EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黏弹性管道水柱分离弥合水锤有限体积法模型

王宁 周领 李赟杰 潘天文

王宁, 周领, 李赟杰, 潘天文. 黏弹性管道水柱分离弥合水锤有限体积法模型. 力学学报, 2022, 54(7): 1-8 doi: 10.6052/0459-1879-22-069
引用本文: 王宁, 周领, 李赟杰, 潘天文. 黏弹性管道水柱分离弥合水锤有限体积法模型. 力学学报, 2022, 54(7): 1-8 doi: 10.6052/0459-1879-22-069
Wang Ning, Zhou Ling, Li Yunjie, Pan Tianwen. Finite volume model of water column separation and rejoining water hammer in viscoelastic pipes. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(7): 1-8 doi: 10.6052/0459-1879-22-069
Citation: Wang Ning, Zhou Ling, Li Yunjie, Pan Tianwen. Finite volume model of water column separation and rejoining water hammer in viscoelastic pipes. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(7): 1-8 doi: 10.6052/0459-1879-22-069

黏弹性管道水柱分离弥合水锤有限体积法模型

doi: 10.6052/0459-1879-22-069
基金项目: 国家自然科学基金项目(51679066, 51839008)和霍英东教育基金会青年教师基金(161068)资助.
详细信息
    作者简介:

    周领, 教授, 主要研究方向: 输排水工程水气耦合瞬变流. E-mail: zlhhu@163.com

  • 中图分类号: TV143.1

FINITE VOLUME MODEL OF WATER COLUMN SEPARATION AND REJOINING WATER HAMMER IN VISCOELASTIC PIPES

  • 摘要: 基于有限体积法二阶Godunov求解格式对黏弹性输水管道中水柱分离弥合现象进行建模和模拟研究. 在传统的弹性管道模型基础上考虑管道黏弹性效应的影响. 在瞬变流控制方程中引入管道黏弹性项和动态摩阻项, 采用有限体积法进行求解, 考虑压力修正系数来模拟自由气体对计算单元的影响, 同时为避免数值模拟结果产生虚假震荡引入斜率限制器MINMOD函数; 通过虚拟单元法进行边界构建, 实现了计算区域的统一计算. 将所建模型计算结果与已有模型结果、试验结果进行对比, 并对影响模型的各参数进行敏感性分析. 结果表明, 本文模型能够准确模拟出纯水锤、水柱分离弥合水锤两种情况下的瞬态压力变化, 均能与试验数据高度吻合; 与传统的特征线方法相比, 当库朗数Cr小于1时, 有限体积法二阶Godunov格式计算结果更准确、稳定; 在压力波动的衰减过程中, 黏弹性效应相比于管道摩阻起主导作用; 与弹性管道模型相比, 考虑管道黏弹性效应后可显著提高模拟结果的准确性, 尤其是压力波峰值的相对误差明显降低.

     

  • 图  1  广义K-V模型示意图

    Figure  1.  Schematic diagram of generalized K-V model

    图  2  离散网格系统

    Figure  2.  Discrete grid system

    图  3  粘弹性管道试验装置图[10]

