EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多体空气动力学研究进展

宋威 艾邦成

宋威, 艾邦成. 多体空气动力学研究进展. 力学学报, 2022, 54(6): 1461-1484 doi: 10.6052/0459-1879-22-096
引用本文: 宋威, 艾邦成. 多体空气动力学研究进展. 力学学报, 2022, 54(6): 1461-1484 doi: 10.6052/0459-1879-22-096
Song Wei, Ai Bangcheng. Research progress on multibody aerodynamics. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1461-1484 doi: 10.6052/0459-1879-22-096
Citation: Song Wei, Ai Bangcheng. Research progress on multibody aerodynamics. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1461-1484 doi: 10.6052/0459-1879-22-096

多体空气动力学研究进展

doi: 10.6052/0459-1879-22-096
详细信息
    作者简介:

    宋威, 高级工程师, 主要研究方向: 多体空气动力学、多体分离动力学和非定常空气动力学及流动控制等. E-mail: 15210987189@126.com

    艾邦成, 研究员, 主要研究方向: 气动热与热防护. E-mail: aimen011@126.com

  • 中图分类号: V211.7, V212.1

RESEARCH PROGRESS ON MULTIBODY AERODYNAMICS

  • 摘要: 多体飞行器普遍存在于航空航天、空天和武器领域中, 主要有以下三大类型: (1) 多个飞行器相互不接触的近距离飞行; (2) 多体飞行器相互接触或组合飞行; (3) 多体飞行器回收或解锁分离过程的相对运动. 多体飞行器在飞行、回收或分离过程中存在相互的流场干扰或作用, 使多体飞行器具有不同于孤立体飞行器的流动物理或特征, 特别是在超声速、高超声速的多体流动中, 多体间存在多重激波反射、衍射以及激波与旋涡、激波与边界层相互干扰或作用, 这些复杂流动能显著地改变多体飞行器的空气动力学特性. 作者引入“多体空气动力学”概念对多体飞行器这一类问题进行概括和总结, 并阐述其基本内涵、应用场景和研究方法/手段及典型多体构型的超声速/高超声速流动结构和特征.

     

  • 图  1  孤立体和多体飞行器间的扰动流场对比图[32]

    Figure  1.  Comparison of disturbed flowfield between isolated-body and multibody vehicle[32]

    图  2  典型的多体间的流场干扰阴影图 ($Ma{\text{ = }}2.5$)[32]

    Figure  2.  Shadow diagram of flowfield interference among typical multibody ($Ma{\text{ = }}2.5$)[32]

    图  3  多体飞行器构型分类示意图

    Figure  3.  Classification of multibody vehicle configuration

    图  4  编队飞行示意图

    Figure  4.  Schematic diagram of formation flight

    图  5  空中硬式加油示意图

    Figure  5.  Schematic diagram of air-to-air refueling

    图  6  副油箱挂载示意图[56]

    Figure  6.  Schematic diagram of external fuel tank on F35 combat-aircraft[56]

    图  7  并联布置的兰利滑翔-返回助推器(LGBB) [60]

    Figure  7.  Parallel configuration of LGBB[60]

    图  9  多体空气动力学研究方法的相互关系图

    Figure  9.  Relationship of research methods for multibody aerodynamics

    图  11  多体空气动力学与多体分离动力学及安全性的相互关系图

    Figure  11.  Relationship of multibody aerodynamics, separation dynamics and safety

    图  10  网格测量法预测多体分离动力学结构图

    Figure  10.  Schematic diagram of predicting the multibody separation dynamics by GSM

    图  12  热分离时级间段的流动结构[97]

    Figure  12.  Flow structure of interstage during HSS[97]

    图  13  X43 A升力体飞行器示意图[90]

    Figure  13.  Schematic diagram of X43 A lifting body vehicle[90]

    图  14  助推器与X43 A飞行器间干扰气动力特性[91]

    Figure  14.  Aerodynamic interference characteristics between booster and X43 A vehicle[91]

    15  助推器与X43 A飞行器间的流场干扰纹影图[91]

    15.  Schlieren diagram of flowfield interference between booster and X43 vehicle[91]

    15  助推器与X43 A飞行器间的流场干扰纹影图[91](续)

    15.  Schlieren diagram of flowfield interference between booster and X43 vehicle[91] (continued)

    图  16  有无羽流干扰时的流场结构[95]

    Figure  16.  Flowfield structure with or without plume interference[95]

    图  17  不同轴向间距下的阴影图[95]

    Figure  17.  Shadowgraph in different axial distance[95]

    图  18  二维楔形板和尖拱圆柱体的简化模型[100]

    Figure  18.  Simplified model of two-dimensional wedge-plate and ogive-cylinder[100]

    图  19  不同横向距离对圆柱体表面流动分离的影响[100]

    Figure  19.  Influence of different distance on flow separation on cylinder surface[100]

    图  20  空腔-存储物干扰的简化模型[79]

    Figure  20.  Simplified model of cavity-store interference[79]

    图  21  风洞实验模型[130]

    Figure  21.  Wind tunnel model[130]

    图  22  典型的风洞纹影图

    Figure  22.  Schlieren of wind tunnel

    图  23  典型的流动结构[134]

    Figure  23.  Typical flow structure[134]

    图  24  尖拱圆柱体上的三维激波与边界层相互作用[136]

    Figure  24.  SWBLI on ogive-cylinder surface[136]

    图  25  圆锥头柱体上的三维激波与边界层相互作用[136]

    Figure  25.  SWBLI on cone-cylinder surface[136]

    图  26  半球头圆柱体上的三维激波与边界层相互作用[136]

    Figure  26.  SWBLI on hemispherical-cylinder surface[136]

    图  8  Hyper-X计划中串联布局多级飞行器[64]

    Figure  8.  Tandem multistage vehicle in Hyper-X program[64]

    图  27  近体和孤立体法向力和俯仰力矩系数随攻角变化[140]

    Figure  27.  Diagram of normal force and pitching moment coefficient vs. angle-of-attack of near-body and isolated body[140]

    图  28  不同横向间距时的纹影图(Ma = 2.99) [140]

    Figure  28.  Schlieren diagram with different lateral distance (Ma = 2.99) [140]

    表  1  串联多体构型级间分离的研究概要(检索)

    Table  1.   Summary of stage separation for tandem multibody configuration (retrieved)

    YearAuthorRef.Ma or VMethodFlow visualizationSeparation mode
    2001 [90] booster and X43 A 6.0 SFM CSS
    2001 [91] booster and X43 A 6.0 CTS SCM CSS
    2001 [92] booster and X43 A 0.6~6.0 CFD-RANS CSS
    2001 [93] booster and X43 A 6.0 CFD-RANS CSS
    2008 [94] cylinder and CC 5 km/s DSMC HSS
    2009 [95] ramp and blunt-cone 2.5 SFM SCM HSS
    2013 [96] cone-cylinder and OC 0.9, 1.1, 2.0 CFD-Euler,
    CFD-RANS
    HSS
    2016 [97] cylinder and OC 2.6 CFD-RANS HSS
    Notes: SFM: static force measurment; SPM: static pressure measurment; SCM: schlieren method; DSMC: direct simulation Monte Carlo; CC: cone-cylinder; OC: ogive-cylinder; BC: blunt-cone
    下载: 导出CSV

