DIGITAL DESIGN AND MODEL VERIFICATION OF MIURA ORIGAMI METAMATERIAL STRUCTURES
-
摘要: 折纸结构在航空航天、柔性电子、汽车船舶和建筑结构等领域具有较好的应用前景. 三浦折纸单元沿三向拓展可构建出三浦折纸超材料结构, 具有高孔隙、可自锁、平面折展、负泊松比、形态可控等特性. 为了便于生成折纸超材料结构的复杂三维模型、推广应用于缓冲吸能结构及可展结构, 本文利用Matlab和Grasshopper软件, 发展了三浦折纸超材料结构的数字化设计方法, 利用数字化建模及3D打印技术, 实现了零厚度及非零厚度三维折纸模型的统一建模, 并开展了物理模型验证分析, 探讨了3D打印制作折纸超材料结构模型的优缺点; 推导了三浦折纸超材料的折痕长度、相对密度、折叠率等特性与几何参数的关系, 利用Abaqus/Explicit软件开展了结构准静态压缩过程分析与验证, 揭示相对密度对结构吸能指标的影响规律. 研究结果表明, 折纸超材料结构数字化设计方法高效、准确, 便于结构选型及优化分析, 所得三维模型结果与理论值吻合较好. 当胞元面板构型、面板厚度及结构折痕总长不变时, 相对密度较小的三浦折纸超材料结构具备更为优异的吸能效率.Abstract: Origami-inspired structures have bright engineering applications in many fields, such as aerospace engineering, flexible electronics, automobile, ships, and building structures. Miura origami metamaterial structures can be constructed by expanding the classic Miura origami patterns along three directions. Such structures possess the characteristics of high porosity, self-locking, flat folding, negative Poisson's ratio and programmable morphology. In order to better apply these metamaterials into energy-absorbing structures and deployable structures, this study introduces Matlab and Grasshopper to further improve the digital design method of Miura-ori metamaterial structures. Notably, digital modeling technology and 3D printing technology have been adopted to achieve unified modeling for zero-thickness origami models and non-zero-thickness three-dimensional origami models. Furthermore, a series of physical models are constructed for verification. Then, the advantages and disadvantages of using 3D printing technology to make origami metamaterial structural models have been discussed. On the basis of geometric parameters, analytical expressions for the crease length, relative density, and folding ratio of a Miura-ori metamaterial have been established. Abaqus/Explicit was used to analyze and verify the quasi-static compression process of these origami structures, and the influence law of relative density on the energy absorption index was revealed. The results show that the digital design method of metamaterial structure is efficient and accurate, which is convenient for structural selection and further optimization analysis. The obtained results from 3D printed models are in good agreements with the theoretical values. When panel configuration, thickness and crease length remain unchanged, the Miura origami metamaterial structure with a relatively lower density tends to exhibit better energy absorption efficiency.
-
Key words:
- Miura-ori /
- mechanical metamaterials /
- digital design /
- geometric analysis /
- energy absorption
-
表 1 3D打印实物模型参数
Table 1. Parameters for physical models by 3D printing
No. M × N × O aA/mm bA/mm θA/(°) Material 1 3 × 3 × 4 10 10 45 PLA 2 7 × 6 × 9 5 5 45 PLA 3 6 × 6 × 8 5 5 30 PLA 4 8 × 7 × 9 5 5 60 PLA 5 3 × 3 × 4 10 10 45 Agilus30 6 7 × 6 × 9 10 10 45 TPU 表 2 模型参数与模拟结果
Table 2. Parameters and FEM results for different models
Model θA/(°) ρ0* SEA Mi-1 15 0.0661 21.09 Mi-2 30 0.0811 15.67 Mi-3 45 0.1069 11.72 Mi-4 60 0.1590 9.81 Mi-5 75 0.3166 8.62 -
