AN EXPLICIT SPECTRAL-ELEMENT APPROACH TO FLUID-SOLID COUPLING PROBLEMS IN SEISMIC WAVE PROPAGATION
-
摘要: 流固耦合地震波动问题主要研究由流体和固体构成的复杂系统中地震波传播特性及其规律. 传统模拟方法中一般以声波方程、弹性波方程的数值解分别描述理想流体和弹性固体中的波动, 并实时地处理两种不同性质介质之间的相互耦合作用, 数值格式复杂且限制数值模拟精度与计算效率. 本文采用谱元法结合多次透射公式人工边界条件实现了一种流固耦合地震波动问题的高阶显式数值计算方法. 该方法利用了流固耦合问题统一计算框架,可将饱和多孔介质的Biot波动方程分别退化为理想流体的声波方程和弹性固体的弹性波方程. 通过P波垂直入射的水平成层理想流体-饱和多孔介质-弹性固体场地模型、P波斜入射的不规则层状界面以及任意形状界面的理想流体-饱和多孔介质-弹性固体场地模型等三个算例, 与传递函数法解析解以及集中质量有限元法计算结果进行对比分析, 证明了本文方法的正确性与有效性. 数值模拟结果表明, 本文方法相较传统有限元法可以少得多的节点数量获得更高的数值精度, 并且在较宽的频率范围内都能可靠地模拟出流固耦合系统的动力响应, 充分体现出本文方法兼顾高精度、计算效率和复杂场地建模灵活的特点.Abstract: Fluid-solid coupling seismic wave motion problems are aimed at investigating the characteristics and laws of seismic wave propagation in the complex system composed of fluid and solid media. In traditional simulation methods, numerical solutions of acoustic and elastic wave equations are generally used to describe the waves in ideal fluid and elastic solid respectively, and the coupling between the two media with different properties is dealt with in real time. Consequently, traditional methods suffer from complex numerical schemes, relatively low numerical simulation accuracy and computational efficiency. Based on spectral element method and multi-transmitting formula artificial boundary condition, a high order explicit numerical method for fluid-solid coupling seismic wave motion problems is developed in this paper. This method uses a unified computational framework, in which Biot’s equations for saturated porous media can degenerate to acoustic and elastic wave equations for ideal fluid and elastic solid respectively. Three numerical examples of ideal fluid-saturated porous medium-elastic solid system are given: the horizontal layered site model with vertical incidence of P wave, the irregular layered interface model under obliquely incident P wave and arbitrary shape interface model under obliquely incident P wave. The accuracy and efficiency of the proposed method are verified in comparison with the results of transfer matrix method and lumped mass finite element method. The numerical simulation results show that compared with the traditional finite element method, this method can obtain higher numerical accuracy with much less nodes, and can reliably simulate the dynamic response of fluid-solid coupling problems in a wider frequency range. The proposed method fully represents the characteristics of high precision, high efficiency and flexibility to handle complex sites.
