EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于信号分解和切比雪夫多项式的多体系统区间不确定性分析方法

蒋鑫 白争锋 宁志远 王思宇

蒋鑫, 白争锋, 宁志远, 王思宇. 基于信号分解和切比雪夫多项式的多体系统区间不确定性分析方法. 力学学报, 2022, 54(6): 1694-1705 doi: 10.6052/0459-1879-22-092
引用本文: 蒋鑫, 白争锋, 宁志远, 王思宇. 基于信号分解和切比雪夫多项式的多体系统区间不确定性分析方法. 力学学报, 2022, 54(6): 1694-1705 doi: 10.6052/0459-1879-22-092
Jiang Xin, Bai Zhengfeng, Ning Zhiyuan, Wang Siyu. Interval uncertainty analysis methods for multibody systems based on signal decomposition and Chebyshev polynomials. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1694-1705 doi: 10.6052/0459-1879-22-092
Citation: Jiang Xin, Bai Zhengfeng, Ning Zhiyuan, Wang Siyu. Interval uncertainty analysis methods for multibody systems based on signal decomposition and Chebyshev polynomials. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1694-1705 doi: 10.6052/0459-1879-22-092

基于信号分解和切比雪夫多项式的多体系统区间不确定性分析方法

doi: 10.6052/0459-1879-22-092
基金项目: 国家重点研发计划项目(2020 YFB1709800), 国家自然科学基金资助项目(51775128)
详细信息
    作者简介:

    白争锋, 副教授, 主要研究方向: 多柔体系统动力学、结构动力学、软体机器人等. E-mail: zfbai@hit.edu.cn

  • 中图分类号: TH113

INTERVAL UNCERTAINTY ANALYSIS METHODS FOR MULTIBODY SYSTEMS BASED ON SIGNAL DECOMPOSITION AND CHEBYSHEV POLYNOMIALS

  • 摘要: 参数的不确定性会对多体系统动力学响应产生显著影响, 区间分析方法只需根据不确定性参数的边界信息, 便可实现在多体系统动力学分析中考虑参数的不确定性. 考虑区间参数不确定性, 采用切比雪夫区间方法(Chebyshev interval method, CIM)在分析多体系统动力学响应时, 随着时间的增大, 响应边界精度会越来越低. 为解决CIM的这一问题, 本文将信号分解技术与切比雪夫多项式结合, 采用切比雪夫多项式分别对HHT变换(Hilbert-Huang transform, HHT)和局域均值分解(local mean decomposition, LMD)得到的瞬时幅值和瞬时相位近似, 提出CIM-HHT方法和CIM-LMD方法, 以获得含区间参数的长周期动力学响应边界. HHT和LMD分解能够将多体系统的多分量响应分解为多个单分量和一个趋势分量(残余分量)之和, CIM-HHT和CIM-LMD对每个分量的瞬时幅值和瞬时相位、和趋势分量采用切比雪夫多项式近似, 进而建立系统响应的耦合模型, 可以得到系统的动力学响应边界. 最后, 考虑单摆和曲柄滑块机构中的参数不确定性, 验证了CIM-HHT和CIM-LMD方法的有效性. 结果表明, 相比CIM, 在长周期区间动力学响应分析中CIM-HHT和CIM-LMD能够获得较准确的结果. 此外, 相比CIM-HHT, CIM-LMD具有更弱的末端效应, 计算精度更高.

     

  • 图  1  CIM-HHT和CIM-LMD计算流程

    Figure  1.  Flowchart for CIM-HHT and CIM-LMD

    图  2  单摆

    Figure  2.  Simple pendulum

    图  3  末端位置和速度的HHT和LMD分解

    Figure  3.  HHT and LMD decomposition of position and velocity response of end-tip

    图  4  不同样本的末端位置响应分解

    Figure  4.  Decomposition of position response of end tip under different samples

    图  5  末端位置响应边界

    Figure  5.  Bounds for position responses of end-tip

    图  6  末端速度响应边界

    Figure  6.  Bounds for velocity responses of end-tip

    图  7  不同方法得到的位置响应边界

    Figure  7.  Bounds for position responses of end-tip obtained by different methods

    图  8  曲柄滑块机构示意图

    Figure  8.  Schematic diagram for crank slider

    图  9  滑块位移和速度响应的HHT和LMD分解

    Figure  9.  HHT and LMD decomposition for position and velocity response of slider

    图  10  滑块位移响应边界

    Figure  10.  Bounds for position response of slider

    图  11  滑块速度上边界

    Figure  11.  Bounds for position responses of slider

    图  12  曲柄角度边界

    Figure  12.  Bounds for angle of crank

    图  13  曲柄角速度边界

    Figure  13.  Bounds for angular velocity of crank

    图  14  不同方法得到的滑块速度响应边界

    Figure  14.  Bounds for response of slider velocity using different methods

    图  15  不确定度为5%时CIM-LMD和RS-LMD得到的响应边界

    Figure  15.  Bounds of responses using CIM-LMD and RS-LMD under 5% uncertainty level