[1] Turner N, Goodwine B, Sen M. A review of origami applications in mechanical engineering. Journal of Mechanical Engineering Science, 2015, 230(14): 2345-2362 [2] Chen Y, Feng J. Folding of a type of deployable origami structures. International Journal of Structural Stability and Dynamics, 2012, 12(6): 1250054 doi: 10.1142/S021945541250054X [3] Mundilova, K. On mathematical folding of curved crease origami: Sliding developables and parametrizations of folds into cylinders and cones. Computer-Aided Design, 2021, 62(2): 71-81 [4] 邱海, 方虹斌, 徐鉴. 多稳态串联折纸结构的非线性动力学特性. 力学学报, 2019, 51(4): 1110-1121 (Qiu Hai, Fang Hongbin, Xu Jian. Nonlinear dynamical characteristics of a multi-stable series origami structure. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1110-1121 (in Chinese) doi: 10.6052/0459-1879-19-115Qiu Hai, Fang Hongbin, Xu Jian. Nonlinear dynamical characteristics of a multi-stable series origami structure [J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1110-1121(in Chinese)) doi: 10.6052/0459-1879-19-115 [5] Sareh P, Chermprayong P, Emmanuelli M, et al. Rotorigami: A rotary origami protective system for robotic rotorcraft. Science Robotics, 2018, 3(22): h5228 [6] 秦波, 吕胜男, 刘全等. 可展收抛物柱面天线机构的设计及分析. 机械工程学报, 2020, 56(5): 100-107 (Qin Bo, Lü Shengnan, Liu Quan, et al. Structural design and analysis of a deployable parabolic-cylinder antenna. Journal of Mechanical Engineering, 2020, 56(5): 100-107 (in Chinese) doi: 10.3901/JME.2020.05.100Qin Bo, LÜ Shengnan, LIU Quan et al. Structural design and analysis of a deployable parabolic-cylinder antenna[J]. Journal of Mechanical Engineering, 2020, 56(5): 100-107(in Chinese)) doi: 10.3901/JME.2020.05.100 [7] 刘荣强, 史创, 郭宏伟等. 空间可展开天线机构研究与展望. 机械工程学报, 2020, 56(5): 1-12 (Liu Rongqiang, Shi Chuang, Guo Hongwei, et al. Review of space deployable antenna mechanisms. Journal of Mechanical Engineering, 2020, 56(5): 1-12 (in Chinese) doi: 10.3901/JME.2020.05.001Liu Rongqiang, Shi Chuang, Guo Hongwei, et al. Review of space deployable antenna mechanisms[J]. Journal of Mechanical Engineering, 2020, 56(5): 1-12(in Chinese)) doi: 10.3901/JME.2020.05.001 [8] Song Z, Wang X, Lü C, et al. Kirigami-based stretchable lithium-ion batteries. Scientific Reports. 2015, 5(1): 10988 [9] 赵丹阳, 刘韬, 李红霞等. 可降解聚合物血管支架结构优化设计. 力学学报, 2017, 49(6): 1409-1417 (Zhao Danyang, Liu Tao, Li Hongxia, et al. Optimization design of degradable polymer vascular stent structure. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1409-1417 (in Chinese) doi: 10.6052/0459-1879-17-214Zhao Danyang, Liu Tao, Li Hongxia, et al. Optimization design of degradable polymer vascular stent structure[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1409-1417(in Chinese)) doi: 10.6052/0459-1879-17-214 [10] 陈仕魁, 顾险峰. 心脏支架、折纸艺术与超材料设计. 科技导报, 2017, 10: 107 (Chen Shikui, Gu Xianfeng. Heart stent, origami andmetamaterial design. Science &Technology Review, 2017, 10: 107 (in Chinese)Chen Shikui, Gu Xianfeng. Heart stent, origami andmetamaterial design[J]. Science & Technology Review, 2017(10): 107(in Chinese) [11] 张国凯, 马家耀, 尚祖峰等. 具有折展与变刚度特征的NOTES手术器械臂. 机械工程学报, 2018, 54(17): 28-35 (Zhang Guokai, Ma Jiayao, Shang Zufeng, et al. NOTES surgical instrument arm with flex and variable stiffness features. Journal of Mechanical Engineering, 2018, 54(17): 28-35 (in Chinese) doi: 10.3901/JME.2018.17.028Zhang Guokai, Ma Jiayao, Shang Zufeng, et al. NOTES surgical instrument arm with flex and variable stiffness features. [J] Journal of Mechanical Engineering, 2018, 54(17): 28-35 (in Chinese)) doi: 10.3901/JME.2018.17.028 [12] Blees MK, Barnard AW, Rose PA, et al. Graphene kirigami. Nature, 2015, 524(7564): 204 [13] 曹登庆, 白坤朝, 丁虎等. 大型柔性航天器动力学与振动控制研究进展. 