EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于优化多核极限学习机的车轮多边形磨耗识别

谢博 陈是扦 徐明坤 杨云帆 王开云

谢博, 陈是扦, 徐明坤, 杨云帆, 王开云. 基于优化多核极限学习机的车轮多边形磨耗识别. 力学学报, 2022, 54(7): 1797-1806 doi: 10.6052/0459-1879-22-083
引用本文: 谢博, 陈是扦, 徐明坤, 杨云帆, 王开云. 基于优化多核极限学习机的车轮多边形磨耗识别. 力学学报, 2022, 54(7): 1797-1806 doi: 10.6052/0459-1879-22-083
Xie Bo, Chen Shiqian, Xu Mingkun, Yang Yunfan, Wang Kaiyun. Polygonal wear identification of wheels based on optimized multiple kernel extreme learning machine. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(7): 1797-1806 doi: 10.6052/0459-1879-22-083
Citation: Xie Bo, Chen Shiqian, Xu Mingkun, Yang Yunfan, Wang Kaiyun. Polygonal wear identification of wheels based on optimized multiple kernel extreme learning machine. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(7): 1797-1806 doi: 10.6052/0459-1879-22-083

基于优化多核极限学习机的车轮多边形磨耗识别

doi: 10.6052/0459-1879-22-083
基金项目: 国家自然科学基金 (U19 A20110, 52005416, 51825504) 和四川省科技计划 (2020 YJ0213) 资助项目
详细信息
    作者简介:

    王开云, 研究员, 主要研究方向:重载铁路工程动力学理论与运营安全技术. E-mail: kywang@swjtu.edu.cn

  • 中图分类号: U211.5, TP181

POLYGONAL WEAR IDENTIFICATION OF WHEELS BASED ON OPTIMIZED MULTIPLE KERNEL EXTREME LEARNING MACHINE

  • 摘要: 多边形车轮是铁路机车车辆中普遍存在的一种磨损现象, 随着列车运营里程的增加, 车轮磨耗程度显著提升, 严重影响着列车乘坐舒适性和运营安全性, 借助于列车运营监测大数据开展多边形车轮动态检测方法研究具有重要意义. 本研究基于列车轴箱垂向加速度建立了多边形车轮定量识别模型, 首先通过阶次分析识别出轴箱加速度中包含的多边形车轮主要阶次, 同时获取各阶次对应的加速度幅值信息, 在此基础上引入加速度信号熵特征共同构建多边形车轮磨耗幅值识别特征矩阵, 然后建立遗传变异粒子群优化多核极限学习机 (GMPSO-MKELM) 识别模型, 通过特征矩阵与磨耗幅值的映射关系, 进一步实现了车轮多边形磨耗幅值识别. 通过仿真与现场实测数据研究结果表明, 所提出的识别模型能有效地从轴箱加速度中提取多边形车轮主要阶次, 磨耗幅值的识别精度均优于对比模型且具有较高的检测效率, 可实现均方根误差为0.0010 (仿真结果) 与0.0134 (试验结果) 的精确识别, 本文提出的多边形车轮磨耗识别模型可为列车车轮检测与智能维护提供理论基础.

     

  • 图  1  熵特征计算流程图

    Figure  1.  Calculation flow chart of entropy characteristics

    图  2  多边形车轮识别算法流程图

    Figure  2.  Flow chart of polygonal wheels identification algorithm

    图  3  机车动力学模型

    Figure  3.  Locomotive dynamic model

    图  4  仿真多边形车轮

    Figure  4.  Simulated polygonal wheels

    图  5  轴箱垂向加速度时域信号

    Figure  5.  Time-domain vertical acceleration signals of axle box

    图  6  多边形车轮阶次识别结果

    Figure  6.  The order identification results of polygonal wheels

    图  7  参数组合寻优迭代过程

    Figure  7.  Iterative process of parameter combination optimization

    图  8  多边形车轮磨耗幅值识别结果

    Figure  8.  The wear amplitude identification results of polygonal wheels

    图  9  不同训练集样本数量的识别误差

    Figure  9.  Identification errors of the different number of training samples

    图  10  现场试验: (a)试验机车; (b)轴箱加速度测量;(c)车轮镟修; (d)多边形车轮测量

    Figure  10.  Field testing: (a) testing locomotive; (b) measurement of axle box acceleration; (c) wheel lathing; (d) measurement of polygonal wheels

