EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类面向高阶精度自适应流动计算的流场插值方法

周帅 肖周芳 付琳 汪丁顺

周帅, 肖周芳, 付琳, 汪丁顺. 一类面向高阶精度自适应流动计算的流场插值方法. 力学学报, 2022, 54(6): 1732-1740 doi: 10.6052/0459-1879-22-060
引用本文: 周帅, 肖周芳, 付琳, 汪丁顺. 一类面向高阶精度自适应流动计算的流场插值方法. 力学学报, 2022, 54(6): 1732-1740 doi: 10.6052/0459-1879-22-060
Zhou Shuai, Xiao Zhoufang, Fu Lin, Wang Dingshun. Solution interpolation for high-order accurate adaptive flow simulation. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1732-1740 doi: 10.6052/0459-1879-22-060
Citation: Zhou Shuai, Xiao Zhoufang, Fu Lin, Wang Dingshun. Solution interpolation for high-order accurate adaptive flow simulation. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1732-1740 doi: 10.6052/0459-1879-22-060

一类面向高阶精度自适应流动计算的流场插值方法

doi: 10.6052/0459-1879-22-060
基金项目: 国家自然科学基金资助项目(62172133)
详细信息
    作者简介:

    肖周芳, 讲师, 主要研究方向: 网格生成与自适应计算 . E-mail: xiaozf@hdu.edu.cn

  • 中图分类号: V211.3

SOLUTION INTERPOLATION FOR HIGH-ORDER ACCURATE ADAPTIVE FLOW SIMULATION

  • 摘要: 网格自适应技术和高阶精度数值方法是提升计算流体力学复杂问题适应能力的有效技术途径. 将这两项技术结合需要解决一系列技术难题, 其中之一是高阶精度流场插值. 针对高阶精度自适应流动计算, 提出一类高精度流场插值方法, 实现将前一迭代步网格中流场数值解插值到当前迭代步网格中, 以延续前一迭代步中的计算状态. 为实现流场插值过程中物理量守恒, 该方法先计算新旧网格的重叠区域, 然后将物理量从重叠区域的旧网格中转移到新网格中. 为满足高阶精度要求, 先采用k-exact最小二乘方法对旧网格上的数值解进行重构, 获得描述物理量分布的高阶多项式, 随后采用高阶精度高斯数值积分实现物理量精确地转移到新网格单元上. 最后, 通过一个具有精确解的数值算例和一个高阶精度自适应流动计算算例验证了本文算法的有效性. 第一个算例结果表明当网格规模固定不变时, 插值精度阶数越高, 插值误差越小; 第二个算例显示本文方法可以有效缩短高精度自适应流动计算的迭代收敛时间.

     

  • 图  1  二维物理量守恒插值示意图, 背景网格和当前网格分别用黑边和红边表示

    Figure  1.  Schematic diagram of two-dimensional conservation of physical quantity interpolation, the background mesh and the current mes are represented by red and black edges respectively

    图  2  第一组网格

    Figure  2.  The first group of meshes

    图  3  第二组网格

    Figure  3.  The second group of meshes

    图  4  翼型计算域在不同自适应计算迭代步中的网格

    Figure  4.  Meshes of the airfoil computational domain in different adaptive computation iteration steps

    图  5  自适应计算收敛过程中气动系数随网格规模变化的变化

    Figure  5.  Convergence of lift and drag coefficients against degrees of freedom (vertices)

    图  6  自适应迭代收敛后的马赫数分布图

    Figure  6.  The distribution of Mach number after adaptive solution convergences

    表  1  不同阶数精度对应的积分点信息

    Table  1.   Information of integration points corresponding to different order

    OrderPointsPoint locationWeight
    21$ \left(\dfrac{1}{3},\dfrac{1}{3},\dfrac{1}{3}\right) $1
    33$ \left(\dfrac{1}{2},\dfrac{1}{2}, 0\right) , \left(\dfrac{1}{2},0, \dfrac{1}{2}\right) ,\left(0,\dfrac{1}{2},\dfrac{1}{2}\right) $$ \dfrac{1}{3} , \dfrac{1}{3} , \dfrac{1}{3} $
    44$ \left(\dfrac{1}{3},\dfrac{1}{3},\dfrac{1}{3}\right) ,\left(\dfrac{1}{5},\dfrac{1}{5},\dfrac{3}{5}\right) , \left(\dfrac{1}{5},\dfrac{3}{5},\dfrac{1}{5}\right) , \left(\dfrac{3}{5},\dfrac{1}{5},\dfrac{1}{5}\right) $$ {{ - }}\dfrac{9}{{16}} ,\dfrac{{25}}{{48}} ,\dfrac{{25}}{{48}} , \dfrac{{25}}{{48}} $
    下载: 导出CSV

