[1] |
Wilcox DC. Turbulence Modeling of CFD, 3rd edition. California: DCW Industries Inc, 2006
|
[2] |
Rumsey CL, Ying SX. Prediction of high lift: review of present CFD capability. Progress in Aerospace Sciences, 2002, 38(2): 145-180 doi: 10.1016/S0376-0421(02)00003-9
|
[3] |
Slotnick J, Khodadoust A, Alonso J, et al. CFD vision 2030 study: a path to revolutionary computational aerosciences. NASA/CR-2014-218178
|
[4] |
阎超, 屈峰, 赵雅甜等. 航空航天CFD物理模型和计算方法的述评与挑战. 空气动力学学报, 2020, 38(5): 829-857 (Yan Chao, Qu Feng, Zhao Yatian, et al. Review of development and challenges for physical modeling and numerical scheme of CFD in aeronautics and astronautics. Acta Aerodynamica Sinica, 2020, 38(5): 829-857 (in Chinese) doi: 10.7638/kqdlxxb-2020.0072Yan Chao, Qu Feng, Zhao Yatian, et al. Review of development and challenges for physical modeling and numerical scheme of CFD in aeronautics and astronautics. Acta Aerodynamica Sinica, 2020, 38(5): 829-857(in Chinese) doi: 10.7638/kqdlxxb-2020.0072
|
[5] |
Kato M, Launder BE. The modelling of turbulent flow around stationary and vibrating square cylinders//9th Symposium on Turbulent Shear Flows, Kyoto, Japan, 1993
|
[6] |
Townsend AA. Equilibrium layers and wall turbulence. Journal of Fluid Mechanics, 1961, 11(1): 97-120 doi: 10.1017/S0022112061000883
|
[7] |
Prandtl L. Bericht über untersuchungen zur ausgebildeten turbulenz. Journal of Applied Mathematics and Mechanics, 1925, 5(21): 136-139
|
[8] |
Coakley TI. Turbulence modeling methods for the compressible Navier-Stokes equations. AIAA-83-1693
|
[9] |
Johnson DA, King LS. A mathematically simple turbulence closure model for attached and separated turbulent boundary layers. AIAA Journal, 1985, 23(11): 1684-1692 doi: 10.2514/3.9152
|
[10] |
Bradshaw P, Ferriss DH, Atwell NP. Calculation of boundary layer development using the turbulent energy equation. Journal of Fluid Mechanics, 1967, 28(3): 593-616 doi: 10.1017/S0022112067002319
|
[11] |
Townsend AA. The Structure of Turbulent Shear Flow, 2nd edition. Cambridge: Cambridge University Press, 1976
|
[12] |
Menter FR. Improved two-equation k-ω turbulence models for aerodynamic flows. NASA/TM-103975, 1992
|
[13] |
Menter FR. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 1994, 32(8): 1598-1605 doi: 10.2514/3.12149
|
[14] |
Schmitt V, Charpin F. Pressure distributions on the ONERA-M6-Wing at transonic Mach tumbers. AGARD-AR-138, 1979
|
[15] |
Spalart PR, Allmaras SR. A one-equation turbulence model for aerodynamic flows. AIAA-92-0439
|
[16] |
聂胜阳, 高正红, 黄江涛. 微分雷诺应力模型在激波分离流中的应用. 空气动力学学报, 2012, 30(1): 52-56 (Nie Shengyang, Gao Zhenghong, Huang Jiangtao. Differential Reynolds stress model for shock and separated flow. Acta Aerodynamica Sinica, 2012, 30(1): 52-56 (in Chinese) doi: 10.3969/j.issn.0258-1825.2012.01.009Nie Shengyang, Gao Zhenghong, Huang Jiangtao. Differential Reynolds stress model for shock and separated flow. Acta Aerodynamica Sinica, 2012, 30(1): 52-56 (in Chinese) doi: 10.3969/j.issn.0258-1825.2012.01.009
|
[17] |
Cécora RD, Eisfeld B, Probst A, et al. Differential Reynolds stress modeling for aeronautics. AIAA-2012-0465
|
[18] |
Lee-Rausch EM, Rumsey CL, Eisfeld B. Application of a full Reynolds stress model to high lift flows. AIAA-2016-3944
|
[19] |
舒博文, 杜一鸣, 高正红等. 典型航空分离流动的雷诺应力模式数值模拟. 航空学报, 2022, 43(10): 126385 (Shu Bowen, Du Yiming, Gao Zhenghong, et al. Numerical simulation of Reynolds stress model of typical aeronautic separated flow. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 126385 (in Chinese)Shu Bowen, Du Yiming, Gao Zhenghong, et al. Numerical simulation of Reynolds stress model of typical aeronautic separated flow. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 126385 (in Chinese)
|
[20] |