    图  11  试验多边形车轮阶次与磨耗幅值测试结果

    Figure  11.  The order and wear amplitude testing results of polygonal wheels

    图  12  实测轴箱垂向加速度信号

    Figure  12.  Field test vertical acceleration signals of axle box

    图  13  多边形车轮阶次识别结果

    Figure  13.  The order identification results of polygonal wheels

    图  14  多边形车轮磨耗幅值识别结果

    Figure  14.  The wear amplitude identification results of polygonal wheels

    表  1  不同模型的磨耗幅值识别RMSE与时间

    Table  1.   Identification RMSE and time of wear amplitude with different models

    ModelsTest 1Test 2Test 3Time/s
    ELM0.02590.02430.02660.0001
    KELM (RBF kernel)0.01070.01640.00910.0094
    KELM (polynomial kernel)0.01380.01490.01620.0029
    KELM (wavelet kernel)0.00370.01360.00480.0089
    GMPSO-MKELM0.00180.00370.00100.0173
    下载: 导出CSV

    表  2  不同模型的磨耗幅值识别RMSE与时间

    Table  2.   Identification RMSE and time of wear amplitude with different models

    ModelsTest 1Test 2Test 3Time/s
    ELM0.02420.02550.02680.0001
    KELM (RBF kernel)0.02250.02000.02350.0008
    KELM (polynomial kernel)0.02170.02310.02470.0003
    KELM (wavelet kernel)0.02100.01960.02020.0007
    GMPSO-MKELM0.01830.01340.01650.0018
    下载: 导出CSV
  • [1] Tao G, Wen Z, Jin X, et al. Polygonisation of railway wheels: a critical review. Railway Engineering Science, 2020, 28(4): 317-345 doi: 10.1007/s40534-020-00222-x
    [2] Wang K, Yang Y, Yang Y, et al. An experimental investigation of the mechanism and mitigation measures for the coil spring fracture of a locomotive. Engineering Failure Analysis, 2022, in press
    [3] 王平, 汪鑫, 王源等. 基于高铁轨道不平顺的车轮不圆顺识别模型. 西南交通大学学报, 2020, 55(4): 681-687 + 678

    Wang Ping, Wang Xin, Wang Yuan, et al. Detection model of polygonal wheels based on track irregularity data in high-speed railway. Journal of Southwest Jiaotong University, 2020, 55(4): 681-687, 678 (in Chinese)
    [4] Chen S, Wang K, Peng Z, et al. Generalized dispersive mode decomposition: Algorithm and applications. Journal of Sound and Vibration, 2021, 492: 115800 doi: 10.1016/j.jsv.2020.115800
    [5] Zheng F, Zhang B, Gao R, et al. A high-precision method for dynamically measuring train wheel diameter using three laser displacement transducers. Sensors, 2019, 19(19): 4148 doi: 10.3390/s19194148
    [6] Zhang ZF, Gao Z, Liu YY, et al. Computer vision based method and system for online measurement of geometric parameters of train wheel sets. Sensors, 2012, 12(1): 334-346
    [7] Liu F, Liang L, Xu G, et al. On-machine measurement and evaluation for the turned wheel profile of rail vehicle. IEEE Transactions on Instrumentation and Measurement, 2020, 70: 1-11
    [8] Gao Y, Feng Q, Cui J. A simple method for dynamically measuring the diameters of train wheels using a one-dimensional laser displacement transducer. Optics and Lasers in Engineering, 2014, 53: 158-163 doi: 10.1016/j.optlaseng.2013.09.005
    [9] Gong Z, Sun J, Zhang G. Dynamic measurement for the diameter of a train wheel based on structured-light vision. Sensors, 2016, 16(4): 564 doi: 10.3390/s16040564
    [10] Sun Q, Chen C, Kemp AH, et al. An on-board detection framework for polygon wear of railway wheel based on vibration acceleration of axle-box. Mechanical Systems and Signal Processing, 2021, 153: 107540 doi: 10.1016/j.ymssp.2020.107540
    [11] Chen S, Wang K, Chang C, et al. A two-level adaptive chirp mode decomposition method for the railway wheel flat detection under variable-speed conditions. Journal of Sound and Vibration, 2021, 498: 115963 doi: 10.1016/j.jsv.2021.115963
    [12] 丁建明, 林建辉, 易彩等. 车轮不圆顺动态检测的时频特征圈内定位比较法. 振动与冲击, 2013, 32(19): 39-43 doi: 10.3969/j.issn.1000-3835.2013.19.008