    表  2  平板/楔形板/翼-存储物并联构型的研究概要(检索)

    Table  2.   Summary of plate/wedge/wing-store configuration (retrieved)

    YearRef.ModelFlow condition
    Ma
    MethodFlow visualizationNotes
    GeneratorReceiver
    1983 [98] plate cylinder 2.5, 3, 4, 6 CFD-Euler
    1983 [99] WP OC 3.0 SPM SOF WA = 13°, 16°, 19°; ISA=19°
    CFD-TLNS
    1983 [100] WP OC 3.0 SPM SOF
    SGM
    WA = 13°, 16°, 19°; ISA = 19°
    1985 [101] WP OC 3.0 SPM SGM WA = 13°, 16°, 19°; ISA = 19°
    CFD-TLNS
    1983 [102] WP OC 4.0 CFD-TLNS ISA = 24°
    1983 [103] WP OC 1.5 IFM WA = 2.5°
    1992 [104] WP OC 10 CFD-Euler WA = 4°; ISA = 22.5°
    1996 [105] plate wedge-body 1.5, 1.9 SPM, UPM WA = 6.1°
    1999-2000 [106-108] plate orbiter 6.8 CFD-Euler
    CFD-RANS
    2013 [109] WP OC 3.0 SFM, SPM SOF
    SCM
    WA = 10°
    CFD-RANS
    2015 [110] WP OC 2.0 SFM SGM
    SOF
    WA = 10°
    CFD-RANS
    2019 [111] WP OC 2.0 SFM SGM
    SOF
    WA = 10°
    CFD-RANS
    2020 [112] WP OC 2.0 SPM (PSP)
    UPM
    WA = 10°
    2021 [113] WP OC 3.4 SVM SPIV WA = 10°, 15°, 20°
    2020 [116-117] delta wing SC 8.1 CFD-RANS
    Notes: TLNS: thin-layer Navier-Stokes equations; SOF: surface oil flow; WA: wedge angle; ISA: incident shock angle; SGM: shadowgraph method; UPM: unsteady pressure measurement; PSP: pressure sensitive paint; PIV: particle image velocimetry; SVM: surface velocity measurement; SPIV: stereoscopic particle image velocimetry; WP: wedge-plate; OC: ogive-cylinder; SC: spherical-cylinder
    下载: 导出CSV

    表  3  近二十年关于两细长体并联多体构型研究概要

    Table  3.   Summary of two slender bodies in recent twenty years

    YearRef.ModelRatio of length to diameter λFlow conditionMethodFlow visualization
    GeneratorReceiverMaRe
    2009 [32] SC OC (wing and no-wing) 7.358 2.43 1.4 × 106 (D) SFM, SPM SGM, PSP
    CFD-RANS
    2010 [33] OC OC 7.358 2.5 7.6 × 106 (m) SFM, SPM SCM
    CFD-RANS
    2011 [35] OC
    SC
    OC 7.358 2.43 1.4 × 106 (D) SFM, SPM SGM
    CFD-RANS
    2011 [35] OC OC 7.358 2.43 6.97 × 107 (m) SFM, SPM PSP
    2016 [36] OC
    SC
    OC (wing) 7.358 2.43 1.4 × 106 (D) SFM, SPM SGM
    PSP
    CFD-RANS
    2008 [38] OC OC 18 2 TA-SBT
    2010 [39] OC OC 18 2 TA-SBT
    2006 [135] spherical spherical 6.0 0.22 SFM
    TA-SBT
    2011 [136] OC
    CC
    HSC
    OC
    CC
    HSC
    2.5, 3.0, 3.2 2.0 × 107 (m) SVM SCM, SOF
    CFD-RANS
    2017 [137] OC
    CC
    SC
    OC
    CC
    SC
    5.0 3.0 0.17 × 106 (D) SOF
    CFD-RANS
    Notes: TA-SBT: theoretical analysis-Slender body theory; OC: ogive-cylinder; SC: spherical-cylinder; HSC: hemispherical-cylinder; CC: cone-cylinder
    下载: 导出CSV

