EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三浦折纸超材料结构数字化设计与模型验证

陈耀 叶王杰 史佳遥 冯健

陈耀, 叶王杰, 史佳遥, 冯健. 三浦折纸超材料结构数字化设计与模型验证. 力学学报, 2022, 54(7): 2019-2029 doi: 10.6052/0459-1879-22-080
引用本文: 陈耀, 叶王杰, 史佳遥, 冯健. 三浦折纸超材料结构数字化设计与模型验证. 力学学报, 2022, 54(7): 2019-2029 doi: 10.6052/0459-1879-22-080
Chen Yao, Ye Wangjie, Shi Jiayao, Feng Jian. Digital design and model verification of Miura origami metamaterial structures. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(7): 2019-2029 doi: 10.6052/0459-1879-22-080
Citation: Chen Yao, Ye Wangjie, Shi Jiayao, Feng Jian. Digital design and model verification of Miura origami metamaterial structures. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(7): 2019-2029 doi: 10.6052/0459-1879-22-080

三浦折纸超材料结构数字化设计与模型验证

doi: 10.6052/0459-1879-22-080
基金项目: 国家自然科学基金资助项目(51978150, 5205041033)
详细信息
    作者简介:

    陈耀, 教授, 研究方向: 现代预应力结构、新型可展结构、计算力学、群论方法等. E-mail: chenyao@seu.edu.cn

  • 中图分类号: TU357, TU311.4

DIGITAL DESIGN AND MODEL VERIFICATION OF MIURA ORIGAMI METAMATERIAL STRUCTURES

Funds: The project was supported by the (12345678)and (9876543)
  • 摘要: 折纸结构在航空航天、柔性电子、汽车船舶和建筑结构等领域具有较好的应用前景. 三浦折纸单元沿三向拓展可构建出三浦折纸超材料结构, 具有高孔隙、可自锁、平面折展、负泊松比、形态可控等特性. 为了便于生成折纸超材料结构的复杂三维模型、推广应用于缓冲吸能结构及可展结构, 本文利用Matlab和Grasshopper软件, 发展了三浦折纸超材料结构的数字化设计方法, 利用数字化建模及3D打印技术, 实现了零厚度及非零厚度三维折纸模型的统一建模, 并开展了物理模型验证分析, 探讨了3D打印制作折纸超材料结构模型的优缺点; 推导了三浦折纸超材料的折痕长度、相对密度、折叠率等特性与几何参数的关系, 利用Abaqus/Explicit软件开展了结构准静态压缩过程分析与验证, 揭示相对密度对结构吸能指标的影响规律. 研究结果表明, 折纸超材料结构数字化设计方法高效、准确, 便于结构选型及优化分析, 所得三维模型结果与理论值吻合较好. 当胞元面板构型、面板厚度及结构折痕总长不变时, 相对密度较小的三浦折纸超材料结构具备更为优异的吸能效率.

     

  • 图  1  折纸超材料结构模型

    Figure  1.  An origami metamaterial structural model

    图  2  Grasshopper参数化面板

    Figure  2.  Grasshopper parametric panel

    图  3  数字化建模流程

    Figure  3.  Digital modeling process

    图  4  三浦折叠超材料结构模型验证

    Figure  4.  3D printing and digital Miura-ori metamaterial structural models

    图  5  不同γB情况下L1γA的关系曲线 (M = N = 5)

    Figure  5.  Change curve of L1 with γA under different γB conditions (M = N = 5)

    图  6  相对密度理论曲线

    Figure  6.  Theoretical curve for relative density

    图  7  标准模型沿X方向完全展开构型

    Figure  7.  Fully deployed configuration of reference model along direction X

    图  8  折叠率ζVγAγB的关系曲线

    Figure  8.  Relation curve of maximum folding ratio ζV with γA and γB

    图  9  不同γA的部分三维模型示意

    Figure  9.  3D models with different γA

    图  10  不同θA的部分三维模型示意

    Figure  10.  3D models with different θA

    图  11  三浦折纸超材料结构压缩性能分析

    Figure  11.  FEM results for Miura-ori metamaterial structures under quasi-static compressions

    表  1  3D打印实物模型参数

    Table  1.   Parameters for physical models by 3D printing

    No.M × N × OaA/mmbA/mmθA/(°)Material
    13 × 3 × 4101045PLA
    27 × 6 × 95545PLA
    36 × 6 × 85530PLA
    48 × 7 × 95560PLA
    53 × 3 × 4101045Agilus30
    67 × 6 × 9101045TPU
    下载: 导出CSV