-
表 1 透射边界(MTF)谱元离散格式中插值点的局部坐标
Table 1. Local coordinates of the interpolation points in the spectral-element formulation of multi-transmitting formula
Number
(ngllξ)Local coordinates
(sk (k = 0, …, ngllξ−1))2 0, 2 3 0, 1, 2 4 0, 0.55278, 1.44721, 2 5 0, 0.34535, 1, 1.65465, 2 6 0, 0.23494, 0.71477, 1.28523, 1.76506, 2 表 2 介质参数表
Table 2. Parameters of medium
Media β μ0 ρs/kg·m−3 ρw/kg·m−3 ν μ/MPa Ew/GPa M/GPa α k0/m·s−1 ideal fluid 1 0 0 1000 0.49 0 2.25 2.25 1 1 saturated soil 0.26 0.001 2000 1000 0.49 83.2 2.25 4.78 0.697 10−7 bedrock 0 0 2500 0 0.2 480 0 - 0 0 $ \lambda=2 \mu i f(1-2 v) $ -
[1] 陈少林, 柯小飞, 张洪翔. 海洋地震工程流固耦合问题统一计算框架. 力学学报, 2019, 51(2): 594-606 (Chen Shaolin, Ke Xiaofei, Zhang Hongxiang. A unified computational framework for fluid-solid coupling in marine earthquake engineering. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 594-606 (in Chinese) doi: 10.6052/0459-1879-18-333 [2] 陈少林, 程书林, 柯小飞. 海洋地震工程流固耦合问题统一计算框架——不规则界面情形. 力学学报, 2019, 51(5): 1517-1529 (Chen Shaolin, Cheng Shulin, Ke Xiaofei. A unified computational framework for fluid-solid coupling in marine earthquake engineering: Irregular interface case. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1517-1529 (in Chinese) doi: 10.6052/0459-1879-19-156 [3] 杜修力, 王进廷. 拱坝-可压缩库水-地基地震波动反应分析方法. 水利学报, 2002, 35(6): 83-90 (Du Xiuli, Wang Jinting. Analysis method for seismic response of arch dam-compressible water-foundation systems. Journal of Hydraulic Engineering, 2002, 35(6): 83-90 (in Chinese) doi: 10.3321/j.issn:0559-9350.2002.07.015 [4] 赵成刚, 王进廷, 史培新等. 流体饱和两相多孔介质动力反应分析的显式有限元法. 岩土工程学报, 2001, 23(2): 178-182 (Zhao Chenggang, Wang Jinting, Shi Peixin, et al. Dynamic analysis of fluid-saturated porous media by using explicit finite element method. Chinese Journal of Geotechnical Engineering, 2001, 23(2): 178-182 (in Chinese) doi: 10.3321/j.issn:1000-4548.2001.02.010 [5] 王进廷. 高混凝土坝—可压缩库水—淤砂—地基系统地震反应分析研究. [博士论文]. 北京: 中国水利水电科学研究院, 2001Wang Jinting. The analyses of seismic response of high concrete dam-compressible water-sediment-foundation systems. [PhD Thesis]. Beijing: China Institute of Water Resources and Hydropower Research, 2001 (in Chinese) [6] 王进廷, 杜修力, 张楚汉. 重力坝-库水-淤砂-地基系统动力分析的时域显式有限元模型. 清华大学学报(自然科学版), 2003, 43(8): 1112-1115 (Wang Jinting, Du Xiuli, Zhang Chuhan. Explicit finite element model for dynamic analysis of dam-reservoirsediment- foundation system. Journal of Tsinghua University (Science and Technology) , 2003, 43(8): 1112-1115 (in Chinese) doi: 10.3321/j.issn:1000-0054.2003.08.031 [7] 李伟华. 含饱和土的复杂局部场地波动散射问题的解析解和显式有限元数值模拟. [博士论文]. 北京: 北京交通大学, 2004Li Weihua. Analytical solutions and numerical simulation of the scattering of plane waves by local sites with saturated soil. [PhD Thesis]. Beijing: Beijing Jiaotong University, 2004 (in Chinese) [8] 陈少林, 廖振鹏. 多次透射公式在衰减波场中的实现. 地震学报, 2003, 25(3): 272-279 (Chen Shaolin, Liao Zhenpeng. Multi-transmitting formula for attenuating waves. Acta Seismologica Sinica, 2003, 25(3): 272-279 (in Chinese) doi: 10.3321/j.issn:0253-3782.2003.03.005 [9] 陈少林, 廖振鹏, 陈进. 两相介质近场波动模拟的一种解耦有限元方法. 地球物理学报, 2005, 48(4): 909-917 (Chen Shaolin, Liao Zhenpeng, Chen Jin. A decoupling FEM for simulating near-field wave motions in two-phase media. Chinese Journal of Geophysics, 2005, 48(4): 909-917 (in Chinese) doi: 10.3321/j.issn:0001-5733.2005.04.025 [10] 李亮, 杜修力, 赵成刚等. 