    表  4  LGBB并联构型的研究概要

    Table  4.   Summary of LGBB parallel configuration

    YearRef.Flow condition
    Ma
    MethodFlow visualizationComments
    2003[140]2.99SFM, SCMSCMThe proximity aerodynamics are mainly dominated by complex bow-shock interaction, and the booster is statically unstable at several separation positions. Compared with the isolated body, the normal force of the proximity changes almost the same with the angle of attack, and the axial force of both bodies increases by about 3%.
    2004[141-142]3.0, 6.0SFM
    CFD-Euler
    SCMUnsteady aerodynamic effect is not important to the separation characteristics of Bimese-LGBB aircraft at high Mach number.
    2004[143]3.0, 6.0CFD-Euler
    CFD-RANS
    2004[144]0.6, 1.05, 1.1, 2, 3, 4.5, 6, 10SFM
    CFD-Euler
    CFD-RANS
    SCMThe research progress of stage separation of Bimese-LGBB aircraft is reviewed.
    2007[16]3.0, 6.0DMSThe ConSep tool is used to analyze and simulate the separation dynamics of Bimese-LGBB, and the influences of mass, inertia, flight angle, altitude and separation parameters are evaluated. Aerodynamic data are obtained from wind tunnel experiments. The results show that complete pneumatic separation is feasible for the interstage separation at Mach number 3, but it is not feasible at Mach number 6, which requires external power.
    2012[145]3.79DMSThe constraint force equation (CFE) method is applied to the simulation of the dynamic problem of LGBB aircraft stage separation.
    2020[146]2.3, 3.0, 4.5SFMSCMOrbiter and booster models show highly nonlinear aerodynamic response, which is the result of a flow separation system induced by complex shock waves, reflected shocks and possible shocks. The influence area of the booster orbiter is limited to a relatively small area in the experimental space, while the booster remains in the orbiter influence area of the whole test grid matrix, except that the highest test Mach number is 4.5. The effect of stage separation interference is sensitive to Mach number, relative angle of attack and rolling angle direction of the booster relative to the orbiter.
    下载: 导出CSV
  • [1] Dogan A, Venkataramanan S, Blake W. Modeling of aerodynamic coupling between aircraft in close proximity. Journal of Aircraft, 2005, 42(4): 941-955 doi: 10.2514/1.7579
    [2] Zhang QR, Liu HHT. Aerodynamics modeling and analysis of close formation flight. Journal of Aircraft, 2017, 54(6): 2192-2204 doi: 10.2514/1.C034271
    [3] Kentfield JAC. Formation flight and much more. AIAA Journal, 2007, 45(8): 1795-1797 doi: 10.2514/1.31222
    [4] Etkin B. Stability of a towed body. Journal of Aircraft, 1998, 35(2): 197-205 doi: 10.2514/2.2308
    [5] Cochran JE, Innocenti M, No TS, et al. Dynamics and control of maneuverable towed flight vehicles. Journal of Guidance, Control, and Dynamics, 1992, 15(5): 1245-1252 doi: 10.2514/3.20975
    [6] Montalvo C, Costello M. Avoiding lockout instability for towed parafoil systems. Journal of Guidance, Control, and Dynamics, 2016, 39(5): 985-995 doi: 10.2514/1.G001545
    [7] Mizrahi I, Raveh DE. Wing elasticity effects on store separation. Journal of Aircraft, 2019, 56(3): 1231-1249 doi: 10.2514/1.C035204
    [8] Dissel AF, Kothari AP, Lewis MJ. Investigation of two-stage-to-orbit airbreathing launch-vehicle configurations. Journal of Spacecraft and Rockets, 2006, 43(3): 568-574 doi: 10.2514/1.17916
    [9] Wang Y, Wang H, Liu B, et al. A visual navigation framework for the aerial recovery of UAVs. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-13
    [10] Wang G, Chen X, Xing Y, et al. Multi-body separation simulation with an improved general mesh deformation method. Aerospace Science and Technology, 2017, 71: 763-771 doi: 10.1016/j.ast.2017.10.027
    [11] Olejnik A, Dziubinski A, Kiszkowiak K. Separation safety analysis using CFD simulation and remeshing. Aerospace Science and Technology, 2020, 106: 106190 doi: 10.1016/j.ast.2020.106190
    [12] Kariv D, Raveh DE. Dynamic response of an elastic aircraft to ripple store ejection. Journal of Aircraft, 2020, 57(4): 635-651 doi: 10.2514/1.C035707
    [13] Loupy GJM, Barakos GN, Taylor NJ. Store release trajectory variability from weapon bays using scale-adaptive simulations. AIAA Journal, 2018, 56(2): 752-764 doi: 10.2514/1.J056485
    [14] Baum J, Hong L, Loehner R. Numerical simulation of aircraft canopy trajectory//28th Fluid Dynamics Conference, Snowmass Village, CO, USA, 1997
    [15] Mao XD, Lin GP, Yu J. Predicting ejection velocity of ejection seat via back propagation neural network. Journal of Aircraft, 2011, 48(2): 668-672 doi: 10.2514/1.C031196
    [16] Pamadi BN, Neirynck TA, Hotchko NJ, et al. Simulation and analyses of stage separation of two-stage reusable launch vehicles. Journal of Spacecraft and Rockets, 2007, 44(1): 66-80 doi: 10.2514/1.17896
    [17] Moelyadi MA, Breitsamter C, Laschka B. Stage-separation aerodynamics of two-stage space transport systems. Part 2: Unsteady simulation. Journal of Spacecraft and Rockets, 2008, 45(6): 1240-1250 doi: 10.2514/1.35059
    [18] Moelyadi MA, Breitsamter C, Laschka B. Stage-separation aerodynamics of two-stage space transport systems. Part 1: Steady-state simulations. Journal of Spacecraft and Rockets, 2008, 45(6): 1230-1239 doi: 10.2514/1.34828
    [19] Wang YP, Ozawa H, Koyama H, et al. Abort separation of launch escape system using aerodynamic interference. AIAA Journal, 2013, 51(1): 271-276
    [20] 宋威, 鲁伟, 蒋增辉. 超声速飞行器头罩分离风洞投放模型试验. 实验流体力学, 2017, 31(6): 45-51 (Song Wei, Lu Wei, Jiang Zenghui. Wind tunnel drop model test of nose cap separation of supersonic vehicle. Journal of Experiments in Fluid Mechanics, 2017, 31(6): 45-51 (in Chinese) doi: 10.11729/syltlx20170026

    Song Wei, Lu Wei, Jiang Zenghui. Wind tunnel drop model test of nose cap separation of supersonic vehicle. Journal of Experiments in Fluid Mechanics, 2017, 31(6): 45-51 (in Chinese) doi: 10.11729/syltlx20170026
    [21] Dagan Y, Arad E. Analysis of shroud release applied for high-velocity missiles. Journal of Spacecraft and Rockets, 2014, 51(1): 57-66 doi: 10.2514/1.A32489
    [22] 黄蓓, 王浩, 王帅等. 薄片状体沉降过程中的多体干扰流场特性. 弹道学报, 2012, 24(1): 41-46 (Huang Bei, Wang Hao, Wang Shuai, et al. Flow field characteristics of multi-plates interference in descent. Journal of Ballistics, 2012, 24(1): 41-46 (in Chinese) doi: 10.3969/j.issn.1004-499X.2012.01.009

    Huang Bei, Wang Hao, Wang Shuai, et al. Flow field characteristics of multi-plates interference in descent. Journal of Ballistics, 2012, 24(1): 41-46 (in Chinese) doi: 10.3969/j.issn.1004-499X.2012.01.009
    [23] 王政伟, 王浩, 阮文俊等. 高速下集束薄片初始分离过程仿真研究. 空气动力学学报, 2015, 33(6): 828-834 (Wang Zhengwei, Wang Hao, Ruan Wenjun, et al. Simulation of plates group initial separation in high speed. Acta Aerodynamics Sinica, 2015, 33(6): 828-834 (in Chinese) doi: 10.7638/kqdlxxb-2014.0076