    表  2  两组不同规模的网格数据

    Table  2.   Two groups of meshes with different scales

    Fist group of meshesSecond group of meshes
    Background meshCurrent meshBackground meshCurrent mesh
    elements1043122533634944
    points58067917922597
    下载: 导出CSV

    表  3  在不同网格规模和不同插值精度下的流场插值误差

    Table  3.   Interpolation errors of flow field under different mesh scales and different orders of interpolation accuracy

    OrderPhysical quantityFirst group of meshesSecond group of meshes
    L1 normL2 normL normL1 normL2 normL norm
    2ρ3.05 × 10−45.25 × 10−44.25 × 10−31.12 × 10−41.73 × 10−41.34 × 10−3
    u2.07 × 10−43.60 × 10−43.21 × 10−37.41 × 10−51.21 × 10−41.35 × 10−3
    v2.03 × 10−43.57 × 10−42.57 × 10−37.48 × 10−51.22 × 10−41.18 × 10−3
    P2.86 × 10−44.70 × 10−43.52 × 10−31.01 × 10−41.58 × 10−41.32 × 10−3
    3ρ1.65 × 10−53.08 × 10−53.13 × 10−43.15 × 10−65.98 × 10−66.39 × 10−5
    u1.21 × 10−52.37 × 10−52.72 × 10−42.41 × 10−66.05 × 10−61.52 × 10−4
    v1.11 × 10−52.22 × 10−52.78 × 10−42.44 × 10−66.11 × 10−61.13 × 10−4
    P3.23 × 10−56.03 × 10−55.92 × 10−46.82 × 10−61.30 × 10−51.24 × 10−4
    4ρ2.55 × 10−65.34 × 10−64.19 × 10−53.11 × 10−77.11 × 10−77.65 × 10−6
    u1.16 × 10−62.56 × 10−63.51 × 10−51.43 × 10−74.50 × 10−71.26 × 10−5
    v1.17 × 10−62.30 × 10−62.26 × 10−51.41 × 10−74.32 × 10−71.32 × 10−5
    P4.40 × 10−68.73 × 10−66.53 × 10−55.08 × 10−71.05 × 10−69.43 × 10−6
    下载: 导出CSV

    表  4  有无流场插值功能时求解收敛情况

    Table  4.   Convergence of solution with or without the flow field interpolation

    Steps of adaptationElementsVerticesWith flow field interpolationWithout flow field interpolation
    Convergence iterationsConvergence time/sConvergence iterationsConvergence time/s
    initial779039661634.7
    1923546931133.01540.1
    212 5176364835.21349.6
    316 7198477847.51469.9
    421 29010 7731070.723138.8
    527 10013 7081091.022170.9
    634 82317 59310125.329294.6
    下载: 导出CSV
  • [1] 张来平, 常兴华, 赵钟等. 计算流体力学网格生成技术. 北京: 科学出版社, 2017