    表  1  曲柄机构参数

    Table  1.   Parameters for crank slider

    ParameterValue
    length of crank/m0.15
    mass of crank/kg0.37
    length of connector/m0.56
    mass of connector/kg0.77
    mass of slider/kg0.45
    τ/(N·m)−0.5
    c/(N·m·s−1)1
    k/(N·m−1)5
    下载: 导出CSV
  • [1] Rong B, Rui X, Tao L, et al. Theoretical modeling and numerical solution methods for flexible multibody system dynamics. Nonlinear Dynamics, 2019, 98(2): 1519-1553 doi: 10.1007/s11071-019-05191-3
    [2] Faes M, Moens D. Recent trends in the modeling and quantification of non-probabilistic uncertainty. Archives of Computational Methods in Engineering, 2020, 27(3): 633-671 doi: 10.1007/s11831-019-09327-x
    [3] Wang L, Yang G. An interval uncertainty propagation method using polynomial chaos expansion and its application in complicated multibody dynamic systems. Nonlinear Dynamics, 2021, 105: 837-858 doi: 10.1007/s11071-021-06512-1
    [4] 任铭泽, 邓忠民, 国兆普. 基于区间摄动的不确定非线性结构动力学模型修正方法研究. 振动与冲击, 2021, 40(24): 275-281 (Ren Mingze, Deng Zhongmin, Guo Zhaopu. A model updating method of nonlinear structural dynamic based on interval perturbation. Journal of Vibration and Shock, 2021, 40(24): 275-281 (in Chinese)

    Ren Mingze, Deng Zhongmin, Guo Zhaopu. A model updating method of nonlinear structural dynamic based on interval perturbation. Journal of Vibration and Shock, 2021, 40(24): 275-281 (in Chinese)
    [5] Moens D, Hanss M. Non-probabilistic finite element analysis for parametric uncertainty treatment in applied mechanics: Recent advances. Finite Elements in Analysis and Design, 2011, 47(1): 4-16 doi: 10.1016/j.finel.2010.07.010
    [6] Tolker-Nielsen T, Ig E. Exomars 2016 Schiaparelli Anomaly Inquiry//European Space Agency, 2017: 28
    [7] Bonetti D, De Zaiacomo G, Blanco G, et al. ExoMars 2016: Schiaparelli coasting, entry and descent post flight mission analysis. Acta Astronautica, 2018, 149: 93-105 doi: 10.1016/j.actaastro.2018.05.029
    [8] Sandu A, Sandu C, Ahmadian M. Modeling multibody systems with uncertainties. Part I: Theoretical and computational aspects. Multibody System Dynamics, 2006, 15(4): 369-391
    [9] Fu C, Xu Y, Yang Y, et al. Response analysis of an accelerating unbalanced rotating system with both random and interval variables. Journal of Sound and Vibration, 2020, 466: 115047 doi: 10.1016/j.jsv.2019.115047
    [10] Wu J, Luo Z, Zhang Y, et al. Interval uncertain method for multibody mechanical systems using Chebyshev inclusion functions. International Journal for Numerical Methods in Engineering, 2013, 95(7): 608-630 doi: 10.1002/nme.4525
    [11] Feng X, Zhang Y, Wu J. Interval analysis method based on Legendre polynomial approximation for uncertain multibody systems. Advances in Engineering Software, 2018, 121: 223-234 doi: 10.1016/j.advengsoft.2018.04.002
    [12] Wei T, Li F, Meng G. A bivariate Chebyshev polynomials method for nonlinear dynamic systems with interval uncertainties. Nonlinear Dynamics, 2022, 107: 793-811 doi: 10.1007/s11071-021-07020-y
    [13] Xia B, Yu D. Modified sub-interval perturbation finite element method for 2D acoustic field prediction with large uncertain-but-bounded parameters. Journal of Sound and Vibration, 2012, 331(16): 3774-3790 doi: 10.1016/j.jsv.2012.03.024
    [14] Wang Z, Tian Q, Hu H. Dynamics of spatial rigid–flexible multibody systems with uncertain interval parameters. Nonlinear Dynamics, 2016, 84(2): 527-548 doi: 10.1007/s11071-015-2504-4
    [15] Wu J, Luo L, Zhu B, et al. Dynamic computation for rigid–flexible multibody systems with hybrid uncertainty of randomness and interval. Multibody System Dynamics, 2019, 47(1): 43-64 doi: 10.1007/s11044-019-09677-1
    [16] Wang Z, Tian Q, Hu H. Multiple dynamic response patterns of flexible multibody systems with random uncertain parameters. Journal of Computational and Nonlinear Dynamics, 2019, 14(2): 021008 doi: 10.1115/1.4041580
    [17] 陈昭岳, 刘莉, 陈树霖等. 月球探测器着陆动响应区间不确定性分析. 兵工学报, 2019, 40(2): 442-448 (Chen Zhaoyue, Liu Li, Chen Shulin et al. Interval uncertainty analysis of soft-landing dynamics of lunar lander. Acta Armamentarii, 2019, 40(2): 442-448 (in Chinese)