    表  2  模型参数与模拟结果

    Table  2.   Parameters and FEM results for different models

    ModelθA/(°)ρ0*SEA
    Mi-1150.066121.09
    Mi-2300.081115.67
    Mi-3450.106911.72
    Mi-4600.15909.81
    Mi-5750.31668.62
    下载: 导出CSV
  • [1] Turner N, Goodwine B, Sen M. A review of origami applications in mechanical engineering. Journal of Mechanical Engineering Science, 2015, 230(14): 2345-2362
    [2] Chen Y, Feng J. Folding of a type of deployable origami structures. International Journal of Structural Stability and Dynamics, 2012, 12(6): 1250054 doi: 10.1142/S021945541250054X
    [3] Mundilova, K. On mathematical folding of curved crease origami: Sliding developables and parametrizations of folds into cylinders and cones. Computer-Aided Design, 2021, 62(2): 71-81
    [4] 邱海, 方虹斌, 徐鉴. 多稳态串联折纸结构的非线性动力学特性. 力学学报, 2019, 51(4): 1110-1121 (Qiu Hai, Fang Hongbin, Xu Jian. Nonlinear dynamical characteristics of a multi-stable series origami structure. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1110-1121 (in Chinese) doi: 10.6052/0459-1879-19-115

    Qiu Hai, Fang Hongbin, Xu Jian. Nonlinear dynamical characteristics of a multi-stable series origami structure [J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1110-1121(in Chinese)) doi: 10.6052/0459-1879-19-115
    [5] Sareh P, Chermprayong P, Emmanuelli M, et al. Rotorigami: A rotary origami protective system for robotic rotorcraft. Science Robotics, 2018, 3(22): h5228
    [6] 秦波, 吕胜男, 刘全等. 可展收抛物柱面天线机构的设计及分析. 机械工程学报, 2020, 56(5): 100-107 (Qin Bo, Lü Shengnan, Liu Quan, et al. Structural design and analysis of a deployable parabolic-cylinder antenna. Journal of Mechanical Engineering, 2020, 56(5): 100-107 (in Chinese) doi: 10.3901/JME.2020.05.100

    Qin Bo, LÜ Shengnan, LIU Quan et al. Structural design and analysis of a deployable parabolic-cylinder antenna[J]. Journal of Mechanical Engineering, 2020, 56(5): 100-107(in Chinese)) doi: 10.3901/JME.2020.05.100
    [7] 刘荣强, 史创, 郭宏伟等. 空间可展开天线机构研究与展望. 机械工程学报, 2020, 56(5): 1-12 (Liu Rongqiang, Shi Chuang, Guo Hongwei, et al. Review of space deployable antenna mechanisms. Journal of Mechanical Engineering, 2020, 56(5): 1-12 (in Chinese) doi: 10.3901/JME.2020.05.001

    Liu Rongqiang, Shi Chuang, Guo Hongwei, et al. Review of space deployable antenna mechanisms[J]. Journal of Mechanical Engineering, 2020, 56(5): 1-12(in Chinese)) doi: 10.3901/JME.2020.05.001
    [8] Song Z, Wang X, Lü C, et al. Kirigami-based stretchable lithium-ion batteries. Scientific Reports. 2015, 5(1): 10988
    [9] 赵丹阳, 刘韬, 李红霞等. 可降解聚合物血管支架结构优化设计. 力学学报, 2017, 49(6): 1409-1417 (Zhao Danyang, Liu Tao, Li Hongxia, et al. Optimization design of degradable polymer vascular stent structure. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1409-1417 (in Chinese) doi: 10.6052/0459-1879-17-214

    Zhao Danyang, Liu Tao, Li Hongxia, et al. Optimization design of degradable polymer vascular stent structure[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1409-1417(in Chinese)) doi: 10.6052/0459-1879-17-214
    [10] 陈仕魁, 顾险峰. 心脏支架、折纸艺术与超材料设计. 科技导报, 2017, 10: 107 (Chen Shikui, Gu Xianfeng. Heart stent, origami andmetamaterial design. Science &Technology Review, 2017, 10: 107 (in Chinese)

    Chen Shikui, Gu Xianfeng. Heart stent, origami andmetamaterial design[J]. Science & Technology Review, 2017(10): 107(in Chinese)
    [11] 张国凯, 马家耀, 尚祖峰等. 具有折展与变刚度特征的NOTES手术器械臂. 机械工程学报, 2018, 54(17): 28-35 (Zhang Guokai, Ma Jiayao, Shang Zufeng, et al. NOTES surgical instrument arm with flex and variable stiffness features. Journal of Mechanical Engineering, 2018, 54(17): 28-35 (in Chinese) doi: 10.3901/JME.2018.17.028