    Wang Zhengwei, Wang Hao, Ruan Wenjun, et al. Simulation of plates group initial separation in high speed. Acta Aerodynamics Sinica, 2015, 33(6): 828-834 (in Chinese)) doi: 10.7638/kqdlxxb-2014.0076
    [24] Tian SL, Fu JW, Chen JT. A numerical method for multi-body separation with collisions. Aerospace Science and Technology, 2021, 109: 106426 doi: 10.1016/j.ast.2020.106426
    [25] Perkins SC, Dillenius MFE. Supersonic submunition aerodynamics during dispenses. Journal of Spacecraft, 1991, 28(3): 276-283 doi: 10.2514/3.26241
    [26] Park SH, Kim J, Choi I, et al. Experimental study of separation behavior of two bodies in hypersonic flow. Acta Astronautica, 2021, 181: 414-426
    [27] Park SH, Park G. Separation process of multi-spheres in hypersonic flow. Advances in Space Research, 2020, 65: 392-406 doi: 10.1016/j.asr.2019.10.009
    [28] Laurence SJ, Parziale NJ, Deiterding R. Dynamical separation of spherical bodies in supersonic flow. Journal of Fluid Mechanics, 2012, 713: 159-182 doi: 10.1017/jfm.2012.453
    [29] Li T, Sui JX, Wu CJ. Numerical investigation of dynamical behavior of tethered rigid spheres in supersonic flow. Applied Mathematics and Mechanics (English Edition) , 2016, 37(6): 749-760 doi: 10.1007/s10483-016-2090-6
    [30] Li T, Sui JX, Sheng G, et al. Dynamical separation of rigid bodies in supersonic flow. Science China (Technological Sciences) , 2015, 58(12): 2110-2121 doi: 10.1007/s11431-015-5966-1
    [31] Fedorov A, Malmuth N, Soudakov V. Supersonic scattering of a wing-induced incident shock by a slender body of revolution. Journal Fluid Mechanics, 2007, 585: 305-322 doi: 10.1017/S0022112007006714
    [32] Chaplin R. Aerodynamic interference between high-speed slender bodies. [PhD Thesis]. England: Cranfield University, 2009
    [33] Chaplin RA, Macmanus DG, Birch TJ. Aerodynamic interference between high-speed slender bodies. Shock Waves, 2010, 20: 89-101 doi: 10.1007/s00193-009-0241-7
    [34] Chaplin R, Macmanus D, Leopold F, et al. Computational and experimental investigation into aerodynamic interference between slender bodies in supersonic flow. Computers & Fluids, 2011, 50: 155-174
    [35] Chaplin R, Macmanus D, Leopold F, et al. Experimental investigation into the interference aerodynamics of two slender bodies in close proximity. Experiments in Fluids, 2011, 50: 491-507
    [36] Chaplin R, Macmanus D, Leopold F, et al. Aerodynamic interference on finned slender body. AIAA Journal, 2016, 54(7): 2017-2033 doi: 10.2514/1.J054704
    [37] Orlik-Ruckemann KJ, Iyengar S. Example of dynamic interference effects between two oscillating vehicles. Journal of Spacecraft and Rockets Volume, 1973, 10(9): 617-622 doi: 10.2514/3.61937
    [38] Fedorov AV, Soudakov VG, Malmuth ND. Theoretical modeling of two-body interaction in supersonic flow. AIAA Journal, 2010, 48(2): 258-266 doi: 10.2514/1.40592
    [39] Fedorov AV, Soudakov VG, Malmuth ND. Theoretical modeling of two-body interaction in supersonic flow//5th AIAA Theoretical Fluid Mechanics Conference, Seattle, Washington, 2008
    [40] Zhai S, Li CZ, Wang CC, et al. Vertically optimal close formation flight control based on wingtip vortex structure. Journal of Aircraft, 2020, 57(5): 964-973 doi: 10.2514/1.C035766
    [41] Korkischko I, Konrath R. Formation flight of low-aspect-ratio wings at low Reynolds number. Journal of Aircraft, 2017, 54(3): 1025-1034 doi: 10.2514/1.C033941
    [42] Ning SA, Kroo I. Extended formation flight at transonic speeds. Journal of Aircraft, 2014, 51(5): 1501-1510 doi: 10.2514/1.C032385
    [43] Shin HS, Antoniadis AF, Tsourdos A. Parametric study on formation flying effectiveness for a blended-wing UAV. Journal of Intelligent & Robotic Systems, 2019, 93: 179-191
    [44] 樊琼剑, 杨忠, 方挺等. 多无人机协同编队飞行控制的研究现状. 航空学报, 2009, 30(4): 683-691 (Fan Qiongjian, Yang Zhong, Fang Ting, et al. Research status of coordinated formation flight control for Multi-UAVs. Acta Aeronautica et Astronautica Sinica, 2009, 30(4): 683-691 (in Chinese) doi: 10.3321/j.issn:1000-6893.2009.04.018

    Fan Qiongjian, Yang Zhong, Fang Ting, et al. Research status of coordinated formation flight control for Multi-UAVs. Acta Aeronautica et Astronautica Sinica, 2009, 30(4): 683-691(in Chinese) doi: 10.3321/j.issn:1000-6893.2009.04.018
    [45] 刘钒. 飞行器拖曳系统气动特性数值模拟研究. [硕士论文]. 绵阳: 中国空气动力研究与发展中心, 2014

    Liu Fan. Numerical simulation research on the aerodynamic characteristics of aerial towed cable system. [PhD Thesis]. Mianyang: China Aerodynamics Research and Development Center, 2014 (in Chinese)
    [46] Thomas PR, Bhandari U, Bullock S, et al. Advances in air to air refueling. Progress in Aerospace Sciences, 2014, 71: 14-35 doi: 10.1016/j.paerosci.2014.07.001
    [47] Katz J. Aerodynamic aspects of unmanned aerial vehicle aerial refueling. Journal of Aircraft, 2017, 54(6): 2311-2316 doi: 10.2514/1.C034373
    [48] Bloy AW, West MG, Lea KA, et al. Lateral aerodynamic interference between tanker and receiver in air-to-air refueling. Journal of Aircraft, 1993, 30(5): 705-710 doi: 10.2514/3.46401
    [49] Bloy AW, Lea KA. Directional stability of a large receiver aircraft in air-to-air refueling. Journal of Aircraft, 1994, 32(2): 453-455
    [50] Bloy AW, Khan MM. Modeling of the receiver aircraft in air-to-air refueling. Journal of Aircraft, 2001, 38(2): 393-396 doi: 10.2514/2.2775
    [51] Klijn MS, Klijn NS, Hudson GC, et al. Selection of a carrier aircraft and a launch method for air launching space vehicles//AIAA SPACE 2008 Conference & Exposition, San Diego, California, 2008
    [52] Matteis GD. Longitudinal dynamics of a towed sailplane. Journal of Guidance, Control, and Dynamics, 1993, 16(5): 822-829 doi: 10.2514/3.21088
    [53] 杜一江. 航空拖曳诱饵系统机动过程缆绳张力仿真. 航空学报, 2021, 42(9): 224495 (Du Yijiang. Simulation on cable tension of aerial towed decoy system during maneuvers. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 224495 (in Chinese)

    Du Yijiang. Simulation on cable tension of aerial towed decoy system during maneuvers. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 224495 (in Chinese)
    [54] Murman SM, Aftosmis MJ, Berger MJ. Simulations of store separation from an F/A-18 with a cartesian method. Journal of Aircraft, 2004, 41(4): 870-878 doi: 10.2514/1.473
    [55] Ma X, Liu W, Chen L, et al. Simulative technology for auxiliary fuel tank separation in a wind tunnel. Chinese Journal of Aeronautics, 2016, 29(3): 608-616 doi: 10.1016/j.cja.2016.04.009
    [56] Charltony EF, Davis MB. Computational optimization of the F-35 external fuel tank for store separation//46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2008
    [57] Martin JA. History of propulsion for single-stage-to-orbit and multiple-stage vehicles. Journal of Propulsion and Power, 1995, 11(1): 98-104 doi: 10.2514/3.23845
    [58] Forbes-Spyratos SO, Kearney MP, Smart MK, et al. Trajectory design of a Rocket-Scramjet-Rocket multistage launch system. Journal of Spacecraft and Rockets, 2019, 56(1): 53-67 doi: 10.2514/1.A34107
    [59] Gruhn P, Gülhan A. Aerodynamic measurements of an air-breathing hypersonic vehicle at Mach 3.5 to 8. AIAA Journal, 2018, 56(11): 4282-4296
    [60] Grallert H. Synthesis of a FESTIP airbreathing TSTO space transportation system. Journal of Propulsion and Power, 2001, 17(6): 1191-1198
    [61] 白治宁, 蔡卫军, 周景军等. 助飞鱼雷雷箭分离多体气动干扰特性研究. 兵工学报, 2017, 38(11): 2176-2183 (Bai Zhining, Cai Weijun, Zhou Jingjun, et al. Research on multi-body aerodynamic interference during torpedo-rocket separation. Acta Armamentarii, 2017, 38(11): 2176-2183 (in Chinese) doi: 10.3969/j.issn.1000-1093.2017.11.013

