EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

剪切流作用下层合梁非线性振动特性研究

刘昊 瞿叶高 孟光

刘昊, 瞿叶高, 孟光. 剪切流作用下层合梁非线性振动特性研究. 力学学报, 2022, 54(6): 1669-1679 doi: 10.6052/0459-1879-22-114
引用本文: 刘昊, 瞿叶高, 孟光. 剪切流作用下层合梁非线性振动特性研究. 力学学报, 2022, 54(6): 1669-1679 doi: 10.6052/0459-1879-22-114
Liu Hao, Qu Yegao, Meng Guang. A numerical study on flapping dynamics of a composite laminated beam in shear flow. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1669-1679 doi: 10.6052/0459-1879-22-114
Citation: Liu Hao, Qu Yegao, Meng Guang. A numerical study on flapping dynamics of a composite laminated beam in shear flow. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1669-1679 doi: 10.6052/0459-1879-22-114

剪切流作用下层合梁非线性振动特性研究

doi: 10.6052/0459-1879-22-114
基金项目: 国家自然科学基金(U2141244, 11922208, 11932011, 12121002)和深蓝计划重点项目(SL2021 ZD104)资助
详细信息
    作者简介:

    瞿叶高, 教授, 主要研究方向: 非线性动力学与控制等. E-mail: quyegao@sjtu.edu.cn

  • 中图分类号: O352

A NUMERICAL STUDY ON FLAPPING DYNAMICS OF A COMPOSITE LAMINATED BEAM IN SHEAR FLOW

  • 摘要: 针对剪切流中层合梁的大变形非线性振动问题, 采用高阶剪切变形锯齿理论和冯·卡门应变描述层合梁的变形模式和几何非线性效应, 构建了大变形层合梁非线性振动有限元数值模型; 采用基于任意拉格朗日−欧拉方法的有限体积法求解不可压缩黏性流体纳维-斯托克斯方程, 结合层合梁和流体的耦合界面条件建立了剪切流作用下层合梁流固耦合非线性动力学数值模型, 采用分区并行强耦合方法对层合梁的流致非线性振动响应进行了迭代计算. 研究了不同速度分布的剪切流作用下单层梁和多层复合材料梁的振动响应特性, 并验证了本文数值建模方法的有效性. 结果表明: 剪切流作用下单层梁的振动特性与均匀流作用下的情况不同, 梁的运动轨迹受剪切流影响向下偏斜, 随着速度分布系数增加, 尾部流场中的涡结构发生改变; 刚度比对剪切流作用下层合梁的振动特性有显著影响, 随着刚度比的增加, 层合梁振动的振幅增大, 主导频率下降, 运动轨迹由‘8’字形逐渐变得不对称; 发现了不同厚度比和铺层角度情况下, 层合梁存在定点稳定模式、周期极限环振动模式和非周期振动模式三种不同的振动模式, 改变层合梁铺层角度可实现层合梁周期极限环振动模式向非周期振动模式转变.

     

  • 图  1  计算模型

    Figure  1.  Computational model

    图  2  复合材料层合梁的示意图

    Figure  2.  Schematic diagram of composite laminated beam

    图  3  双向流固耦合计算流程图

    Figure  3.  Flowchart of bidirectional fluid-structure interaction

    图  4  流场非结构网格C

    Figure  4.  Overview of the Mesh C

    图  5  不同$ \varDelta $情况下, 层合梁右端(x = L)节点横向位移的最大振幅

    Figure  5.  Maximum amplitude of transverse displacement at laminated beam tip as a function of $ \varDelta $

    图  6  不同$ \varDelta $情况下, 层合梁右端(x = L)节点横向位移的主导频率

    Figure  6.  Dominant frequency of transverse displacement at laminated beam tip as a function of $\varDelta $

    图  7  不同$ \alpha $情况下的来流速度分布

    Figure  7.  Velocity profile as a function of $\alpha $

    图  8  单层梁右端(x = L)节点的横向位移标准差曲线和平均值曲线

    Figure  8.  Standard deviation and mean value of transverse displacement at single isotropic beam tip as a function of $\alpha $