    Zhang Guokai, Ma Jiayao, Shang Zufeng, et al. NOTES surgical instrument arm with flex and variable stiffness features. [J] Journal of Mechanical Engineering, 2018, 54(17): 28-35 (in Chinese)) doi: 10.3901/JME.2018.17.028
    [12] Blees MK, Barnard AW, Rose PA, et al. Graphene kirigami. Nature, 2015, 524(7564): 204
    [13] 曹登庆, 白坤朝, 丁虎等. 大型柔性航天器动力学与振动控制研究进展. 力学学报, 2019, 51(1): 1-13 (Cao Dengqing, Bai Kunchao, Ding Hu, et al. Advances in dynamics and vibration control of large-scale flexible spacecraft. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 1-13 (in Chinese) doi: 10.6052/0459-1879-18-054

    Cao Dengqing, Bai Kunchao, Ding Hu, et al. Advances in dynamics and vibration control of large-scale flexible spacecraft[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 1-13(in Chinese) doi: 10.6052/0459-1879-18-054
    [14] 方虹斌, 吴海平, 刘作林等. 折纸结构和折纸超材料动力学研究进展. 力学学报, 2022, 54(1): 1-40 (Fang Hongbin, Wu Haiping, Liu Zuolin, et al. Advances in the dynamics of origami structures and origami metamaterials. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1): 1-40 (in Chinese) doi: 10.6052/0459-1879-21-478

    Fang Hongbin, Wu Haiping, Liu Zuolin, Zhang Qiwei, Xu Jian. Advances in the dynamics of origami structures and origami metamaterials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1): 1-40(in Chinese) doi: 10.6052/0459-1879-21-478
    [15] Boatti E, Vasios N, Bertoldi K. Origami metamaterials for tunable thermal expansion. Advanced Materials, 2017, 29(26): 1700360-1700361
    [16] 冯慧娟, 杨名远, 陈焱等. 折纸机器人. 中国科学: 技术科学, 2018, 48(12): 5-20 (Feng Huijuan, Yang Mingyuan, Chen Yan, et al. Origami robots. Scientia Sinica Technologica, 2018, 48(12): 5-20 (in Chinese)

    Feng Huijuan, Yang Mingyuan, Chen Yan, Dai Jiansheng, et al. Origami robots[J]. Scientia Sinica Technologica, 2018, 48(12): 5-20(in Chinese)
    [17] Mu J, Hou C, Wang H, et al. Origami-inspired active graphene-based paper for programmable instant self-folding walking devices. Science Advances, 2015, 1(10): e1500533
    [18] Ha M, Bermudez GSC, Liu JAC, et al. Reconfigurable magnetic origami actuators with on-board sensing for guided assembly. Advanced Materials, 2021, 33(25): 2008751
    [19] Cybulski JS, Clements J, Prakash M. Foldscope: origami-based paper microscope. PloS One, 2014, 9(6): e98781
    [20] 李笑, 李明. 折纸及其折痕设计研究综述. 力学学报, 2018, 50(3): 467-476

    Li Xiao, Li Ming. A review of origami and its crease design. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 467-476 (in Chinese))
    [21] Miura K. Method of packaging and deployment of large membranes in space. Acta Astronautica, 1985, 67(3-4): 362-368
    [22] Yu X, Zhou J, Liang H, et al. Mechanical metamaterials associated with stiffness, rigidity and compressibility: A brief review. Progress in Materials Science, 2018, 94: 114-173
    [23] Fang HB, Chu SCA, Xia YT. Programmable self-locking origami mechanical metamaterials. Advanced Materials, 2018, 30(15): 1706311
    [24] Wang ZJ, Jing LQ, Yao K. Origami-based reconfigurable metamaterials for tunable chirality. Advanced Materials, 2017, 29(27): 1700412
    [25] Gattas J, Wu W, You Z. Miura-base rigid origami: parameterizations of first level derivative and piecewise geometries. Journal of Mechanical Design-Transactions of the ASME, 2013, 135(11): 111011
    [26] 严嘉怡, 李佳强, 陈耀等. 基于图论方法与优化算法的六折痕折纸结构构型研究. 建筑结构学报, 2022, doi: 10.14006/j.jzjgxb.2021.0011