    Chen Zhaoyue, Liu Li, Chen Shulin et al. Interval uncertainty analysis of soft-landing dynamics of lunar lander. Acta Armamentarii, 2019, 40(2): 442-448 (in Chinese)
    [18] Wei S, Chu FL, Ding H, et al. Dynamic analysis of uncertain spur gear systems. Mechanical Systems and Signal Processing, 2021, 150: 107280 doi: 10.1016/j.ymssp.2020.107280
    [19] Liu Y, Wang X, Li Y. An improved Bayesian collocation method for steady-state response analysis of structural dynamic systems with large interval uncertainties. Applied Mathematics and Computation, 2021, 411: 126523 doi: 10.1016/j.amc.2021.126523
    [20] Wang L, Liu Y, Gu K, et al. A radial basis function artificial neural network (RBF ANN) based method for uncertain distributed force reconstruction considering signal noises and material dispersion. Computer Methods in Applied Mechanics and Engineering, 2020, 364: 112954 doi: 10.1016/j.cma.2020.112954
    [21] Sun D, Zhang B, Liang X, et al. Dynamic analysis of a simplified flexible manipulator with interval joint clearances and random material properties. Nonlinear Dynamics, 2019, 98(2): 1049-1063 doi: 10.1007/s11071-019-05248-3
    [22] 陈光宋, 钱林方, 王明明等. 基于统计信息的多体系统区间不确定性分析. 振动与冲击, 2019, 38(8): 117-125 (Chen Guangsong, Qian Linfang, Wang Mingming, et al. An interval analysis method based on statical information for a multibody system with uncertainty. Journal of Vibration and Shock, 2019, 38(8): 117-125 (in Chinese)

    Chen Guangsong, Qian Linfang, Wang Mingming et al. An interval analysis method based on statical information for a multibody system with uncertainty. Journal of Vibration and Shock, 2019, 38(8): 117-125 (in Chinese))
    [23] Pettit C, Beran P. Polynomial chaos expansion applied to airfoil limit cycle oscillations//45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference. Palm Springs, California: American Institute of Aeronautics and Astronautics, 2004
    [24] Cui J, Zhao ZH, Liu JW, et al. Uncertainty analysis of mechanical dynamics by combining response surface method with signal decomposition technique. Mechanical Systems and Signal Processing, 2021, 158: 107570 doi: 10.1016/j.ymssp.2020.107570
    [25] Xu M, Du J, Chen J, et al. An iterative dimension-wise approach to the structural analysis with interval uncertainties. International Journal of Computational Methods, 2018, 15(6): 1850044 doi: 10.1142/S0219876218500445
    [26] Hu Q, Liu Z, Yang C, et al. Research on dynamic transmission error of harmonic drive with uncertain parameters by an interval method. Precision Engineering, 2021, 68: 285-300 doi: 10.1016/j.precisioneng.2020.12.017
    [27] Wang Z, Tian Q, Hu H, et al. Nonlinear dynamics and chaotic control of a flexible multibody system with uncertain joint clearance. Nonlinear Dynamics, 2016, 86(3): 1571-1597 doi: 10.1007/s11071-016-2978-8
    [28] Xiang W, Yan S, Wu J, et al. Dynamic response and sensitivity analysis for mechanical systems with clearance joints and parameter uncertainties using Chebyshev polynomials method. Mechanical Systems and Signal Processing, 2020, 138: 106596 doi: 10.1016/j.ymssp.2019.106596
    [29] Huang NE, Shen Z, Long SR, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A:Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995 doi: 10.1098/rspa.1998.0193
    [30] Feldman M. Hilbert transform in vibration analysis. Mechanical Systems and Signal Processing, 2011, 25(3): 735-802 doi: 10.1016/j.ymssp.2010.07.018
    [31] Smith JS. The local mean decomposition and its application to EEG perception data. Journal of the Royal Society Interface, 2005, 2(5): 443-454 doi: 10.1098/rsif.2005.0058
    [32] Liu Z, Jin Y, Zuo MJ, et al. Time-frequency representation based on robust local mean decomposition for multicomponent AM-FM signal analysis. Mechanical Systems and Signal Processing, 2017, 95: 468-487 doi: 10.1016/j.ymssp.2017.03.035
    [33] Rilling G, Flandrin P, Goncalves P. On empirical mode decomposition and its algorithms. Grado: IEER, 2003, 3: 8-11
    [34] Wang Y, He Z, Zi Y. A comparative study on the local mean decomposition and empirical mode decomposition and their applications to rotating machinery health diagnosis. Journal of Vibration and Acoustics, 2010, 132(2): 021010 doi: 10.1115/1.4000770
    [35] Pace RK, Lesage JP. Chebyshev approximation of log-determinants of spatial weight matrices. Computational Statistics & Data Analysis, 2004, 45(2): 179-196
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  297
  • HTML全文浏览量:  99
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-03
  • 录用日期:  2022-04-22
  • 网络出版日期:  2022-04-23
  • 刊出日期:  2022-06-18

目录

    /

    返回文章
    返回