流体饱和两相多孔介质动力反应计算分析. 岩土力学, 2008, 29(1): 113-118 (Li Liang, Du Xiuli, Zhao Chenggang, et al. Calculation and analysis of dynamic response of fluid-saturated porous media. Rock and Soil Mechanics, 2008, 29(1): 113-118 (in Chinese) doi: 10.3969/j.issn.1000-7598.2008.01.021 [11] 李亮, 李果, 杜修力等. 饱和两相介质近场波动问题的一种时域全显式数值计算方法. 工程力学, 2020, 37(8): 20-31 (Li Liang, Li Guo, Du Xiuli, et al. A full explicit numerical algorithm for near-field wave motion of fluid-saturated porous media in time domain. Engineering Mechanics, 2020, 37(8): 20-31 (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.08.0479 [12] 宋佳. 饱和土场地波动数值模拟方法及其工程应用. [博士论文], 北京: 北京工业大学, 2017Song Jia. Wave numerical method of saturated site soil and its engineering application. [PhD Thesis]. Beijing: Beijing University of Technology, 2017 (in Chinese) [13] Xu Chengshun, Song Jia, Du Xiuli, et al. A completely explicit finite element method for solving dynamic u-p equations of fluid-saturated porous media. Soil Dynamics and Earthquake Engineering, 2017, 97: 364-376 doi: 10.1016/j.soildyn.2017.03.016 [14] 梁建文, 吴梦桃, 巴振宁. 流体饱和半空间二维地形三分量弹性波散射间接边界元模拟. 地球物理学报, 2021, 64(8): 2766-2779 (Liang Jianwen, Wu Mengtao, Ba Zhenning. IBEM simulation of three-component scattering of elastic waves in a fluid-saturated half-space with 2 D topography. Chinese Journal of Geophysics, 2021, 64(8): 2766-2779 (in Chinese) doi: 10.6038/cjg2021O0248 [15] 巴振宁, 仲浩, 梁建文等. 沉积介质各向异性参数对三维沉积盆地地震动的影响. 应用基础与工程科学学报, 2020, 28(6): 1470-1488 (Ba Zhenning, Zhong Hao, Liang Jianwen, et al. Influence of Anisotropic Parameters of Sedimentary Media on Earthquake Ground Motionin a 3 D Alluvial Basin. Journal of Basic Science and Engineering, 2020, 28(6): 1470-1488 (in Chinese) [16] 刘中宪, 刘英, 孟思博等. 基于间接边界元法的近断层沉积谷地地震动模拟. 岩土力学, 2021, 42(4): 1141-1155 (Liu Zhongxian, Liu Ying, Meng Sibo, et al. Near-fault ground motion simulation of alluvial valley based on indirect boundary element method. Rock and Soil Mechanics, 2021, 42(4): 1141-1155 (in Chinese) [17] Wang PG, Zhang GL, Zhao M, et al. Semi-analytical solutions for the wave-induced and vertical earthquake-induced responses of a fluid-saturated seabed-bedrock system. Soil Dynamics and Earthquake Engineering, 2020, 139: 106391 doi: 10.1016/j.soildyn.2020.106391 [18] Zhang GL, Wang PG, Zhao M, et al. Seismic structure-water-sediment-rock interaction model and its application to immersed tunnel analysis under obliquely incident earthquake. Tunnelling and Underground Space Technology, 2021, 109: 103758 doi: 10.1016/j.tust.2020.103758 [19] Huang YM, Wang PM, Zhao M, et al. Dynamics responses of an end-bearing pile subjected to horizontal earthquakes considering water-pile-soil interactions. Ocean Engineering, 2021, 238: 109726 doi: 10.1016/j.oceaneng.2021.109726 [20] Zhao M, Zhang GL, Wang PG, et al. An accurate frequency-domain model for seismic responses of breakwater-seawater-seabed-bedrock system. Ocean Engineering, 2020, 197: 106843 doi: 10.1016/j.oceaneng.2019.106843 [21] Zhang GL, Zhao M, Du XL, et al. A frequency-dependent absorbing boundary condition for numerically solving u-U elastic wave equations in layered and fluid-saturated porous