EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于准点缺陷理论探索非晶合金蠕变机制

徐宗睿 郝奇 张浪渟 乔吉超

徐宗睿, 郝奇, 张浪渟, 乔吉超. 基于准点缺陷理论探索非晶合金蠕变机制. 力学学报, 2022, 54(6): 1590-1600 doi: 10.6052/0459-1879-22-059
引用本文: 徐宗睿, 郝奇, 张浪渟, 乔吉超. 基于准点缺陷理论探索非晶合金蠕变机制. 力学学报, 2022, 54(6): 1590-1600 doi: 10.6052/0459-1879-22-059
Xu Zongrui, Hao Qi, Zhang Langting, Qiao Jichao. Probing into the creep mechanism of amorphous alloy based on quasi-point theory. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1590-1600 doi: 10.6052/0459-1879-22-059
Citation: Xu Zongrui, Hao Qi, Zhang Langting, Qiao Jichao. Probing into the creep mechanism of amorphous alloy based on quasi-point theory. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1590-1600 doi: 10.6052/0459-1879-22-059

基于准点缺陷理论探索非晶合金蠕变机制

doi: 10.6052/0459-1879-22-059
基金项目: 国家自然科学基金(51971178)和陕西省杰出青年基金(2021JC-12)资助项目
详细信息
    作者简介:

    乔吉超, 教授, 主要研究方向: 非晶固体的黏弹性力学行为. E-mail: qjczy@nwpu.edu.cn

  • 中图分类号: O344.4

PROBING INTO THE CREEP MECHANISM OF AMORPHOUS ALLOY BASED ON QUASI-POINT THEORY

  • 摘要: 作为典型多体相互作用非平衡体系, 如何明晰非晶合金多场耦合激励下变形机制, 建立非晶合金变形行为、流动特性与微观结构特征本征关联始终是非晶合金力学性能的重要研究内容. 本文以具有显著$ \beta $弛豫行为的La56.16Ce14.04Ni19.8Al10非晶合金作为研究载体, 通过开展宽温度应力窗口蠕变实验, 着重考查了蠕变柔量、准稳态蠕变速率、特征弛豫时间、蠕变应力指数及蠕变激活能演变规律, 系统研究了非晶合金蠕变行为与蠕变机制. 基于准点缺陷理论分析了非晶合金蠕变行为由弹性向黏弹性及黏塑性逐步转变的过程, 从微观结构演化角度构建了非晶合金蠕变行为完整物理图像. 研究结果表明, 非晶合金高温蠕变行为是一典型热力耦合、非线性过程, 其潜在蠕变机制受控于温度、应力与加载时间. 应力较低时, 非晶合金蠕变机制对应于热激活单粒子流动. 应力较高时, 蠕变机制则对应于应力诱导局部剪切变形增强与温度诱导原子扩散等复杂耦合过程. 非晶合金蠕变变形过程所涉及弹塑性转变源于非晶合金准点缺陷激活、微剪切畴经热力耦合激励形核长大、扩展与不可逆融合.

     

  • 图  1  不同温度与应力条件下La56.16Ce14.04Ni19.8Al10非晶合金蠕变曲线

    Figure  1.  Creep curves of La56.16Ce14.04Ni19.8Al10 amorphous alloys at various temperature and stress

    图  2  不同温度与应力条件La56.16Ce14.04Ni19.8Al10非晶合金蠕变柔量演化

    Figure  2.  Variation of creep compliance of La56.16Ce14.04Ni19.8Al10 amorphous alloys at various temperature and stress

    图  3  t = 105 s 时刻, 终态蠕变柔量$ {J}_{{\rm{end}}} $随温度及应力演化

    Figure  3.  Variation of $ {J}_{{\rm{end}}} $ with various temperatures and stress during creep tests at the moment of t = 105 s

    图  4  $ \dot{{\varepsilon }_{s}} $随温度及应力演化

    Figure  4.  Variation of $ \dot{{\varepsilon }_{s}} $ with various temperatures and stress

    图  5  不同温度及应力下La56.16Ce14.04Ni19.8Al10非晶合金特征弛豫时间分布强度谱

    Figure  5.  Characteristic relaxation time distribution of La56.16Ce14.04Ni19.8Al10 amorphous alloys at various stresses and temperature