    Bai Zhining, Cai Weijun, Zhou Jingjun, et al. Research on multi-body aerodynamic interference during torpedo-rocket separation. Acta Armamentarii, 2017, 38(11): 2176-2183 (in Chinese) doi: 10.3969/j.issn.1000-1093.2017.11.013
    [62] Hohn OM, Gulhan A. Impact of retrorocket plumes on upper-stage aerothermodynamics during stage separation. Journal of Spacecraft and Rockets, 2017, 54(3): 640-651 doi: 10.2514/1.A33728
    [63] Tartabini PV, Roithmayr CM, Toniolo MD, et al. Modeling multibody stage separation dynamics using constraint foce equation methodology. Journal of Spacecraft and Rockets, 2011, 48(4): 573-583 doi: 10.2514/1.51943
    [64] Holland SD, Woods WC, Engelund WC. Hyper-X research vehicle experimental aerodynamics test program overview. Journal of Spacecraft and Rockets, 2001, 38(6): 828-835 doi: 10.2514/2.3772
    [65] Erickson GE. Wind tunnel investigation of the supersonic stage separation aerodynamics of a generic 0.0175-scale bimese two-stage-to-orbit reusable launch vehicle configuration. NASA/TM-2020-220582, Langley Research Center, Hampton, Virginia, 2020
    [66] 张辉, 陈宏波, 杨勇等. 飞行器多体分离气动干扰特性数值模拟//第十五届全国计算流体力学会议论文集, 山东烟台, 2012
    [67] 张翔, 闫超, 马林静. 多体分离运动稳定性研究//第十六届全国计算流体力学会议论文集, 福建厦门, 2014
    [68] 王巍, 刘君, 白晓征等. 非结构动网格技术及其在超声速飞行器头罩分离模拟中的应用. 空气动力学学报, 2008, 26(1): 131-135 (Wang Wei, Liu Jun, Bai Xiaozheng, et al. DUM research and apply to solve the fairing separating form hypersonic vehicle. Acta Aerodynamica Sinica, 2008, 26(1): 131-135 (in Chinese) doi: 10.3969/j.issn.0258-1825.2008.01.025

    Wang Wei, Liu Jun, Bai Xiaozheng, et al. DUM research and apply to solve the fairing separating form hypersonic vehicle. Acta Aerodynamica Sinica, 2008, 26(1): 131-135 (in Chinese) doi: 10.3969/j.issn.0258-1825.2008.01.025
    [69] 林敬周, 王雄, 钟俊等. 高马赫数多体分离试验技术研究与应用. 推进技术, 2020, 41(4): 925-933 (Lin Jingzhou, Wang Xiong, Zhong Jun, et al. Investigation and application of high mach number multi-body separation test technique. Journal of Propulsion Technology, 2020, 41(4): 925-933 (in Chinese)

    Lin Jingzhou, Wang Xiong, Zhong Jun, et al. Investigation and application of high mach number multi-body separation test technique. Journal of Propulsion Technology, 2020, 41(4): 925-933 (in Chinese))
    [70] 雷娟棉, 牛健平, 王锁柱等. 初始分离条件对航弹与载机分离安全性影响的数值模拟研究. 兵工学报, 2016, 37(2): 357-366 (Lei Juanmian, Niu Jianping, Wang Suozhu, et al. Numerical simulation about the effect of initial separation condition on safety of aerial bomb separated from an aircraft. Acta Armamentarii, 2016, 37(2): 357-366 (in Chinese) doi: 10.3969/j.issn.1000-1093.2016.02.023

    Lei Juanmian, Niu Jianping, Wang Suozhu, et al. Numerical simulation about the effect of initial separation condition on safety of aerial bomb separated from an aircraft. Acta Armamentarii, 2016, 37(2): 357-366 (in Chinese) doi: 10.3969/j.issn.1000-1093.2016.02.023
    [71] 田书玲, 伍贻兆, 夏健. 用动态非结构重叠网格法模拟三维多体相对运动绕流. 航空学报, 2007, 28(1): 46-51 (Tian Shuling, Wu Yizhao, Xia Jian. Simulation of flows past multibody in relative motion with dynamic unstructured overset grid method. Acta Aeronautica Et Astronautica Sinica, 2007, 28(1): 46-51 (in Chinese) doi: 10.3321/j.issn:1000-6893.2007.01.008

    Tian Shuling, Wu Yizhao, Xia Jian. Simulation of flows past multibody in relative motion with dynamic unstructured overset grid method. Acta Aeronautica Et Astronautica Sinica, 2007, 28(1): 46-51 (in Chinese) doi: 10.3321/j.issn:1000-6893.2007.01.008
    [72] 伍贻兆, 田书玲, 夏健. 基于非结构动网格的非定常流数值模拟方法. 航空学报, 2011, 32(1): 15-26 (Wu Yizhao, Tian Shuling, Xia Jian. Unstructured grid methods for unsteady flow simulation. Acta Aeronautica Et Astronautica Sinica, 2011, 32(1): 15-26 (in Chinese)

    Wu Yizhao, Tian Shuling, Xia Jian. Unstructured grid methods for unsteady flow simulation. Acta Aeronautica Et Astronautica Sinica, 2011, 32(1): 15-26 (in Chinese)
    [73] Lu Y, Qian ZS, Lu WB, et al. Numerical investigation on the safe stage-separation mode for a TSTO vehicle. Aerospace Science and Technology, 2020, 107: 106349 doi: 10.1016/j.ast.2020.106349
    [74] 李盾, 何跃龙, 纪楚群. 多体分离数值模拟研究与应用//北京力学会第19届学术年会论文集. 北京, 2013
    [75] 蒋增辉, 宋威, 贾区耀等. 多体分离风洞自由飞试验. 空气动力学学报, 2016, 34(5): 581-586 (Jiang Zenghui, Song Wei, Jia Quyao, et al. Wind tunnel free-flight test for multi-body separation. Acta Aerodynamica Sinica, 2016, 34(5): 581-586 (in Chinese) doi: 10.7638/kqdlxxb-2014.0137

    Jiang Zenghui, Song Wei, Jia Quyao, et al. Wind tunnel free-flight test for multi-body separation. Acta Aerodynamica Sinica, 2016, 34(5): 581-586(in Chinese) doi: 10.7638/kqdlxxb-2014.0137
    [76] 宋威, 艾邦成. 多体飞行器分离动力学问题研究进展[J/OL]. 航空学报. (Song Wei, Ai Bangcheng. Review of multibody separation dynamics[J/OL]. Acta Aeronautica et Astronautica Sinica.
    [77] Klijn MS, Klijn NS, Morgan B, et al. Flight testing of a new earth-to-orbit air launch method. Journal of Aircraft, 2006, 43(3): 577-583 doi: 10.2514/1.18559
    [78] Cenko A. Experience in the use of computational aerodynamics to predict store release characteristics. Progress in Aerospace Sciences, 2001, 37: 477-495 doi: 10.1016/S0376-0421(01)00013-6
    [79] Malmuth ND. Theoretical aerodynamics in today’s real world opportunities and challenges. AIAA Journal, 2006, 44(7): 1377-1392 doi: 10.2514/1.18234
    [80] Rajagopal K, Malmuth ND, Lick WJ. Calculation of transonic flows over bodies of varying complexity using slender body theory. AIAA Journal, 1988, 27(9): 1220-1229
    [81] Broek GJ. The use of a panel method in the prediction of external store separation. Journal of Aircraft, 1984, 21(5): 309-315 doi: 10.2514/3.44965
    [82] Waskiewicz J, Dejongh J, Cenko A. Application of panel methods to external stores at supersonic speeds. Journal of Aircraft, 1983, 20(2): 153-158 doi: 10.2514/3.44844
    [83] Maraniello S, Palacios S. Parametric reduced-order modeling of the unsteady vortex-lattice method. AIAA Journal, 2020, 58(5): 2206-2220 doi: 10.2514/1.J058894
    [84] Cenko A, Meyer R, Tessitore F. Further development of the influence function method for store aerodynamic analysis. Journal of Aircraft, 1986, 23(1): 656-661
    [85] Henderson C, Cenko A, Tseng W, et al. Influence function method applications to tow target trajectory predictions. Journal of Aircraft, 1988, 25(2): 1129-1135
    [86] Spahr HR. Theoretical store separation analyses of a prototype store. Journal of Aircraft, 1975, 12(10): 807-811 doi: 10.2514/3.59875
    [87] 秦永明, 田晓虎, 董金刚等. 串联布局飞行器级间冷分离气动特性研究. 实验流体力学, 2014, 28(1): 38-43 (Qin Yongming, Tain Xiaohu, Dong Jinggang, et al. Investigation on aerodynamics characteristics at stage separation of tandem layout vehicle. Journal of Experiment in Fluid Mechanics, 2014, 28(1): 38-43 (in Chinese) doi: 10.11729/syltlx20130016