    图  9  单层梁右端(x = L)节点的横向振动频率曲线

    Figure  9.  Dominant frequency of transverse displacement at single isotropic beam tip as a function of $\alpha $

    图  10  单层梁在一个完整振动周期内的变形包络图

    Figure  10.  Deformation envelope of single isotropic beam in a complete motion period

    图  11  单层梁不同位置节点在5个振动周期内的横向位移时域曲线($\alpha $= 1)

    Figure  11.  Time domain responses of transverse displacement of beam at different positions in 5 flapping motion periods ($\alpha $= 1)

    图  12  不同$\alpha $情况下, 单层梁在20个完整振动周期内的右端节点位移Lissajous曲线

    Figure  12.  Lissajous curves of single isotropic beam in 20 flapping motion periods at beam tip with different $\alpha $

    图  13  一个完整振动周期内的涡量图($\alpha $= 0)

    Figure  13.  Vorticity diagrams in a complete flapping motion period at $\alpha $= 0

    图  14  一个完整振动周期内的涡量图($\alpha $= 0.5)

    Figure  14.  Vorticity diagrams in a complete flapping motion period at $\alpha $= 0.5

    图  15  一个完整振动周期内的涡量图($\alpha $= 1.8)

    Figure  15.  Vorticity diagrams in a complete flapping motion period at $\alpha $= 1.8

    图  16  层合梁右端(x = L)节点的横向位移时域响应

    Figure  16.  Time domain response of transverse displacement at beam tip

    图  17  层合梁右端(x = L)节点位移的Lissajous曲线

    Figure  17.  Lissajous curves of displacements at beam tip

    图  18  层合梁右端(x = L)节点的横向位移标准差曲线以及$ \gamma $= 0.33, $ \gamma $= 1时的变形包络图

    Figure  18.  Standard deviation of transverse displacement at beam tip as a function of $ \gamma $ and deformation envelope of beam at $ \gamma $= 0.33, $ \gamma $= 1, respectively

    图  19  层合梁右端(x = L)节点的横向位移平均值曲线

    Figure  19.  Mean value of transverse displacement at beam tip as a function of $ \gamma $

    图  20  层合梁右端(x = L)节点的横向位移标准差曲线以及$ \theta $= 35°, $ \theta $= 40°时的时域曲线

    Figure  20.  Standard deviation of transverse displacement at beam tip as a function of $ \theta $ and time domain response at $ \theta $= 35°, $ \theta $= 40°, respectively

    图  21  层合梁右端(x = L)节点的横向位移平均值曲线以及$ \theta $= 35°, $ \theta $= 40°时的Lissajous曲线

    Figure  21.  Mean value of transverse displacement at beam tip as a function of $ \theta $ and Lissajous curves at $ \theta $= 35°, $ \theta $= 40°, respectively