    图  6  $ \dot{{\varepsilon }_{s}} $与应力相关性, 斜率为应力指数

    Figure  6.  Stress dependence of $ \dot{{\varepsilon }_{s}} $ and the slope denotes the value of stress index

    图  7  $ \dot{{\varepsilon }_{s}} $与温度相关性, 斜率为蠕变激活能

    Figure  7.  Temperature dependence of $ \dot{{\varepsilon }_{s}} $ and the slope denotes the apparent activation energy obtained by Arrhenius equation

    图  8  Gumbel分布示意图

    Figure  8.  Graphic illustration of Gumbel contribution

    图  9  准点缺陷理论描述LaCe基非晶合金的(a)动态弛豫行为与(b)~(d)高温蠕变行为, 其中红色实线为理论预测曲线, 黑色实线为实验数据曲线

    Figure  9.  Description of (a) dynamic relaxation behavior and (b)~(d) high temperature creep behavior of LaCe-based amorphous alloy in the framework of QPD theory. The red line represents the theoretical prediction curve and the black line represents the experimental results

    图  10  蠕变结束时刻, 弹性蠕变柔量、黏弹性蠕变柔量与黏塑性蠕变柔量的温度及应力相关性

    Figure  10.  Temperature and stress dependence of the elastic, viscoelastic and viscoplastic components of the compliance at the end of creep experiments

  • [1] 汪卫华. 非晶态物质的本质和特性. 物理学进展, 2013, 33(5): 177-351 (Wang Weihua. The nature and properties of amorphous matter. Progress in Physics, 2013, 33(5): 177-351 (in Chinese)

    Wang Weihua, The nature and properties of amorphous matter. Progress in Physics, 2013, 33(6): 177-351 (in Chinese)
    [2] Wang WH. Dynamic relaxations and relaxation-property relationships in metallic glasses. Progress in Materials Science, 2019, 106: 100561 doi: 10.1016/j.pmatsci.2019.03.006
    [3] Zhang C, Ouyang D, Pauly S, et al. 3D printing of bulk metallic glasses. Materials Science and Engineering: Reports, 2021, 145: 100625 doi: 10.1016/j.mser.2021.100625
    [4] 管鹏飞, 王兵, 吴义成等. 不均匀性: 非晶合金的灵魂. 物理学报, 2017, 66(17): 176112 (Guan Pengfei, Wang Bing, Wu Yicheng, et al. Heterogeneity: the soul of metallic glasses. Acta Physica Sinica, 2017, 66(17): 176112 (in Chinese)

    Guan Pengfei, Wang Bing, Wu Yicheng, et al. Heterogeneity: the soul of metallic glasses, Acta Physica Sinica, 2017, 66(17): 176112 (in Chinese)
    [5] 王云江, 魏丹, 韩懂等. 非晶态固体的结构可以决定性能吗? 力学学报, 2020, 52(2): 303-317

    Wang Yunjiang, Wei Dan, Han Dong, et al. Does structure determine property in amorphous solids? Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 303-317 (in Chinese)
    [6] Qiao JC, Wang Q, Pelletier JM, et al. Structural heterogeneities and mechanical behavior of amorphous alloys. Progress in Materials Science, 2019, 104: 250-329 doi: 10.1016/j.pmatsci.2019.04.005
    [7] 乔吉超, 张浪渟, 童钰等. 基于微观结构非均匀性的非晶合金力学行为. 力学进展, 2022, 52(1): 117-152 (Qiao Jichao, Zhang Langting, Tong Yu, et al. Mechancial properties of amorphous alloys: In the framework of the microstructure heterogeneity. Advances in Mechanics, 2022, 52(1): 117-152 (in Chinese) doi: 10.6052/1000-0992-21-038

    Qiao Jichao, Zhang Langting, Tong Yu, et al. Mechancial properties of amorphous alloys: In the framework of the microstructure heterogeneity. Advances in Mechanics, 2022, 52(1): 117-152 (in Chinese) doi: 10.6052/1000-0992-21-038
    [8] 郝奇, 乔吉超, Pelletier JM. 锆基非晶合金的动态弛豫机制和高温流变行为. 力学学报, 2020, 52(2): 360-368 (Hao Qi, Qiao Jichao, Pelletier JM. Dynamic relaxation characteristics and high temperature flow behavior of Zr-based bulk metallic glass. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 360-368 (in Chinese) doi: 10.6052/0459-1879-20-004