    Figure  3.  Diagram of viscoelastic pipeline test device

    图  4  工况1下游阀门处计算值与试验结果

    Figure  4.  Calculation value and test result at downstream valve in Case 1

    图  5  库朗数对计算结果的影响

    Figure  5.  Influence of Cr on the calculation result

    图  6  动态摩阻对计算压力的影响

    Figure  6.  Influence of dynamic friction on calculated pressure

    图  7  FVM-DGCM VE中α0对上游阀门压力的影响

    Figure  7.  Effects of α0 in FVM-DGCM VE on pressure at upstream valve

    图  8  工况2上游阀门处计算值与试验结果

    Figure  8.  Calculation value and test result at upstream valve in Case 2

    图  9  工况3上游阀门处计算值与试验结果

    Figure  9.  Calculation value and test result at the upstream valve in Case 3

  • [1] 郭文璐, 李泓辰, 王静竹等. 单空泡与自由液面相互作用规律研究进展. 力学学报, 2019, 51(6): 1682-1698 (Guo Wenlu, Li Hongchen, Wang Jingzhu, et al. Research progress on interaction between a single cavitation and free surface. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1682-1698 (in Chinese)
    [2] 韩磊, 张敏弟, 黄国豪等. 自由场空泡溃灭过程能量转化机制研究. 力学学报, 2021, 53(5): 1288-1301 (Han Lei, Zhang Mindi, Huang Guohao, et al. Energy transformation mechanism of a gas bubble collapse in the free-field. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1288-1301 (in Chinese)
    [3] Wylie EB, Streeter VL, Suo L. Fluid transients in systems. New York: Prentice Hall, 1993: 184-192
    [4] Streeter VL. Water hammer analysis. Journal of Hydraulic Division, 1969, 95(HY6): 1959-1972
    [5] Brown RJ. Water-column separation at two pumping plants. Journal of Basic Engineering, 1968, 90(4): 521-530 doi: 10.1115/1.3605184
    [6] De Vries AH. Cavitatie door waterslag in horizontale leidingen met enige hoge punten. Delft Hydraulics Laboratory, Delft, The Netherlands, 1973.
    [7] Simpson A, Bergant A. Numerical comparison of pipe-column-separation models. Journal of Hydraulic Engineering, 1994, 120(3): 361-377 doi: 10.1061/(ASCE)0733-9429(1994)120:3(361)
    [8] Bergant A, Simpson A. Pipeline column separation flow regimes. Journal of Hydraulic Engineering, 1999, 125(8): 835-848 doi: 10.1061/(ASCE)0733-9429(1999)125:8(835)
    [9] Wylie EB. Simulation of vaporous and gaseous cavitation. Journal of Fluids Engineering, 1984, 106(3): 307-311 doi: 10.1115/1.3243120
    [10] Soares AK, Covas DIC, Ramos HM, et al. Unsteady flow with cavitation in viscoelastic pipes. International Journal of Fluid Machinery and Systems, 2009, 2(4): 269-277 doi: 10.5293/IJFMS.2009.2.4.269
    [11] Soares AK, Covas DIC, Carrico NJG. Transient vaporous cavitation in viscoelastic pipes. Journal of Hydraulic Research, 2012, 50(2): 228-235 doi: 10.1080/00221686.2012.669143
    [12] Zhao M, Ghidaoui MS. Godunov-type solutions for water hammer flows. Journal of Hydraulic Engineering, 2004, 130: 341 doi: 10.1061/(ASCE)0733-9429(2004)130:4(341)
    [13] 蒋明, 陈明. 求解管道耦合水力瞬变模型的Godunov格式. 应用力学学报, 2013, 3: 406-411 (Jiang Ming, Chen Ming. Godunov scheme for solving coupling hydraulic transient model of the pipeline. Chinese Journal of Applied Mechanics, 2013, 3: 406-411 (in Chinese) doi: 10.11776/cjam.30.03.C039
    [14] Zhou L, Wang H, Liu DY, et al. A second-order finite volume method for pipe flow with water column separation. Journal of Hydro-environment Research, 2016, 17: 47-55
    [15] Guinot V. Riemann solvers for water hammer simulations by godunov method. International Journal for Numerical Methods in Engineering, 2000, 49(7): 851-859 doi: 10.1002/1097-0207(20001110)49:7<851::AID-NME978>3.0.CO;2-#
    [16] 王畅畅, 王国玉, 黄彪. 空化可压缩流动空穴溃灭激波特性研究. 力学学报, 2018, 50(5): 990-1002 (Wang Changchang, Wang Guoyu, Huang Biao. Research progress on interaction between a single cavitation and free surface. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 990-1002 (in Chinese)
    [17] Zhou L, Wang H, Bergant A, et al. Godunov-type solutions with discrete gas cavity model for transient cavitating pipe flow. Journal of Hydraulic Engineering, 2018, 144(5): 04018017 doi: 10.1061/(ASCE)HY.1943-7900.0001463
    [18] Leaderman H. Elastic and creep properties of filamentous material. [PhD Thesis]. Massachusetts Institute of Technology, 1941.
    [19] Covas D, Stoianovi N, Mano JF, et al. The dynamic effect of pipe-wall viscoelasticity in hydraulic transients. Part II—Model development, calibration and verification. Journal of Hydraulic Research, 2005, 43(1): 56-70
    [20] Bergant A, Tisseling AS, Vitkovsky JP, et al. Parameters affecting water-hammer wave attenuation, shape and timing—Part I: Mathematical tools. Journal of Hydraulic Research, 2008, 46(3): 373-381 doi: 10.3826/jhr.2008.2848
    [21] Vardy A, Brown J. Efficient approximation of unsteady friction weighting functions. Journal of Hydraulic Engineering, 2004, 130(11): 1097-1107 doi: 10.1061/(ASCE)0733-9429(2004)130:11(1097)
    [22] Yazdi S, Mastorakis NE, Abbasi A. Water hammer modeling by godunov type finite volume method. International Journal of Mathematics and Computers in Simulation, 2007, 1(1): 350-355
    [23] 周领, 胡垠盈, 薛子剑等. 水气两相均质瞬变流二阶有限体积法数学模型. 华中科技大学学报, 2021, 49(10): 60-66