    Ding Jianming, Lin Jianhui, Yi Cai, et al. Dynamic detection of out-of-round wheels using a comparison of time-frequency feature locatings. Journal of Vibration and Shock, 2013, 32(19): 39-43 (in Chinese) doi: 10.3969/j.issn.1000-3835.2013.19.008
    [13] Song Y, Liang L, Du Y, et al. Railway polygonized wheel detection based on numerical time-frequency analysis of axle-box acceleration. Applied Sciences, 2020, 10(5): 1613 doi: 10.3390/app10051613
    [14] 王其昂, 王腾, 倪一清. 基于卷积神经网络的高铁车轮损伤识别方法研究. 中国矿业大学学报, 2020, 49(4): 781-787

    Wang Qiang, Wang Teng, Ni Yiqing, et al. Damage detection of wheels for high-speed rail based on Convolutional Neural Network. Journal of China University of Mining & Technology, 2020, 49(4): 781-787 (in Chinese)
    [15] Chi Z, Zhou T, Huang S, et al. A data-driven approach for the health prognosis of high-speed train wheels. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 2020, 234(6): 735-747 doi: 10.1177/1748006X20929158
    [16] Huang GB, Zhou H, Ding X, et al. Extreme learning machine for regression and multiclass classification. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2011, 42(2): 513-529
    [17] 宋佳, 石若凌, 郭小红等. 基于核极限学习机的飞行器故障诊断方法. 清华大学学报(自然科学版), 2020, 60(10): 795-803

    Song Jia, Shi Ruoling, Guo Xiaohong, et al. KELM based diagnostics for air vehicle faults. Journal of Tsinghua University (Science and Technology), 2020, 60(10): 795-803 (in Chinese)
    [18] 李军, 李大超. 基于优化核极限学习机的风电功率时间序列预测. 物理学报, 2016, 65(13): 39-48

    Li Jun, Li Dachao. Wind power time series prediction using optimized kernel extreme learning machine method. Acta Physica Sinica, 2016, 65(13): 39-48 (in Chinese)
    [19] Hu Q, Qin A, Zhang Q, et al. Fault diagnosis based on weighted extreme learning machine with wavelet packet decomposition and KPCA. IEEE Sensors Journal, 2018, 18(20): 8472-8483 doi: 10.1109/JSEN.2018.2866708
    [20] Cai Z, Gu J, Luo J, et al. Evolving an optimal kernel extreme learning machine by using an enhanced grey wolf optimization strategy. Expert Systems with Applications, 2019, 138: 112814 doi: 10.1016/j.eswa.2019.07.031
    [21] Huang GB, Zhu QY, Siew CK. Extreme learning machine: theory and applications. Neurocomputing, 2006, 70(1-3): 489-501 doi: 10.1016/j.neucom.2005.12.126
    [22] 张淑清, 苑世钰, 玉永等. 基于ICEEMD及AWOA优化ELM的机械故障诊断方法. 仪器仪表学报, 2019, 40(11): 172-180