    Hao Qi, Qiao Jichao, Pelletier JM. Dynamic relaxation characteristics and high temperature flow behavior of Zr-based bulk metallic glass. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 360-368 (in Chinese) doi: 10.6052/0459-1879-20-004
    [9] Schuh C, Hufnagel T, Ramamurty U. Mechanical behavior of amorphous alloys. Acta Materialia, 2007, 55(12): 4067-4109 doi: 10.1016/j.actamat.2007.01.052
    [10] Cheng YT, Hao Q, Pelletier JM. Modelling and physical analysis of the high-temperature rheological behavior of a metallic glass. International Journal of Plasticity, 2021, 146: 103107 doi: 10.1016/j.ijplas.2021.103107
    [11] Greer AL, Cheng YQ, Ma E. Shear bands in metallic glasses. Materials Science and Engineering: Reports, 2013, 74(4): 71-132 doi: 10.1016/j.mser.2013.04.001
    [12] Shen J, Sun YH, Orava J, et al. Liquid-to-liquid transition around the glass-transition temperature in a glass-forming metallic liquid. Acta Materialia, 2022, 225: 117588 doi: 10.1016/j.actamat.2021.117588
    [13] Li N, Chen Y, Jiang MQ. A thermoplastic forming map of a Zr-based bulk metallic glass. Acta Materialia, 2013, 61(6): 1921-1931 doi: 10.1016/j.actamat.2012.12.013
    [14] Qiao JC, Pelletier JM, Yao Y. Creep in bulk metallic glasses: Transition from linear to non linear regime. Materials Science and Engineering: A, 2019, 743: 185-189
    [15] Sun BA, Yu HB, Jiao W. Plasticity of ductile metallic glasses: a self-organized critical state. Physical Review Letters, 2010, 105(3): 035501 doi: 10.1103/PhysRevLett.105.035501
    [16] Gan KF, Jiang SS, Huang YJ. Elucidating how correlated operation of shear transformation zones leads to shear localization and fracture in metallic glasses: Tensile tests on CuZr based metallic-glass microwires, molecular dynamics simulations, and modelling. International Journal of Plasticity, 2019, 119: 1-20 doi: 10.1016/j.ijplas.2019.02.011
    [17] Zhang LT, Wang YJ, Pineda E, et al. Sluggish dynamics of homogeneous flow in high-entropy metallic glasses. Scripta Materialia, 2022, 214: 114673 doi: 10.1016/j.scriptamat.2022.114673
    [18] Yoo BG, Kim JY, Kim YJ. Increased time-dependent room temperature plasticity in metallic glass nanopillars and its size-dependency. International Journal of Plasticity, 2012, 37: 108-118 doi: 10.1016/j.ijplas.2012.04.005
    [19] 陈迎红, 王云江, 乔吉超. La30Ce30Al15Co25金属玻璃应力松弛行为. 力学学报, 2020, 52(3): 740-748 (Chen Yinghong, Wang Yunjiang, Qiao Jichao. Stress relaxation of La30Ce30Al15Co25 metallic glass. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 740-748 (in Chinese) doi: 10.6052/0459-1879-20-013