    表  1  网格收敛性分析

    Table  1.   Grid independence test

    Amplitude ($ u_y / L $)Frequency ($ {{fL} \mathord{\left/ {\vphantom {{fL} {{U_0}}}} \right. } {{U_0}}} $)
    Mesh A0.077210.8917
    Mesh B0.078100.8914
    Mesh C0.080180.8903
    Ref. [13]0.082210.8789
    下载: 导出CSV
  • [1] Tang D, Yamamoto H, Dowell EH. Flutter and limit cycle oscillations of two-dimensional panels in three-dimensional axial flow. Journal of Fluids and Structures, 2003, 17(2): 225-242 doi: 10.1016/S0889-9746(02)00121-4
    [2] Shelley M, Vandenberghe N, Zhang J. Heavy flags undergo spontaneous oscillations in flowing water. Physical Review Letters, 2005, 94(9): 094302 doi: 10.1103/PhysRevLett.94.094302
    [3] Guo CQ, Paidoussis MP. Stability of rectangular plates with free side-edges in two-dimensional inviscid channel flow. Journal of Applied Mechanics, 2000, 67(1): 171-176 doi: 10.1115/1.321143
    [4] Yu Y, Liu Y, Amandolese X. A review on fluid-induced flag vibrations. Applied Mechanics Reviews, 2019, 71(1): 010801 doi: 10.1115/1.4042446
    [5] Taneda S. Waving motions of flags. Journal of the Physical Society of Japan, 1968, 24(2): 392-401 doi: 10.1143/JPSJ.24.392
    [6] Eloy C, Lagrange R, Souilliez C, et al. Aeroelastic instability of cantilevered flexible plates in uniform flow. Journal of Fluid Mechanics, 2008, 611: 97-106 doi: 10.1017/S002211200800284X
    [7] Zhu L, Peskin CS. Interaction of two flapping filaments in a flowing soap film. Physics of Fluids, 2003, 15(7): 1954-1960 doi: 10.1063/1.1582476
    [8] Connell BSH, Yue DKP. Flapping dynamics of a flag in a uniform stream. Journal of Fluid Mechanics, 2007, 581: 33-67 doi: 10.1017/S0022112007005307
    [9] Lui J, Jaiman RK, Gurugubelli PS. Second order accurate coupled field with explicit interface advancing for fluid-structure interaction with strong added mass. Journal of Computational Physics, 2014, 270: 687-710 doi: 10.1016/j.jcp.2014.04.020
    [10] Zhang L, Zou SY, Wang CZ, et al. A loosely-coupled scheme for the flow-induced flapping problem of two-dimensional flexible plate with strong added-mass effect. Ocean Engineering, 2020, 217: 107656 doi: 10.1016/j.oceaneng.2020.107656
    [11] Sun CB, Wang SY, Jia LB, et al. Force measurement on coupled flapping flags in uniform flow. Journal of Fluids and Structures, 2016, 61: 339-346 doi: 10.1016/j.jfluidstructs.2015.12.003
    [12] Yu ZS, Wang Y, Shao XM. Numerical simulations of the flapping of a three-dimensional flexible plate in uniform flow. Journal of Sound and Vibration, 2012, 331(20): 4448-4463 doi: 10.1016/j.jsv.2012.05.009
    [13] Saravanakumar AK, Supradeepan K, Gurugubelli PS. A numerical study on flapping dynamics of a flexible two-layered plate in a uniform flow. Physics of Fluids, 2021, 33(1): 0033049
    [14] Cheng M, Whyte DS, Lou J. Numerical simulation of flow around a square cylinder in uniform-shear flow. Journal of Fluids and Structures, 2007, 23(2): 207-226 doi: 10.1016/j.jfluidstructs.2006.08.011
    [15] Yu ML, Wang B, Wang ZJ, et al. Evolution of vortex structures over flapping foils in shear flows and its impact on aerodynamic performance. Journal of Fluids and Structures, 2018, 76: 116-134 doi: 10.1016/j.jfluidstructs.2017.09.012
    [16] Liu Z, Qu HL, Shi HD. Performance evaluation and enhancement of a semi-activated flapping hydrofoil in shear flows. Energy, 2019, 189: 116255 doi: 10.1016/j.energy.2019.116255
    [17] 涂佳黄, 周岱, 马晋等. 剪切来流作用下圆柱体结构物的双自由度流致振动. 上海交通大学学报, 2014, 48(2): 252-259 (Tu Jiahuang, Zhou Dai, Ma Jin, et al. Two-degree-of-freedom flow-induced vibration of an isolated cylinder structure in planar shear flow. Journal of Shanghai Jiao Tong University, 2014, 48(2): 252-259 (in Chinese)

    Tu Jiahuang, Zhou Dai, Ma Jin, et al. Two-degree-of-freedom flow-induced vibration of an isolated cylinder structure in planar shear flow. Journal of Shanghai Jiao Tong University, 2014, 48(2): 252-259 (in Chinese)
    [18] Ding L, Kong H, Zou QF, et al. 2-DOF vortex-induced vibration of rotating circular cylinder in shear flow. Ocean Engineering, 2022, 249: 111003 doi: 10.1016/j.oceaneng.2022.111003
    [19] 黄政, 熊鹰, 鲁利. 复合材料螺旋桨流固耦合振动噪声研究综述. 哈尔滨工程大学学报, 2020, 41(1): 87-94, 124 (Huang Zheng, Xiong Ying, Lu L. A review on FSI vibration and noise performance research of composite propellers. Journal of Harbin Engineering University, 2020, 41(1): 87-94, 124 (in Chinese)