    Qin Yongming, Tain Xiaohu, Dong Jinggang, et al. Investigation on aerodynamics characteristics at stage separation of tandem layout vehicle. Journal of Experiment in Fluid Mechanics, 2014, 28(1): 38-43 (in Chinese) doi: 10.11729/syltlx20130016
    [88] 宋威, 蒋增辉. 串联飞行器级间分离风洞自由飞试验. 空气动力学学报, 2017, 35(5): 687-692 (Song Wei, Jiang Zenghui. Wind tunnel free-flight test for stage separation of tandem layout vehicle. Acta Aerodynamica Sinica, 2017, 35(5): 687-692 (in Chinese)

    Song Wei, Jiang Zenghui. Wind tunnel free-flight test for stage separation of tandem layout vehicle. Acta Aerodynamica Sinica, 2017, 35(5): 687-692(in Chinese)
    [89] Roshanian J, Talebi M. Monte Carlo simulation of stage separation dynamics of a multistage launch vehicle. Applied Mathematics and Mechanics, 2008, 29(11): 1411-1426 doi: 10.1007/s10483-008-1103-z
    [90] Engelund WC, Holland SD, Cockrell CE, et al. Aerodynamic database development for the Hyper-X airframe integrated scramjet propulsion experiments. Journal of Spacecraft and Rockets, 2001, 38(6): 803-810 doi: 10.2514/2.3768
    [91] Woods WC, Holland SD, Difulvio M. Hyper-X stage separation wind-tunnel test program. Journal of Spacecraft and rockets, 2001, 38(6): 811-819 doi: 10.2514/2.3770
    [92] Buning PG, Wong T, Dilley AD, et al. Computational fluid dynamics prediction of Hyper-X stage separation aerodynamics. Journal of Spacecraft and Rockets, 2001, 38(6): 820-827 doi: 10.2514/2.3771
    [93] Cockrell CE, Engelund WC, Bittner RD, et al. Integrated aeropropulsive computational fluid dynamics methodology for the Hyper-X flight experiment. Journal of Spacecraft and Rockets, 2001, 38(6): 836-843 doi: 10.2514/2.3773
    [94] Eramya A, Cline J, Braunstein M, et al. Transient modeling of high altitude rocket-stage separation. Journal of Spacecraft and Rockets, 2008, 45(4): 698-705 doi: 10.2514/1.34784
    [95] Lungu CE, Ramasamy SG, Scarborough DE, et al. Experimental studies of stage separation a Mach 2.5 free stream//47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, Orlando, Florida, 2009
    [96] Raghunathan S, Kim HD, Benard E, et al. Plume interference effects on missile bodies. Journal of Spacecraft and Rockets, 2003, 40(1): 136-138 doi: 10.2514/2.3928
    [97] Li Y, Eggers T, Reimann B. Coupled simulation of CFD-flight-mechanics with a two-species-gas-model for the hot rocket staging. Acta Astronautica, 2016, 128: 44-61 doi: 10.1016/j.actaastro.2016.07.009
    [98] Marconi F. Shock reflection transition in three-dimensional steady flow about interfering bodies. AIAA Journal, 1983, 21(5): 707-713 doi: 10.2514/3.8137
    [99] Brosh A, Kussoy MI, Hung CM. An experimental and numerical investigation of the impingement of an oblique shock wave on a body of revolution//AlAA 16th Fluid and Plasma Dynamics Conference, Danvers, Massachusetts, 1983
    [100] Brosh A, Kussoy MI. An experimental investigation of the impingement of a planar shock wave on an axisymmetric body at mach 3. NASA TM 84410, Washington DC, USA, 1983
    [101] Brosh A, Kussoy M, Hung C. Experimental and numerical investigation of a shock wave impingement on a cylinder. AIAA Journal, 1985, 23(6): 840-846 doi: 10.2514/3.8996
    [102] Hung CM. Impingement of an oblique shock wave on a cylinder. Journal of Spacecraft, 1983, 20(3): 201-206 doi: 10.2514/3.25580
    [103] Cenko A, Waskiewicz J. Recent improvements in prediction techniques for supersonic weapon separation. Journal of Aircraft, 1983, 20(8): 659-666 doi: 10.2514/3.44926
    [104] Newman G, Fulcher K, Ray R, et al. On the aerodynamics/dynamics of store separation from a hypersonic aircraft //AIAA 10th Applied Aerodynamics Conference, Palo Alto, CA, 1992
    [105] Mosbarger NA, King PI. Time-dependent supersonic separation of tangent bodies. Journal of Aircraft, 1996, 33(5): 938-949 doi: 10.2514/3.47039
    [106] Cvrlje T. Unsteady separation of a two-stage hypersonic vehicle//30th AIAA Fluid Dynamics Conference, Norfolk, VA, 1999
    [107] Cvrlje T, Breitsamter C, Laschka B. Numerical simulation of the lateral aerodynamics of an orbital stage at stage separation flow conditions. Aerospace Science and Technology, 2000, 4: 157-171 doi: 10.1016/S1270-9638(00)00132-2
    [108] Cvrlje T, Breitsamter C, Weishäupl C, et al. Euler and Navier-Stokes simulations of two-stage hypersonic vehicle longitudinal motions. Journal of Spacecraft and Rockets, 2000, 37(2): 242-251 doi: 10.2514/2.3552
    [109] Stephen E, Farnsworth AN, Porter CO, et al. Impinging shock-wave boundary-layer interactions on a three-dimensional body//43rd Fluid Dynamics Conference, San Diego, CA, 2013
    [110] Robertson G, Kumar R, Eymann T, et al. Experimental and numerical study of shock-wave boundary layer interactions on an axisymmetric body//45th AIAA Fluid Dynamics Conference, Dallas, 2015
    [111] Mason F, Rajan KR, Eymann TA. Study of impinging planar shock wave boundary layer interactions on an axisymmetric body//AIAA Scitech 2019 Forum, San Diego, California, 2019
    [112] Mason F, Natarajan K, Kumar R, et al. Shock boundary layer interaction induced surface pressure field on an axisymmetric body//AIAA Scitech 2020 Forum, Orlando, FL, 2020
    [113] Kiriakos RM, Khamseh AP, Demauro EP. Towards stereoscopic PIV of impinging planar shock/turbulent boundary layer interactions on an axisymmetric body//AIAA Scitech 2021 Forum, Virtual Event, 2021
    [114] Derunov E, Zheltovodov A, Maksimov A. Development of threedimensional turbulent separation in the neighborhood of incident crossing shock waves. Thermophysics and Aeromechanics, 2008, 15(1): 29-54 doi: 10.1134/S0869864308010034
    [115] Gai S, Teh S. Interaction between a conical shock wave and a plane turbulent boundary layer. AIAA Journal, 2000, 38(5): 804-811 doi: 10.2514/2.1060
    [116] Jia JH, Fu DB, He ZP. Aerodynamic interactions of a reusable launch vehicle model with different nose configurations. Acta Astronautica, 2020, 177: 58-65 doi: 10.1016/j.actaastro.2020.07.022
    [117] Jia JH, Fu DB, He ZP, et al. Hypersonic aerodynamic interference investigation for a two-stage-to-orbit model. Acta Astronautica, 2020, 168: 138-145 doi: 10.1016/j.actaastro.2019.11.038
    [118] Lawson SJ, Barakos GN. Review of numerical simulations for high-speed, turbulent cavity flows. Progress in Aerospace Sciences, 2011, 47(1): 186-216
    [119] Cattafesta LN, Song Q, Williams DR, et al. Active control of flow-induced cavity oscillations. Progress in Aerospace Sciences, 2008, 44: 479-502 doi: 10.1016/j.paerosci.2008.07.002
    [120] Chin D, Turpin A, Granlund K. Time-dependent aerodynamic loads on single and tandem stores in a supersonic cavity. Journal of Aircraft, 2020, 57(4): 702-714 doi: 10.2514/1.C035749
    [121] Chin D, Granlund K. Stochastic store trajectory of ice models from a cavity into supersonic flow. Journal of Aircraft, 2019, 56(4): 1313-1319 doi: 10.2514/1.C035104
    [122] Robertson G, Rajan Kumar R. Effects of a generic store on cavity resonance at supersonic speeds. AIAA Journal, 2020, 58(4): 1-12
    [123] Cenko A, Chen D, Turzansk R. Influence function method applications to cavity flowfield predictions. Journal of Aircraft, 1989, 26(12): 760-765
    [124] Flora TJ, Reeder MF. Dynamic store release of ice models from a cavity into Mach 2.9 flow. Journal of Aircraft, 2014, 51(6): 1927-1941 doi: 10.2514/1.C032459
    [125] Shalaev V, Fedorov AV, Malmuth ND. Dynamics of slender bodies separating from rectangular cavities. AIAA Journal, 2002, 40(3): 517-525 doi: 10.2514/2.1676
    [126] Debashis S, Anuradha A, Farrukh A. Active store trajectory control in supersonic cavities using microjets and low-order modeling. AIAA Journal, 2007, 45(3): 516-531 doi: 10.2514/1.18007
    [127] Merrick JD, Reeder MF. Sphere release from a rectangular cavity at mach 2.22 freestream conditions. Journal of Aircraft, 2016, 53(3): 822-829 doi: 10.2514/1.C033636
    [128] Loupy GJM, Barakos GN, Taylor NJ. Store release trajectory variability from weapon bays using scale-adaptive simulations. AIAA Journal, 2017, 56(2): 752-764
    [129] 艾邦成, 宋威, 董垒等. 内埋武器机弹分离相容性研究进展综述. 航空学报, 2020, 41(10): 023809 (Song Wei, Ai Bangcheng. Review on aircraft-store separation compatibility for the internal weapons. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 023809 (in Chinese)