    Chen Yinghong, Wang Yunjiang, Qiao Jichao. Stress relaxation of La30Ce30Al15Co25 metallic glass. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 740-748 (in Chinese) doi: 10.6052/0459-1879-20-013
    [20] Duan YJ, Qiao JC, Wada T, et al. Stress relaxation in high-entropy Pd20Pt20Cu20Ni20P20 metallic glass: Experiments, modeling and theory. Mechanics of Materials, 2021, 160: 103959 doi: 10.1016/j.mechmat.2021.103959
    [21] Zhu W, Liu J, Mao S, et al. A new continuum model for viscoplasticity in metallic glasses based on thermodynamics and its application to creep tests. Journal of the Mechanics and Physics of Solids, 2021, 146: 104216 doi: 10.1016/j.jmps.2020.104216
    [22] Zhang LT, Duan YJ, Crespo D. Dynamic mechanical relaxation and thermal creep of high-entropy La30Ce30Ni10Al20Co10 bulk metallic glass. Science China Physics, Mechanics & Astronomy, 2021, 64(9): 296111
    [23] Tao K, Qiao JC, Zhang L, et al. Dynamic mechanical response of ZrCu-based bulk metallic glasses. International Journal of Mechanical Sciences, 2021, 211: 106770 doi: 10.1016/j.ijmecsci.2021.106770
    [24] Herrero-Gomez C, Samwer K. Stress and temperature dependence of the avalanche dynamics during creep deformation of metallic glasses. Scientific Reports, 2016, 6: 33503 doi: 10.1038/srep33503
    [25] Cao PH, Short MP, Yip S. Understanding the mechanisms of amorphous creep through molecular simulation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(52): 13631-13636 doi: 10.1073/pnas.1708618114
    [26] Xu ZR, Yang DS, Qiao JC, et al. Unified perspective on structural heterogeneity of a LaCe-based metallic glass from versatile dynamic stimuli. Intermetallics, 2020, 125: 106922 doi: 10.1016/j.intermet.2020.106922
    [27] Spaepen F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metallurgica, 1977, 25: 407-415 doi: 10.1016/0001-6160(77)90232-2
    [28] Argon AS. Plastic deformation in metallic glasses. Acta Metallurgica, 1979, 27: 47-58 doi: 10.1016/0001-6160(79)90055-5
    [29] Langer JS. Microstructural shear localization in plastic deformation of amorphous solids. Physical Review E, 2001, 64(1): 011504 doi: 10.1103/PhysRevE.64.011504
    [30] Johnson WL, Samwer K. A universal criterion for plastic yielding of metallic glasses with a (T/Tg)2/3 temperature dependence. Physical Review Letters, 2005, 95(19): 195501 doi: 10.1103/PhysRevLett.95.195501
    [31] Lei TJ, DaCosta LR, Liu M, et al. Composition dependence of metallic glass plasticity and its prediction from anelastic relaxation—A shear transformation zone analysis. Acta Materialia, 2020, 195: 81-86 doi: 10.1016/j.actamat.2020.04.053
    [32] Perez J. Physics and Mechanics of Amorphous Polymers. Rotterdam: A.A. Balkema, 1998: 123-125
    [33] 穆霞英. 蠕变力学. 西安: 西安交通大学出版社, 1989: 8-10

    Mu Xiaying. Creep Mechanics. Xi’an: Xi’an Jiaotong University Press, 1989: 8-10 (in Chinese)
    [34] Heggen M, Spaepen F, Feuerbacher M. Creation and annihilation of free volume during homogeneous flow of a metallic glass. Journal of Applied Physics, 2005, 97(3): 033506
    [35] Perez J. Homogeneous flow and anelastic/plastic deformation of metallic glasses. Acta Metallurgica, 1984, 32(12): 2163-2173 doi: 10.1016/0001-6160(84)90159-7
    [36] Palmer RG, Stein DL, Abrahams E, et al. Models of hierarchically constrained dynamics for glassy relaxation. Physical Review Letters, 1984, 53(10): 958-961 doi: 10.1103/PhysRevLett.53.958
    [37] Rinaldi R, Gaertner R, Chazeau L, et al. Modelling of the mechanical behaviour of amorphous glassy polymer based on the Quasi Point Defect theory — Part I: Uniaxial validation on polycarbonate. International Journal of Non-Linear Mechanics, 2011, 46(3): 496-506 doi: 10.1016/j.ijnonlinmec.2010.11.004
    [38] Chabert E, Ershad Langroudi A, Gauthier C, et al. Mechanical response in amorphous and semicrystalline poly (ethylene terephtalate) and modelling in frame of quasi point defect theory. Plastics, Rubber and Composites, 2010, 30(2): 56-67
    [39] Hao Q, Lyu GJ, Pineda E, et al. A hierarchically correlated flow defect model for metallic glass: Universal understanding of stress relaxation and creep. International Journal of Plasticity, 2022, 154: 103288 doi: 10.1016/j.ijplas.2022.103288
  • 加载中
图(10)
计量
  • 文章访问数:  336
  • HTML全文浏览量:  152
  • PDF下载量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-29
  • 录用日期:  2022-03-23
  • 网络出版日期:  2022-03-24
  • 刊出日期:  2022-06-18

目录

    /

    返回文章
    返回