    Zhou Ling, Hu Yinying, Xue Zijian, et al. Second-order finite volume mathematical model of two-phase homogeneous transient flow. Journal of Huazhong University of Science and Technology. 2021, 49(10): 60-66(in Chinese))
    [24] TORO EF. Riemann solvers and numerical methods for fluid dynamics. Berlin: Verlag Berlin Heidelberg, 2009: 115-125
    [25] 赵越, 周领, 刘德有等. 基于有限体积法Godunov格式的水锤计算模型. 水利水电科技进展, 2019, 39(1): 76-81 (Zhao Yue, Zhou Ling, Liu Deyou, et al. Water hammer model based on finite volume method and godunov-type scheme. Advances in Science and Technology of Water Resources, 2019, 39(1): 76-81 (in Chinese)
    [26] Mohd-Yusof J. Combined immersed boundary /B-spline methods for simulations of flow in complex geometries. Annual Research Briefs, Center for Turbulence Research, NASA Ames Research Center/Stanford University 1997, 317-328.
    [27] 张阳, 邹建锋, 郑耀. 改进虚拟边界算法在超声速流动问题求解中的应用. 力学学报, 2018, 50(3): 538-552 (Zhang Yang, Zou Jianfeng, Zheng Yao. An improved ghost-cell immersed boundary method for solving supersonic flow problems. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 538-552 (in Chinese)
    [28] Mittal R, Dong H, Bozkurttas M, et al. A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries. Journal of Computational Physics, 2008, 227(10); 4825-4852.
    [29] 富友, 蒋劲, 李燕辉等. 双流体水锤计算模型中弛豫系数计算方法. 华中科技大学学报, 2018, 46(10): 51-56

    Fu You, Jiang Jin, Li Yanhui, et al. Calculation method of relaxation coefficient in two-fluid water hammer calculation model. Journal of Huazhong University of Science and Technology. 2018, 46(10): 51-56(in Chinese))
    [30] Soares AK, Covas DIC, Reis LFR. Analysis of PVC pipe-wall viscoelasticity during water hammer. Journal of Hydraulic Engineering. 2008, 134(4): 1389-1394.
    [31] Duan HF, Chidaoui MS, Tung YK. Energy analysis of viscoelasticity effect in pipe fluid transients. Journal of Applied Mechanics, 2010, 77(4): 044503 doi: 10.1115/1.4000915
    [32] Duan HF, Chidaoui MS, Lee PJ, et al. Unsteady friction and viscoelasticity in pipe fluid transients. Journal of Hydraulic Research, 2010, 48(3): 354-362 doi: 10.1080/00221681003726247
    [33] 朱炎, 吴晨光, 袁一星等. 黏弹性输水管道中含气瞬变流压力衰减分析. 水利学报, 2018, 49(3): 303-312 (Zhu Yan, Wu Chenguang, Yuan Yixing, et al. Analysis of pressure damping in air-water transient flow in viscoelastic pipes. Journal of Hydraulic Engineering, 2018, 49(3): 303-312
    [34] Liou JCP. Numerical properties of the discrete gas cavity model for transients. Journal of Fluids Engineering, 2000, 122(3): 636-639 doi: 10.1115/1.1287037
  • 加载中
图(9)
计量
  • 文章访问数:  49
  • HTML全文浏览量:  14
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-14
  • 录用日期:  2022-04-18
  • 网络出版日期:  2022-04-11

目录

    /

    返回文章
    返回