media. Soil Dynamics and Earthquake Engineering, 2020, 135: 106189 doi: 10.1016/j.soildyn.2020.106189 [22] Chen WY, Huang LC, Xu LY, et al. Numerical study on the frequency response of offshore monopile foundation to seismic excitation. Computers and Geotechnics, 2021, 138: 104342 doi: 10.1016/j.compgeo.2021.104342 [23] Chen WY, Wang ZC, Chen SL, et al. Frequency response analysis of concrete seawall including soil-structure-seawater interaction. Soil Dynamics and Earthquake Engineering, 2020, 139: 106392 doi: 10.1016/j.soildyn.2020.106392 [24] Sun YC, Zhang W, Ren HX, et al. 3 D seismic-wave modeling with a topographic fluid–solid interface at the sea bottom by the curvilinear-grid finite-difference method. Bulletin of the Seismological Society of America, 2021, 111(5): 2753-2779 doi: 10.1785/0120200363 [25] Liu JB, Bao X, Wang DY, et al. Seismic response analysis of the reef-seawater system under incident SV wave. Ocean Engineering, 2019, 180: 199-210 doi: 10.1016/j.oceaneng.2019.03.068 [26] Bao X, Liu JB, Li ST, et al. Seismic response analysis of the reef-seawater system under obliquely incident P and SV waves. Ocean Engineering, 2020, 200: 1-27 [27] 宝鑫, 刘晶波, 王东洋等. P 波垂直入射下海域岛礁场地动力反应分析. 工程力学, 2019, 36(s1): 1-7Bao Xin, Liu Jingbao, Wang Dongyang, et al. Seismic response analysis of offshore reef site under incident P wave, Engineering Mechanics, 2019, 36(s1): 1-7 (in Chinese) [28] 宝鑫, 刘晶波, 王东洋等. 局部成层的海域岛礁场地地震反应分析. 振动与冲击, 2020, 39(21): 55-64Bao Xin, Liu Jingbao, Wang Dongyang, et al. Seismic response analysis of local layered sea reef site, Journal of Vibration and Shock, 2020, 39(21): 55-64 (in Chinese) [29] 陈国兴, 朱翔, 赵丁凤等. 珊瑚岛礁场地非线性地震反应特征分析. 岩土工程学报, 2019, 41(3): 405-413 (Chen Guoxing, Zhu Xiang, Zhao Dingfeng, et al. Nonlinear seismic response characteristics of a coral island site. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 405-413 (in Chinese) [30] 陈国兴, 岳文泽, 阮滨等. 金塘海峡海床地震反应特征的二维非线性分析. 岩土工程学报, 2021, 43(11): 1967-1975 (Chen Guoxing, Yue Wenze, Ruan Bin, et al. Two-dimensional nonlinear seismic response analysis for seabed site effect assessment in Jintang Strait. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 1967-1975 (in Chinese) [31] Komatitsch D, Barnes C, Tromp J. Wave propagation near a fluid-solid interface: a spectral element approach. Geophysics, 2000, 65(2): 623-631 doi: 10.1190/1.1444758 [32] Morency C, Tromp J. Spectral-element simulation of wave propagation in porous media. Geophysical Journal International, 2008, 175: 301-345 doi: 10.1111/j.1365-246X.2008.03907.x [33] De Basabe JD, Sen MK. Grid dispersion and stability criteria of some common finite-element methods for acoustic and elastic wave equations. Geophysics, 2007, 72(6): T81-T95 doi: 10.1190/1.2785046 [34] De Basabe JD, Sen MK. A comparison of finite-difference and spectral-element methods for elastic wave propagation in media with a fluid-solid interface. Geophysical Journal International, 2015, 200: 278-298 doi: 10.1093/gji/ggu389 [35] Duczek S, Gravenkamp H. Mass lumping techniques in the spectral element method: On the equivalence of the row-sum, nodal quadrature, and diagonal scaling methods. Computer Methods in Applied Mechanics and Engineering, 2019, 353: 516-569 doi: 10.1016/j.cma.2019.05.016 [36] 陈少林, 孙杰, 柯小飞. 