力学学报, 2019, 51(1): 1-13 (Cao Dengqing, Bai Kunchao, Ding Hu, et al. Advances in dynamics and vibration control of large-scale flexible spacecraft. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 1-13 (in Chinese) doi: 10.6052/0459-1879-18-054Cao Dengqing, Bai Kunchao, Ding Hu, et al. Advances in dynamics and vibration control of large-scale flexible spacecraft[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 1-13(in Chinese) doi: 10.6052/0459-1879-18-054 [14] 方虹斌, 吴海平, 刘作林等. 折纸结构和折纸超材料动力学研究进展. 力学学报, 2022, 54(1): 1-40 (Fang Hongbin, Wu Haiping, Liu Zuolin, et al. Advances in the dynamics of origami structures and origami metamaterials. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1): 1-40 (in Chinese) doi: 10.6052/0459-1879-21-478Fang Hongbin, Wu Haiping, Liu Zuolin, Zhang Qiwei, Xu Jian. Advances in the dynamics of origami structures and origami metamaterials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1): 1-40(in Chinese) doi: 10.6052/0459-1879-21-478 [15] Boatti E, Vasios N, Bertoldi K. Origami metamaterials for tunable thermal expansion. Advanced Materials, 2017, 29(26): 1700360-1700361 [16] 冯慧娟, 杨名远, 陈焱等. 折纸机器人. 中国科学: 技术科学, 2018, 48(12): 5-20 (Feng Huijuan, Yang Mingyuan, Chen Yan, et al. Origami robots. Scientia Sinica Technologica, 2018, 48(12): 5-20 (in Chinese)Feng Huijuan, Yang Mingyuan, Chen Yan, Dai Jiansheng, et al. Origami robots[J]. Scientia Sinica Technologica, 2018, 48(12): 5-20(in Chinese) [17] Mu J, Hou C, Wang H, et al. Origami-inspired active graphene-based paper for programmable instant self-folding walking devices. Science Advances, 2015, 1(10): e1500533 [18] Ha M, Bermudez GSC, Liu JAC, et al. Reconfigurable magnetic origami actuators with on-board sensing for guided assembly. Advanced Materials, 2021, 33(25): 2008751 [19] Cybulski JS, Clements J, Prakash M. Foldscope: origami-based paper microscope. PloS One, 2014, 9(6): e98781 [20] 李笑, 李明. 折纸及其折痕设计研究综述. 力学学报, 2018, 50(3): 467-476Li Xiao, Li Ming. A review of origami and its crease design. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 467-476 (in Chinese)) [21] Miura K. Method of packaging and deployment of large membranes in space. Acta Astronautica, 1985, 67(3-4): 362-368 [22] Yu X, Zhou J, Liang H, et al. Mechanical metamaterials associated with stiffness, rigidity and compressibility: A brief review. Progress in Materials Science, 2018, 94: 114-173 [23] Fang HB, Chu SCA, Xia YT. Programmable self-locking origami mechanical metamaterials. Advanced Materials, 2018, 30(15): 1706311 [24] Wang ZJ, Jing LQ, Yao K. Origami-based reconfigurable metamaterials for tunable chirality. Advanced Materials, 2017, 29(27): 1700412 [25] Gattas J, Wu W, You Z. Miura-base rigid origami: parameterizations of first level derivative and piecewise geometries. Journal of Mechanical Design-Transactions of the ASME, 2013, 135(11): 111011 [26] 严嘉怡, 李佳强, 陈耀等. 基于图论方法与优化算法的六折痕折纸结构构型研究. 建筑结构学报, 2022, doi: 10.14006/j.jzjgxb.2021.0011Yan Jiayi, Li jiaqiang, Chen Yao, et al. Research on six-fold origami structure configuration based on graph theory method and optimization algorithm. Journal of Building Structure, 2022, doi: 10.14006/j.jzjgxb.2021.0011 (in Chinese) [27] 陈耀, 冯健. 对称可展结构: 形态、展开过程与应用研究. 