Li HR, Zhang YF, Chen HX. Optimization of supercritical airfoil considering the ice-accretion effects. AIAA Journal, 2019, 57(11): 4650-4669 doi: 10.2514/1.J057958
|
[21] |
Li HR, Zhang YF, Chen HX. Aerodynamic prediction of iced airfoils based on modified three-equation turbulence model. AIAA Journal, 2020, 58(9): 3863-3876 doi: 10.2514/1.J059206
|
[22] |
Rumsey CL, Vatsa VN. Comparison of the predictive capabilities of several turbulence models. Journal of Aircraft, 1995, 32(3): 510-514 doi: 10.2514/3.46749
|
[23] |
Frink NT. Assessment of an unstructured-grid method for predicting 3-D turbulent viscous flows. AIAA-1996-0292
|
[24] |
Bradshaw P, Perot JB. A note on turbulent energy dissipation in the viscous wall region. Physics of Fluids A: Fluid Dynamics, 1993, 5(12): 3305 doi: 10.1063/1.858691
|
[25] |
NPARC Alliance Verification and Validation Archive, available at: https://www.grc.nasa.gov/WWW/wind/valid
|
[26] |
Cook PH, McDonald MA, Firmin MCP. Aerofoil RAE2822-pressure distributions, and boundary layer and wake measurements. AGARD AR 138, 1979
|
[27] |
Krist SL, Biedron RT, Rumsey CL. CFL3 D user’s manual-ver. 5.0 (2nd edition). NASA/TM-1998-208444
|
[28] |
Hellstrom T, Davidson L, Rizzi A. Reynolds stress transport modelling of transonic flow around RAE2822 airfoil. AIAA-94-0309
|
[29] |
Menter FR, Kuntz M, Langtry R. Ten years of industrial experience with the SST turbulence model. Turbulence, Heat and Mass Transfer, 2003, 4: 625-632
|
[30] |
Togiti V, Eisfeld B. Assessment of g-equation formulation for a second-moment Reynolds stress turbulence model. AIAA-2015-2925
|
[31] |
Turbulence Modeling Resource, NASA Langley Research Center, available at: https://turbmodels.larc.nasa.gov
|
[32] |
Rodi W. A new algebraic relation for calculating the Reynolds stresses. Journal of Applied Mathematics and Mechanics, 1976, 56(S1): T219-T221
|
[33] |
陈懋章. 黏性流体动力学基础. 北京: 高等教育出版社, 2002Chen Maozhang. Fundamental of Viscous Fluid Dynamics. Beijing: Higher Education Press, 2002(in Chinese)
|
[34] |
Rumsey CL, Gatski TB. Recent turbulence model advances applied to multielement airfoil computations. Journal of Aircraft, 2001, 38(5): 904-910 doi: 10.2514/2.2850
|
[35] |
Spalart PR. Strategies for turbulence modelling and simulation. International Journal of Heat and Fluid Flow, 2000, 21: 252-263 doi: 10.1016/S0142-727X(00)00007-2
|
[36] |
Mani M, Babcock DA, Winkler CM, et al. Predictions of a supersonic turbulent flow in a square duct. AIAA-2013-0860
|
[37] |
Rumsey CL, Carlson JR, Pulliam TH, et al. Improvements to the quadratic constitutive relation based on NASA juncture flow data. AIAA Journal, 2020, 58(10): 4374-4384
|
[38] |
杜一鸣. 涡黏性湍流模式修正与三维边界层转捩预测方法研究. [博士论文]. 西安: 西北工业大学, 2021Du Yiming. Research on modification of RANS eddy-viscosity turbulence model and prediction method of three-dimensional boundary-layer transition. [PhD Thesis]. Xi’an: Northwestern Polytechnical University, 2021 (in Chinese)
|
[39] |
Georgiadis NJ, Yoder DA. Recalibration of the Shear Stress Transport Model to improve calculation of shock separated flows. AIAA-2013-0685
|
[40] |
Georgiadis NJ, Rumsey CL, Huang GP. Revisiting turbulence model validation for high-Mach number axisymmetric compression corner flows. AIAA-2015-0316
|
[41] |
Erb A, Hosder S. Uncertainty analysis of turbulence model closure coefficient for shock wave-boundary layer interaction simulations. AIAA-2018-2077
|
[42] |
Kolmogorov AN. Equations of turbulent motion of an incompressible fluid. Izvestia Academy of Sciences, USSR, Physics, 1942, 6: 56-58
|
[43] |
Hellsten A, Laine S. Extension of the k-ω-SST turbulence model for flows over rough surfaces. AIAA-97-3577
|
[44] |
Wieghardt K, Tillman W. On the turbulent friction layer for rising pressure. NACA-TM-1314, 1951
|