平面波输入下海水-海床-结构动力相互作用分析. 力学学报, 2020, 52(2): 578-590 (Chen Shaolin, Sun Jie, Ke Xiaofei. Analysis of water-seabed-structure dynamic interaction excited by plane waves. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 578-590 (in Chinese) doi: 10.6052/0459-1879-19-354 [37] Xing HJ, Li XJ, Li HJ, et al. The theory and new unified formulas of displacement-type local absorbing boundary conditions. Bulletin of the Seismological Society of America, 2021, 111(2): 801-824 doi: 10.1785/0120200155 [38] Xing HJ, Li XJ, Li HJ, et al. Spectral-element formulation of multi-transmitting formula and its accuracy and stability in 1 D and 2 D seismic wave modeling. Soil Dynamics and Earthquake Engineering, 2021, 140: 1-15 [39] 邢浩洁, 李鸿晶. 透射边界条件在波动谱元模拟中的实现: 一维波动. 力学学报, 2017, 49(2): 367-379 (Xing Haojie, Li Hongjing. Implementation of multi-transmitting boundary condition for wave motion simulation by spectral element method: one dimension case. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2): 367-379 (in Chinese) doi: 10.6052/0459-1879-16-282 [40] 邢浩洁, 李鸿晶. 透射边界条件在波动谱元模拟中的实现: 二维波动. 力学学报, 2017, 49(4): 894-906 (Xing Haojie, Li Hongjing. Implementation of multi-transmitting boundary condition for wave motion simulation by spectral element method: two dimension case. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(4): 894-906 (in Chinese) doi: 10.6052/0459-1879-16-393 [41] 赵宇昕, 陈少林. 关于传递矩阵法分析饱和成层介质响应问题的讨论. 力学学报, 2016, 48(5): 1145-1158 (Zhao Yuxin, Chen Shaolin. Discussion on the matrix propagator method to analyze the response of saturated layered media. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1145-1158 (in Chinese) doi: 10.6052/0459-1879-16-029 [42] 廖振鹏. 工程波动理论导论(第二版). 北京: 科学出版社, 2002Liao Zhenpeng. Introduction to Wave Motion Theories in Engineering (Second Edition). Beijing: Science Press, 2002 (in Chinese) [43] 廖振鹏, 周正华, 张艳红. 波动数值模拟中透射边界的稳定实现. 地球物理学报, 2002, 45(4): 533-545 (Liao Zhenpeng, Zhou Zhenghua, Zhang Yanhong. Stable implementation of transmitting boundary in numerical simulation of wave motion. Chinese Journal of Geophysics, 2002, 45(4): 533-545 (in Chinese) doi: 10.3321/j.issn:0001-5733.2002.04.011 [44] 柯小飞, 陈少林, 张洪翔. P-SV波入射时海水-层状海床体系的自由场分析. 振动工程学报, 2019, 32(6): 966-976 (Ke Xiaofei, Chen Shaolin, Zhang Hongxiang. Free-field analysis of sea water-seabed system for incident plane P-SV waves. Journal of Vibration Engineering, 2019, 32(6): 966-976 (in Chinese) [45] Noh G, Ham S, Bathe K J. Performance of an implicit time integration scheme in the analysis of wave propagations. Computers & Structures, 2013, 123: 93-105 [46] Kwon S B, Bathe K J, Noh G. An analysis of implicit time integration schemes for wave propagations. Computers & Structures, 2020, 230: 106188 [47] 杨林德, 杨志锡. 各向异性饱和土体的渗流耦合分析和数值模拟. 岩石力学与工程学报, 2002(10): 1447-1451 (Yang Linde, Yang Zhixi. Coupling analyses and numeric simulations on seepage flow in anisotropic saturated soils. Chinese Journal of Rock Mechanics and Engineering, 2002(10): 1447-1451 (in Chinese) doi: 10.3321/j.issn:1000-6915.2002.10.003 [48] Komatitsch D, Barnes C, Tromp J. Simulation of anisotropic wave propagation based upon a spectral element method. Geophysics, 2000, 65(4): 1251-1260 doi: 10.1190/1.1444816 -