    Song Wei, Ai Bangcheng. Review on aircraft-store separation compatibility for the internal weapons. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 023809 (in Chinese)
    [130] 董金刚, 张晨凯, 谢峰等. 内埋武器超声速分离机弹干扰特性试验研究. 实验流体力学, 2021, 35(3): 46-51 (Dong Jingang, Zhang Chenkai, Xie Feng, et al. Experimental investigation on the separation interference characteristics of supsonic internal weapon releasing from the aircraft. Journal of Experiments in Fluid Mechanics, 2021, 35(3): 46-51 (in Chinese)

    Dong Jingang, Zhang Chenkai, Xie Feng, et al. Experimental investigation on the separation interference characteristics of supsonic internal weapon releasing from the aircraft. Journal of Experiments in Fluid Mechanics, 2021, 35(3): 46-51 (in Chinese)
    [131] 董金刚, 谢峰, 张晨凯等. 风洞模型投放试验轻模型法重力效应影响. 航空学报, 2020, 41(6): 523434 (Dong Jingang, Xie Feng, Zhang Chenkai, et al. Gravity effects of light model method in wind tunnel model drop test. Acta Aeronautical et Astronautica Sinica, 2020, 41(6): 523434 (in Chinese)

    Dong Jingang, Xie Feng, Zhang Chenkai, et al. Gravity effects of light model method in wind tunnel model drop test. Acta Aeronautical et Astronautica Sinica, 2020, 41(6): 523434 (in Chinese)
    [132] 宋威, 鲁伟, 蒋增辉等. 内埋武器高速风洞弹射投放模型试验关键技术研究. 力学学报, 2018, 50(6): 1346-1355 (Song Wei, Lu Wei, Jiang Zenghhui, et al. The crucial technique investigation of wind-tunnel drop-model testing for the supersonic internal weapons. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(6): 1346-1355 (in Chinese) doi: 10.6052/0459-1879-18-180

    Song Wei, Lu Wei, Jiang Zenghhui, et al. The crucial technique investigation of wind-tunnel drop-model testing for the supersonic internal weapons. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50 (6): 1346-1355 (in Chinese) doi: 10.6052/0459-1879-18-180
    [133] 宋威, 艾邦成, 蒋增辉等. 内埋武器投放分离相容性的风洞投放试验预测与评估. 航空学报, 2020, 41(6): 523415 (Song Wei, Ai Bangcheng, Jiang Zenghui, et al. Prediction and assessment of drop separation compatibility of internal weapons by wind tunnel drop-test. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 523415 (in Chinese)

    Song Wei, Ai Bangcheng, Jiang Zenghui, et al. Prediction and assessment of drop separation compatibility of internal weapons by wind tunnel drop-test. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 523415 (in Chinese)
    [134] 宋威, 艾邦成. 内埋武器机弹分离相容性及流动控制试验研究. 空气动力学学报, 2021, 40: 1-9 (Song Wei, Ai Bangcheng. Expermental investigation on aircraft-store compatibility and flow control for internal weapons separation. Aerodynamica Sinica, 2021, 40: 1-9 (in Chinese)