    Yan Jiayi, Li jiaqiang, Chen Yao, et al. Research on six-fold origami structure configuration based on graph theory method and optimization algorithm. Journal of Building Structure, 2022, doi: 10.14006/j.jzjgxb.2021.0011 (in Chinese)
    [27] 陈耀, 冯健. 对称可展结构: 形态、展开过程与应用研究. 南京: 东南大学出版社, 2015

    Chen Yao, Feng Jian. Symmetric Deployable Structures: Form-finding, Folding and Application Research. Nanjing: Southeast University Press, 2015 (in Chinese)
    [28] Chen Y, Fan L, Bai Y, et al. Assigning mountain-valley fold lines of flat-foldable origami patterns based on graph theory and mixed-integer linear programming. Computers & Structures, 2020, 239: 106328
    [29] Gattas J, You Z. Miura-base rigid origami: parametrizations of curved crease geometries. Journal of Mechanical Design-Transactions of the ASME, 2014, 136(12): 121404
    [30] Chen Y, Peng R, You Z. Origami of thick panels. Science, 2015, 349(6246): 396-400
    [31] Chen Y, Sareh P, Yan J, et al. An integrated geometric-graph-theoretic approach to representing origami structures and their corresponding truss frameworks. Journal of Mechanical Design-Transactions of the ASME, 2019, 141(9): 091402
    [32] Chen Y, Yan J, Feng J, et al. PSO-based metaheuristic design generation of non-trivial flat-foldable origami tessellations with degree-4 vertices. Journal of Mechanical Design-Transactions of the ASME, 2021, 143(1): 011703
    [33] Sareh P, Chen Y. Intrinsic non-flat-foldability of two-tile DDC surfaces composed of glide-reflected irregular quadrilaterals. International Journal of Mechanical Sciences, 2020, 185: 105881
    [34] Li SY, Fang HB, Sadeghi S. Architected origami Materials: How folding creates sophisticated mechanical properties Advanced Materials, 2019, 31(5): 1805282
    [35] Tachi T. Freeform rigid-foldable structure using bidirectionally flat-foldable planar quadrilateral mesh. Advances in Architectural Geometry, 2010, 14(2): 203-215
    [36] Mattoccia A, Bevilacqua MG, Leccese F, et al. Folded wooden responsive houses in hot arid climate//Proceedings of the Symposium on Simulation for Architecture and Urban Design (SIMAUD 2016), 7th Annual Symposium on Simulation for Architecture and Urban Design, London, England: Soc Modeling Simulation Int-Scs, 2016, 231-238
    [37] Curletto G, Gambarotta L. Rigid foldable origami structures: integrated parametric design and structural analysis. International Association for Shell and Spatial Structures (IASS) , 2015, 2015(15): 1-12
    [38] Wonoto N, Baerlecken D, Gentry R, et al. Parametric design and structural analysis of deployable origami tessellation. Computer-Aided Design and Applications, 2013, 10(6): 939-951
    [39] Wonoto N, Baerlecken D, Gentry R, et al. Parametric design and structural analysis of deployable origami tessellation. Computer-Aided Design and Applications, 2013, 10(6): 939-951
    [40] Li JQ, Chen Y, Feng XD, et al. Computational modeling and energy absorption behavior of thin-walled tubes with the Kresling origami pattern. Journal of the International Association for Shell and Spatial Structures, 2021, 62(2): 71-81 doi: 10.20898/j.iass.2021.008
    [41] Schenk M, Guest SD. Geometry of Miura-folded metamaterials. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(9): 3276-81 doi: 10.1073/pnas.1217998110
    [42] Wang ZG, Shi C, Ding SS, et al. Crashworthiness of innovative hexagonal honeycomb-like structures subjected to out-of-plane compression. Journal of Central South University, 2020, 27(2): 621-628 doi: 10.1007/s11771-020-4321-2
    [43] Gao GJ, Zhuo TY, Guan WY. Recent research development of energy-absorption structure and application for railway vehicles. Journal of Central South University, 2020, 27(4): 1012-1038 doi: 10.1007/s11771-020-4349-3
    [44] Xing J, Xu P, Zhao H, et al. Crashworthiness design and experimental validation of a novel collision post structure for subway cab cars. Journal of Central South University, 2020, 27(9): 2763-2775 doi: 10.1007/s11771-020-4497-5
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  733
  • HTML全文浏览量:  166
  • PDF下载量:  184
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-21
  • 录用日期:  2022-04-26
  • 网络出版日期:  2022-04-27
  • 刊出日期:  2022-07-15

目录

    /

    返回文章
    返回