    Zhang Laiping, Chang Xinghua, Zhao Zhong, et al. Mesh Generation Techniques in Computational Fluid Dynamics. Beijing: Science Press, 2017 (in Chinese)
    [2] Park MA, Loseille A, Krakos J, et al. Unstructured grid adaptation: status, potential impacts, and recommended investments towards CFD 2030//46th AIAA Fluid Dynamics Conference, 2016, 2016-3323
    [3] Caplan PC, Haimes R, Darmofal DL, et al. Extension of local cavity operators to 3D + t space-time mesh adaptation//AIAA Scitech 2019 Forum, 2019, 2019-1992
    [4] Caplan PC, Haimes R, Darmofal DL, et al. Four-dimensional anisotropic mesh adaptation. Computer-Aided Design, 2020, 129: 102915 doi: 10.1016/j.cad.2020.102915
    [5] Loseille A, Alauzet F, Menier V. Unique cavity-based operator and hierarchical domain partitioning for fast parallel generation of anisotropic meshes. Computer-Aided Design, 2017, 85: 53-67 doi: 10.1016/j.cad.2016.09.008
    [6] Xiao ZF, Ollivier-Gooch C, Vazquez JDZ. Anisotropic tetrahedral mesh adaptation with improved metric alignment and orthogonality. Computer-Aided Design, 2022, 143: 103136 doi: 10.1016/j.cad.2021.103136
    [7] Sharbatdar M, Ollivier-Gooch C. Mesh adaptation using C1 interpolation of the solution in an unstructured finite volume solver. International Journal for Numerical Methods in Fluids, 2018, 86(10): 637-654 doi: 10.1002/fld.4471
    [8] Coulaud O, Loseille A. Very high order anisotropic metric-based mesh adaptation in 3D. Procedia Engineering, 2016, 163: 353-365 doi: 10.1016/j.proeng.2016.11.071
    [9] Wang ZJ, Fidkowski K, Abgrall R, et al. High‐order CFD methods: current status and perspective. International Journal for Numerical Methods in Fluids, 2013, 72(8): 811-845 doi: 10.1002/fld.3767
    [10] Hoshyari S, Mirzaee E, Ollivier-Gooch C. Efficient convergence for a higher-order unstructured finite volume solver for compressible flows. AIAA Journal, 2020, 58(4): 1490-1505 doi: 10.2514/1.J058537
    [11] 廖飞. 高阶精度数值方法及其在复杂流动中的应用. [博士论文]. 西安: 西北工业大学, 2018

    Liao Fei. Efficient high-order high-resolution methods and the applications. [PhD Thesis]. Changsha: Northwestern Polytechnical University, 2018 (in Chinese)
    [12] Pan JH, Ren YX, Sun YT. High order sub-cell finite volume schemes for solving hyperbolic conservation laws. II: Extension to two-dimensional systems on unstructured grids. Journal of Computational Physics, 2017, 338: 165-198 doi: 10.1016/j.jcp.2017.02.052
    [13] 雷国东, 李万爱, 任玉新. 求解可压缩流的高精度非结构网格WENO有限体积法. 计算物理, 2011, 28(5): 633-640 (Lei Guodong, Li Wanai, Ren Yuxin. A high-order unstructured-grid WENO FVM for compressible flow computation. Chinese Journal of Computational Physics, 2011, 28(5): 633-640 (in Chinese)

    Lei Guodong, Li Wanai, Ren Yuxin, A high-order unstructured-grid WENO FVM for compressible flow computation. Chinese Journal of Computational Physics, 2011, 28(5): 633-640 (in Chinese))
    [14] Xu Z, Cambier L, Alonso JJ, et al. Towards a scalable hierarchical high-order CFD solver//AIAA Scitech 2021 Forum, 2021, 2021-0494
    [15] Alauzet F, Mehrenberger M. P1-conservative solution interpolation on unstructured triangular meshes. International Journal for Numerical Methods in Engineering, 2010, 84(13): 1552-1588 doi: 10.1002/nme.2951
    [16] 王瑞利. 散乱物理量逼近的插值重映算法. 计算物理, 2005, 22(4): 299-305 (Wang Ruili. An interpolated remapping algorithm for scattered physics quantities. Chinese Journal of Computational Physics, 2005, 22(4): 299-305 (in Chinese) doi: 10.3969/j.issn.1001-246X.2005.04.003

    Wang Ruili. An interpolated remapping algorithm for scattered physics quantities. Chinese Journal of Computational Physics, 2005, 22(04): 299-305 (in Chinese)) doi: 10.3969/j.issn.1001-246X.2005.04.003
    [17] 王永健, 赵宁. 一类基于 ENO 插值的守恒重映算法. 计算物理, 2004, 21(4): 329-334 (Wang Yongjian, Zhao Ning. A kind of rezoning(remapping) algorithms based on ENO Interpolation. Chinese Journal of Computational Physics, 2004, 21(4): 329-334 (in Chinese) doi: 10.3969/j.issn.1001-246X.2004.04.008

    Wang Yongjian, Zhao Ning. A kind of rezoning(remapping) algorithms based on ENO Interpolation. Chinese Journal of Computational Physics, 2004, 21(4): 329-334 (in Chinese)) doi: 10.3969/j.issn.1001-246X.2004.04.008
    [18] 赵小杰, 赵宁, 王东红. 一类基于RBF插值的守恒重映算法. 计算物理, 2012, 29(1): 10-16 (Zhao Xiaojie, Zhao Ning, Wang Donghong. A kind of conservative remapping algorithms based on RBF interpolations. Chinese Journal of Computational Physics, 2012, 29(1): 10-16 (in Chinese) doi: 10.3969/j.issn.1001-246X.2012.01.002