南京: 东南大学出版社, 2015Chen Yao, Feng Jian. Symmetric Deployable Structures: Form-finding, Folding and Application Research. Nanjing: Southeast University Press, 2015 (in Chinese) [28] Chen Y, Fan L, Bai Y, et al. Assigning mountain-valley fold lines of flat-foldable origami patterns based on graph theory and mixed-integer linear programming. Computers & Structures, 2020, 239: 106328 [29] Gattas J, You Z. Miura-base rigid origami: parametrizations of curved crease geometries. Journal of Mechanical Design-Transactions of the ASME, 2014, 136(12): 121404 [30] Chen Y, Peng R, You Z. Origami of thick panels. Science, 2015, 349(6246): 396-400 [31] Chen Y, Sareh P, Yan J, et al. An integrated geometric-graph-theoretic approach to representing origami structures and their corresponding truss frameworks. Journal of Mechanical Design-Transactions of the ASME, 2019, 141(9): 091402 [32] Chen Y, Yan J, Feng J, et al. PSO-based metaheuristic design generation of non-trivial flat-foldable origami tessellations with degree-4 vertices. Journal of Mechanical Design-Transactions of the ASME, 2021, 143(1): 011703 [33] Sareh P, Chen Y. Intrinsic non-flat-foldability of two-tile DDC surfaces composed of glide-reflected irregular quadrilaterals. International Journal of Mechanical Sciences, 2020, 185: 105881 [34] Li SY, Fang HB, Sadeghi S. Architected origami Materials: How folding creates sophisticated mechanical properties Advanced Materials, 2019, 31(5): 1805282 [35] Tachi T. Freeform rigid-foldable structure using bidirectionally flat-foldable planar quadrilateral mesh. Advances in Architectural Geometry, 2010, 14(2): 203-215 [36] Mattoccia A, Bevilacqua MG, Leccese F, et al. Folded wooden responsive houses in hot arid climate//Proceedings of the Symposium on Simulation for Architecture and Urban Design (SIMAUD 2016), 7th Annual Symposium on Simulation for Architecture and Urban Design, London, England: Soc Modeling Simulation Int-Scs, 2016, 231-238 [37] Curletto G, Gambarotta L. Rigid foldable origami structures: integrated parametric design and structural analysis. International Association for Shell and Spatial Structures (IASS) , 2015, 2015(15): 1-12 [38] Wonoto N, Baerlecken D, Gentry R, et al. Parametric design and structural analysis of deployable origami tessellation. Computer-Aided Design and Applications, 2013, 10(6): 939-951 [39] Wonoto N, Baerlecken D, Gentry R, et al. Parametric design and structural analysis of deployable origami tessellation. Computer-Aided Design and Applications, 2013, 10(6): 939-951 [40] Li JQ, Chen Y, Feng XD, et al. Computational modeling and energy absorption behavior of thin-walled tubes with the Kresling origami pattern. Journal of the International Association for Shell and Spatial Structures, 2021, 62(2): 71-81 doi: 10.20898/j.iass.2021.008 [41] Schenk M, Guest SD. Geometry of Miura-folded metamaterials. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(9): 3276-81 doi: 10.1073/pnas.1217998110 [42] Wang ZG, Shi C, Ding SS, et al. Crashworthiness of innovative hexagonal honeycomb-like structures subjected to out-of-plane compression. Journal of Central South University, 2020, 27(2): 621-628 doi: 10.1007/s11771-020-4321-2 [43] Gao GJ, Zhuo TY, Guan WY. Recent research development of energy-absorption structure and application for railway vehicles. Journal of Central South University, 2020, 27(4): 1012-1038 doi: 10.1007/s11771-020-4349-3 [44] Xing J, Xu P, Zhao H, et al. Crashworthiness design and experimental validation of a novel collision post structure for subway cab cars. Journal of Central South University, 2020, 27(9): 2763-2775 doi: 10.1007/s11771-020-4497-5 -