    Huang Zheng, Xiong Ying, Lu L. A review on FSI vibration and noise performance research of composite propellers. Journal of Harbin Engineering University, 2020, 41(1): 87-94, 124 (in Chinese)
    [20] 陈倩, 张汉哲, 吴钦等. 复合材料水翼水动力与结构强度特性数值研究. 力学学报, 2019, 51(5): 1350-1362 (Chen Qian, Zhang Hanzhe, Wu Qin, et al. The numerical investifation on hydrodynamic and structural strength of a composite hydrofoil. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1350-1362 (in Chinese)

    Chen Qian, Zhang Hanzhe, Wu Qin, et al. The numerical investifation on hydrodynamic and structural strength of a composite hydrofoil. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1350-1362 (in Chinese)
    [21] Carrera E. Historical review of zig-zag theories for multilayered plates and shells. Applied Mechanics Reviews. 2003, 56(3): 287-308
    [22] Treviso A, Mundo D, Tournour M. Dynamic response of laminated structures using a refined zigzag theory shell element. Composite Structures, 2017, 159: 197-205 doi: 10.1016/j.compstruct.2016.09.026
    [23] 刘人怀, 薛江红. 复合材料层合板壳非线性力学的研究进展. 力学学报, 2017, 49(3): 487-506 (Liu Renhuai, Xue Jianghong. Development of nonlinear mechanics for laminated composite plates and shells. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 487-506 (in Chinese)

    Liu Renhuai, Xue Jianghong. Development of nonlinear mechanics for laminated composite plates and shells. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 487-506 (in Chinese)
    [24] Ferziger JH, Peric M. Computational Methods for Fluid Dynamics. 3rd ed. New York: Springer Science and Business Media, 2002
    [25] Jasak H. OpenFOAM: Open source CFD in research and industry. International Journal of Naval Architecture and Ocean Engineering, 2009, 1(2): 89-94
    [26] Versteeg H, Malalasekera W. An Introduction to Computational Fluid Dynamics: the Finite Volume Method. 2nd ed. England: Pearson Education Limited, 2007
    [27] Qu YG, Long XH, Li HG, et al. A variational formulation for dynamic analysis of composite laminated beams based on a general higher-order shear deformation theory. Composite Structures, 2013, 102: 175-192 doi: 10.1016/j.compstruct.2013.02.032
    [28] Reddy JN. A refined nonlinear theory of plates with transverse shear deformation. International Journal of Solids and Structures, 1984, 20(9-10): 881-896 doi: 10.1016/0020-7683(84)90056-8
    [29] Carrera E. On the use of the Murakami's zig-zag function in the modeling of layered plates and shells. Computers and Structures, 2004, 82(7-8): 541-554 doi: 10.1016/j.compstruc.2004.02.006
    [30] Liu H, Qu YG, Xie FT, et al. Vortex-induced vibration of large deformable underwater composite beams based on a nonlinear higher-order shear deformation zig-zag theory. Ocean Engineering, 2022, 250: 111000 doi: 10.1016/j.oceaneng.2022.111000
    [31] Bungartz HJ, Lindner F, Gatzhammer B, et al. PreCICE−A fullly parallel library for multi-physics surface coupling. Computers and Fluids. 2016, 141: 250-258
    [32] Shukla S, Govardhan RN, Arakeri JH. Dynamics of a flexible splitter plate in the wake of a circular cylinder. Journal of Fluids and Structures, 2013, 41: 127-134 doi: 10.1016/j.jfluidstructs.2013.03.002
  • 加载中
图(21) / 表(1)
计量
  • 文章访问数:  376
  • HTML全文浏览量:  122
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-21
  • 录用日期:  2022-05-23
  • 网络出版日期:  2022-05-24
  • 刊出日期:  2022-06-18

目录

    /

    返回文章
    返回