53 doi: 10.3321/j.issn:1001-9669.2004.01.010

    Tan Zhuojun, Cao Liya, Liao Ridong, et al. Finite element analysis of axial stiffness and critical load of multilayer U-shaped bellows. Mechanical Strength, 2004(01): 49-53 (in Chinese) doi: 10.3321/j.issn:1001-9669.2004.01.010
    [32] Hao Z A, Luo J B, Chen L A, et al. Failure mechanism of unequal parameters metal bellows under repeated bending process. Engineering Failure Analysis, 2021(129): 105671
    [33] Belyaev A K, Zinovieva T V, Smirnov K K. Theoretical and experimental studies of the stress–strain state of expansion bellows as elastic shells. St. Petersburg Polytechnical University Journal:Physics and Mathematics, 2017, 3(1): 7-14 doi: 10.1016/j.spjpm.2017.03.003
    [34] Pagar N D, Gawande S H. Experimental Investigations on Meridional and Circumferential Stresses of Bellows due to Internal Pressure//ASME 2019 Gas Turbine India Conference, 2019
    [35] 钱伟长, 吴明德. U型波纹管的非线性特性摄动法计算. 应用数学和力学, 1983, 4(05): 595-608

    Qian Weichang, Wu Mingde. The nonlinear characteristics of U-shaped bellows—calculations by the method of perturbation. Applied Mathematics and Mechanics, 1983, 4(05): 595-608 (in Chinese)
    [36] Frohne C, Harten F, Schippl K, et al. Innovative Pipe System for Offshore LNG Transfer//Offshore Technology Conference, 2008
    [37] Russ G, Beer H. Heat transfer and flow field in a pipe with sinusoidal wavy surface—I. Numerical investigation. International journal of heat and mass transfer, 1997, 40(5): 1061-1070 doi: 10.1016/0017-9310(96)00158-5
    [38] Russ G, Beer H. Heat transfer and flow field in a pipe with sinusoidal wavy surface—II. Experimental investigation. International journal of heat and mass transfer, 1997, 40(5): 1071-1081 doi: 10.1016/0017-9310(96)00159-7
    [39] Unal E, Sorguven E, Ahn H. Computational investigation of vortex structure in the corrugated channel//ASME International Mechanical Engineering Congress and Exposition, 2013
    [40] Mahmud S, Islam AS, Feroz C. Flow and heat transfer characteristics inside a wavy tube. Heat and Mass Transfer, 2003, 39(5): 387-393 doi: 10.1007/s00231-002-0369-9
    [41] Jaiman R K, Oakley Jr O H, Adkins J D. CFD modeling of corrugated flexible pipe//International Conference on Offshore Mechanics and Arctic Engineering, 2010
    [42] 孙凤玉, 张鹏. 波纹管内流动特性的试验研究. 工程热物理学报, 2008(10): 1725-1727 doi: 10.3321/j.issn:0253-231X.2008.10.028

    Sun Fengyu, Zhang Peng. Experimental study on the flow characteristics in corrugated tubes. Journal of Engineering Thermophysics, 2008(10): 1725-1727 (in Chinese) doi: 10.3321/j.issn:0253-231X.2008.10.028
    [43] 曾敏, 石磊, 陶文铨. 波纹管管内层流流动和换热规律的实验研究及数值模拟. 工程热物理学报, 2006(01): 142-144 doi: 10.3321/j.issn:0253-231X.2006.01.045

    Zeng Min, Shi Lei, Tao Wenquan. Experimental Research and Numerical Simulation of Laminar Flow and Heat Transfer Laws in Bellows. Journal of Engineering Thermophysics, 2006(01): 142-144 (in Chinese) doi: 10.3321/j.issn:0253-231X.2006.01.045
    [44] 陈克平, 张锁龙. 波纹管管内流动规律与数值模拟研究. 石油机械, 2007(11): 9-13 + 80 doi: 10.3969/j.issn.1001-4578.2007.11.003