    Song Wei, Ai Bangcheng. Expermental investigation on aircraft-store compatibility and flow control for internal weapons separation. Aerodynamica Sinica, 2021, 40(X): 1-9 (in Chinese))
    [135] Weihs D, Ringel M, Victor M. Aerodynamic interactions between adjacent slender bodies. AIAA Journal, 2006, 44(3): 481-484 doi: 10.2514/1.18902
    [136] Mowatt S, Skews B. Three dimensional shock wave boundary layer interactions. Shock Waves, 2011, 21: 467-482 doi: 10.1007/s00193-011-0322-2
    [137] Hooseria SJ, Skews BW. Shock wave interactions between slender bodies. Shock Waves, 2017(27): 109-126
    [138] Kussoy MI, Viegas JR, Horstmann CC. Investigation of a three-dimensional shock wave separated boundary layer. AIAA Journal, 1980, 18: 1477-1483 doi: 10.2514/3.50907
    [139] Panov YA. Interaction of incident three-dimensional shock wave with a turbulent boundary layer. Fluid Dynamics, 1968, 3: 108-110
    [140] Bordelon WJ, Frost AL, Reed DK, et al. Stage separation wind tunnel tests of a generic two-stage-to-orbit launch vehicle//21st Applied Aerodynamics Conference, Orlando, Florida, 2003
    [141] Pamadi BN, Tartabini PV, Starr BR. Ascent, stage separation and glideback performance of a partially reusable small launch vehicle//42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2004
    [142] Pamadi BN, Neirynck TA, Covell PF, et al. Simulation and analyses of staging maneuvers of next generation reusable launch vehicles//AIAA Atmospheric Flight Mechanics Conference and Exhibit, Providence, Rhode Island, 2004
    [143] Buning PG, Gomez RJ, Scallion WI. CFD approaches for simulation of wing-body stage separation//22nd Applied Aerodynamics Conference and Exhibit, Providence, Rhode Island, 2004
    [144] Murphy KJ, Buning PG, Pamadi BN, et al. Overview of transonic to hypersonic stage separation tool development for multi-stage-to-orbit concepts//24th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, Portland, Oregon, 2004
    [145] Albertson CW, Tartabini PV, Pamadi BN. End-to-end simulation of launch vehicle trajectories including stage separation dynamics//AIAA Atmospheric Flight Mechanics Conference, Minneapolis, Minnesota, 2012
    [146] Erickson GE. Wind tunnel investigation of the supersonic stage separation aerodynamics of a generic 0.0175-scale Bimese Two-Stage-to-Orbit reusable launch vehicle configuration. NASA/TM–2020-220582, Langley Research Center, 2020
    [147] Hurley MJ, Carrie GW. Stage separation of parallel-staged shuttle vehicles: a capability assessment. Journal of Spacecraft, 1972, 9(10): 764-771 doi: 10.2514/3.30393
    [148] Pamadi BN, Hotchko NJ, Samareh J, et al. Simulation and analyses of multi-body separation in launch vehicle staging environment//14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference, 2006
    [149] Pamadi BN, Tartabini PV, Toniolo MD, et al. Application of constraint force equation methodology for launch vehicle stage separation. Journal of Spacecraft and Rockets, 2013, 50(1): 191-205 doi: 10.2514/1.A32048
    [150] Wang JCT, Than PT, Widhopf GF. Multi-body launch vehicle flowfield simulation//29th Aerospace Sciences Meeting, Reno, Nevada, 1991
    [151] Winski CS, Danehy PM, Watkins AN, et al. Space Launch system booster separation supersonic powered testing with surface and off-body measurement//AIAA Aviation 2019 Forum, Dallas, Texas, 2019
    [152] Wingfield LL. Staging evaluation of a two-stage-to-orbit vehicle at Mach 8//10th AIAA/NAL-NASDA-ISAS International Space Planes and Hypersonic Systems and Technologies Conference, Kyoto, Japan, 2001
    [153] Breitsamter C, Laschka B. Wind tunnel tests for separation dynamics modeling of a two-stage hypersonic vehicle//10th AIAA/NAL-NASDA-ISAS International Space Planes and Hypersonic Systems and Technologies Conference, Kyoto, Japan, 2001
    [154] Naftel JC, Powell RW. Aerodynamic separation and glideback of a Mach 3 staged orbiter//29th Aerospace Sciences Meeting, Reno, Nevada, 1991
    [155] Uematsu T, Ishida T, Aso S, et al. Reduction of aerodynamic interference for separation of two-stage reusable launch vehicles//47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, Orlando, Florida, 2009
    [156] Uematsu T, Aso S, Tani Y. Aerodynamic interference reduction method for two-stage launch vehicles supersonic separation//49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Orlando, Florida, 2011
    [157] Song W, Dong JG, Lu W, et al. Trajectory and attitude deviations for internal store separation due to quasi-steady test method. Chinese Journal of Aeronautics, 2022, 35(2): 74-81 doi: 10.1016/j.cja.2021.03.007
    [158] Song W, Ai BC. Analysis of aircraft-store compatibility for internal weapons separation. Aerospace Science and Technology, 2021, 110: 106528 doi: 10.1016/j.ast.2021.106528
    [159] Song W, Ai BC, Zhao XJ, et al. Influence of control device on store separation from an open cavity. Aerospace Science and Technology, 2020, 106: 106117 doi: 10.1016/j.ast.2020.106117
    [160] 蒋增辉, 宋威, 陈农等. 高超声速风洞子母弹大迎角抛壳投放试验. 实验流体力学, 2016, 30(5): 42-48 (Jiang Zenghui, Song Wei, Chen Nong, et al. Hypersonic wind tunnel drop-model test on cover ejection from cargo projectile at large angle of attack. Journal of Experiments in fluid Mechanics, 2016, 30(5): 42-48 (in Chinese) doi: 10.11729/syltlx20160020

    Jiang Zenghui, Song Wei, Chen Nong, et al. Hypersonic wind tunnel drop-model test on cover ejection from cargo projectile at large angle of attack. Journal of Experiments in fluid Mechanics, 2016, 30(5): 42-48 (in Chinese) doi: 10.11729/syltlx20160020
    [161] 宋威, 张宁, 朱剑等. 风洞投放试验技术的研究现状与应用综述. 航空学报, 2021, 42(6): 024417 (Song Wei, Zhang Ning, Zhu Jian, et al. Research status and application of wind tunnel drop test technology: review. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 024417 (in Chinese)

    Song Wei, Zhang Ning, Zhu Jian, et al. Research status and application of wind tunnel drop test technology: review. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 024417 (in Chinese)
    [162] 童秉刚, 陈强. 关于非定常空气动力学. 力学进展, 1983, 13(4): 377-394 (Tong Binggang, Chen Qiang. Some remarks on unsteady aerodynamics. Advance in Mechanics, 1983, 13(4): 377-394 (in Chinese)

    Tong binggang, Chen Qiang. Some remarks on unsteady aerodynamics. Advance in Mechanics, 1983, 13(4): 377-394 (in Chinese)
    [163] Whalen TJ, Laurence SJ. Experiments on the separation of sphere clusters in hypersonic flow. Experiments in Fluids, 2021, 62: 70 doi: 10.1007/s00348-021-03157-z
  • 加载中
图(29) / 表(4)
计量
  • 文章访问数:  380
  • HTML全文浏览量:  141
  • PDF下载量:  202
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-07
  • 录用日期:  2022-04-07
  • 网络出版日期:  2022-04-08
  • 刊出日期:  2022-06-18

目录

    /

    返回文章
    返回