    Zhang Shuqing, Yuan Shiyu, Yao Yuyong, et al. Machinery fault diagnosis method based on ICEMMD and AWOA optimized ELM. Chinese Journal of Scientific Instrument, 2019, 40(11): 172-180 (in Chinese)
    [23] Lu S, Gao W, Hong C, et al. A newly-designed fault diagnostic method for transformers via improved empirical wavelet transform and kernel extreme learning machine. Advanced Engineering Informatics, 2021, 49: 101320 doi: 10.1016/j.aei.2021.101320
    [24] 方一鸣, 赵晓东, 张攀等. 基于改进灰狼算法和多核极限学习机的铁水硅含量预测建模. 控制理论与应用, 2020, 37(7): 1644-1654

    Fang Yiming, Zhao Xiaodong, Zhang Pan, et al. Prediction modeling of silicon content in liquid iron based on multiple kernel extreme learning machine and improved grey wolf optimizer. Control Theory & Applications, 2020, 37(7): 1644-1654 (in Chinese)
    [25] 杨锡运, 关文渊, 刘玉奇等. 基于粒子群优化的核极限学习机模型的风电功率区间预测方法. 中国电机工程学报, 2015, 35(S1): 146-153

    Yang Xiyun, Guan Wenyuan, Liu Yuqi, et al. Prediction intervals forecasts of wind power based on PSO-KELM. Proceedings of the CSEE, 2015, 35(S1): 146-153 (in Chinese)
    [26] Ding J, Huang L, Xiao D, et al. GMPSO-VMD algorithm and its application to rolling bearing fault feature extraction. Sensors, 2020, 20(7): 1946 doi: 10.3390/s20071946
    [27] Xu F, Tse PW. A method combining refined composite multiscale fuzzy entropy with PSO-SVM for roller bearing fault diagnosis. Journal of Central South University, 2019, 26(9): 2404-2417 doi: 10.1007/s11771-019-4183-7
    [28] 邓飞跃, 唐贵基. 基于时间−小波能量谱样本熵的滚动轴承智能诊断方法. 振动与冲击, 2017, 36(9): 28-34

    Deng Feiyue, Tang Guiji. An intelligent method for rolling element bearing fault diagnosis based on time-wavelet energy spectrum sample entropy. Journal of Vibration and Shock, 2017, 36(9): 28-34 (in Chinese)
    [29] 杨逸凡, 凌亮, 杨云帆等. 重载机车车轮擦伤下的轮轨动态响应. 工程力学, 2020, 37(12): 213-219 doi: 10.6052/j.issn.1000-4750.2020.01.0033

    Yang Yifan, Ling Liang, Yang Yunfan, et al. Wheel/rail dynamic responses due to the wheel flat of heavy-haul locomotives. Engineering Mechanics, 2020, 37(12): 213-219 (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.01.0033
    [30] 杨云帆, 刘志强, 高贤波等. 电力机车车轮非圆化磨耗特征及其对轮轨动态冲击作用影响分析. 机械工程学报, 2021, 57(4): 130-139 doi: 10.3901/JME.2021.04.130

    Yang Yunfan, Liu Zhiqiang, Gao Xianbo, et al. Analysis on essential characteristics of the polygonal wear of locomotive wheels and its effect on wheel/rail dynamic impact. Journal of Mechanical Engineering, 2021, 57(4): 130-139 (in Chinese) doi: 10.3901/JME.2021.04.130
    [31] Zhai WM, Wang KY, Cai CB. Fundamentals of vehicle-track coupled dynamics. Vehicle System Dynamics, 2009, 47(11): 1349-1376 doi: 10.1080/00423110802621561
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  504
  • HTML全文浏览量:  201
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-25
  • 录用日期:  2022-05-10
  • 网络出版日期:  2022-05-11
  • 刊出日期:  2022-07-18

目录

    /

    返回文章
    返回