    Chen Keping, Zhang Suolong. Research on flow law and numerical simulation in bellows. Petroleum Machinery, 2007(11): 9-13 + 80 (in Chinese) doi: 10.3969/j.issn.1001-4578.2007.11.003
    [45] 许卫国, 张清红, 杨冬等. 高温导热油热载体螺纹管传热和压降特性的实验与数值模拟. 工程热物理学报, 2015, 36(06): 1262-1267

    Xu Weiguo, Zhang Qinghong, Yang Dong. Experiments and numerical simulation of heat transfer and pressure drop of high temperature heat transfer fluid in a ribbed tube. Journal of Engineering Thermophysics, 2015, 36(06): 1262-1267 (in Chinese)
    [46] 杨志勋, 阎军, 熊飞宇等. 液化天然气低温波纹柔性管的流动特性. 油气储运, 2017, 36(09): 1089-1094 doi: 10.6047/j.issn.1000-8241.2017.09.018

    Yang Zhixun, Yan Jun, Xiong Feiyu, et al. Flow characteristics of cryogenic liquefied natural gas in corrugated flexible pipe. Subsea pipeline & Shipping, 2017, 36(09): 1089-1094 (in Chinese) doi: 10.6047/j.issn.1000-8241.2017.09.018
    [47] 王海燕, 刘淼儿, 杨亮等. LNG低温波纹软管内流体流动特性模拟分析. 中国海上油气, 2019, 31(05): 183-189

    Wang Haiyan, Liu Miaoer, Yang Liang, et al. Simulation analysis of fluid flow characteristics in LNG cryogenic corrugated hose. China Offshore Oil & Gas, 2019, 31(05): 183-189 (in Chinese)
    [48] Lavooij CSW, Tusseling AS. Fluid-structure interaction in liquid-filled piping systems. Journal of fluids and structures, 1991, 5(5): 573-595 doi: 10.1016/S0889-9746(05)80006-4
    [49] Tijsseling AS. Fluid-structure interaction in liquid-filled pipe systems: a review. Journal of Fluids and Structures, 1996, 10(2): 109-146 doi: 10.1006/jfls.1996.0009
    [50] Rachid FBF, Mattos HSC. Modeling of the fluid-structure interaction in inelastic piping systems. Journal of the Brazilian Society of Mechanical Sciences, 2002, 24: 62-69 doi: 10.1590/S0100-73862002000100008
    [51] Bastos F, Rachid F. Structural integrity of flexible piping systems conveying liquids. Journal of pressure vessel technology, 2006, 128(3): 341-347 doi: 10.1115/1.2217966
    [52] Tang S, Sweetman B. A geometrically-exact momentum-based nonlinear theory for pipes conveying fluid. Journal of Fluids and Structures, 2021, 100: 103190 doi: 10.1016/j.jfluidstructs.2020.103190
    [53] 李明, 宫敬, 李清平. 气液两相流管道流固耦合问题. 油气储运, 2010, 29(4): 7

    Li Ming, Gong Jing, Li Qingping. Gas-liquid two phase flow pipe fluid-structure interaction problems. Oil and gas storage and transportation, 2010, 29(4): 7 (in Chinese)
    [54] Pontaza JP, Menon RG. Flow-Induced Vibrations of Subsea Jumpers due to Internal Multi-Phase Flow//International Conference on Ocean, Offshore and Arctic Engineering, 2011
    [55] 谢芳芳, 郑耀. 输流管道内两相流流固耦合问题研究//全国工业流体力学会议, 2018

    Xie Fangfang, Zheng Yao. Study on fluid solid coupling of two-phase flow in flow transmission pipeline//National Conference on industrial hydrodynamics, 2018 (in Chinese)
    [56] Riverin JL, Pettigrew MJ. Fluctuating forces in U-tubes subjected to internal two-phase flow//Proceedings of the ASME 2005 Pressure Vessels and Piping Conference, 2005
  • 加载中
图(51)
计量
  • 文章访问数:  21
  • HTML全文浏览量:  8
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-21
  • 录用日期:  2022-08-03
  • 网络出版日期:  2022-08-04

目录

    /

    返回文章
    返回