    Zhao Xiaojie, Zhao Ning, Wang Donghong. A kind of conservative remapping algorithms based on RBF interpolations. Chinese Journal of Computational Physics, 2012, 29(1): 10-16 (in Chinese)) doi: 10.3969/j.issn.1001-246X.2012.01.002
    [19] 徐喜华, 刘娜, 陈艺冰. 非结构多面体二阶局部保界全局重映算法. 计算物理, 2018, 35(1): 22-28 (Xu Xihua, Liu Na, Chen Yibing. Second-order local-bound-preserving conservative remapping on unstructured polyhedral meshes. Chinese Journal of Computational Physics, 2018, 35(1): 22-28 (in Chinese)

    Xu Xihua, Liu Na, ChenYibing. Second-order local-bound-preserving conservative remapping on unstructured polyhedral meshes. Chinese Journal of Computational Physics, 2018, 35(1): 22-28 (in Chinese))
    [20] Farrell PE, Piggott MD, Pain CC, et al. Conservative interpolation between unstructured meshes via supermesh construction. Computer Methods in Applied Mechanics and Engineering, 2009, 198(33-36): 2632-2642 doi: 10.1016/j.cma.2009.03.004
    [21] Slattery SR. Mesh-free data transfer algorithms for partitioned multiphysics problems: conservation, accuracy, and parallelism. Journal of Computational Physics, 2016, 307: 164-188 doi: 10.1016/j.jcp.2015.11.055
    [22] Alauzet F. A parallel matrix-free conservative solution interpolation on unstructured tetrahedral meshes. Computer Methods in Applied Mechanics and Engineering, 2016, 299: 116-142 doi: 10.1016/j.cma.2015.10.012
    [23] Cheng J, Shu CW. A high order accurate conservative remapping method on staggered meshes. Applied Numerical Mathematics, 2008, 58(7): 1042-1060 doi: 10.1016/j.apnum.2007.04.015
    [24] Lei N, Cheng J, Shu CW. A high order positivity-preserving conservative WENO remapping method on 2D quadrilateral meshes. Computer Methods in Applied Mechanics and Engineering, 2021, 373: 113497
    [25] Zhang M, Huang WZ, Qiu JX. High-order conservative positivity-preserving DG-interpolation for deforming meshes and application to moving mesh DG simulation of radiative transfer. SIAM Journal on Scientific Computing, 2020, 42(5): A3109-A3135 doi: 10.1137/19M1297907
    [26] Ollivier-Gooch C, Nejat A, Michalak K. Obtaining and verifying high-order unstructured finite volume solutions to the Euler equations. AIAA Journal, 2009, 47(9): 2105-2120 doi: 10.2514/1.40585
    [27] Lo SH, Wang WX. A fast robust algorithm for the intersection of triangulated surfaces. Engineering with Computers. 2004, 20(1): 11-21
    [28] Campen M, Kobbelt L. Exact and robust (self-) intersections for polygonal meshes//Computer Graphics Forum, 2010: 397-406
    [29] McLaurin D, Marcum D, Remotigue M, et al. Repairing unstructured triangular mesh intersections. International Journal for Numerical Methods in Engineering. 2013, 93(3): 266-275
    [30] Stroud AH, Secrest D. Gaussian Quadrature Formulas. Englewood Cliffs: Prentice-Hall, 1966
    [31] Pagnutti D, Ollivier-Gooch C. A generalized framework for high order anisotropic mesh adaptation. Computers & Structures, 2009, 87(11-12): 670-679
    [32] Xiao ZF, Ollivier-Gooch C. Smooth gradation of anisotropic meshes using log-euclidean metrics. AIAA Journal, 2021, 59(10): 4105-4122 doi: 10.2514/1.J059864
    [33] Malik S, Ollivier Gooch CF. Mesh adaptation for wakes via surface insertion//AIAA Scitech 2019 Forum, 2019, 2019-1996
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  376
  • HTML全文浏览量:  110
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-31
  • 录用日期:  2022-03-30
  • 网络出版日期:  2022-03-31
  • 刊出日期:  2022-06-18

目录

    /

    返回文章
    返回