EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于统一相场理论的锂电池电极颗粒断裂模拟研究

吴建营 洪屹峰

吴建营, 洪屹峰. 基于统一相场理论的锂电池电极颗粒断裂模拟研究. 力学学报, 2022, 54(9): 1-17 doi: 10.6052/0459-1879-22-057
引用本文: 吴建营, 洪屹峰. 基于统一相场理论的锂电池电极颗粒断裂模拟研究. 力学学报, 2022, 54(9): 1-17 doi: 10.6052/0459-1879-22-057
Wu JianYing, Hong YiFeng. Phase-field cohesive modeling of fracture in storage particles of lithium-ion batteries. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 1-17 doi: 10.6052/0459-1879-22-057
Citation: Wu JianYing, Hong YiFeng. Phase-field cohesive modeling of fracture in storage particles of lithium-ion batteries. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 1-17 doi: 10.6052/0459-1879-22-057

基于统一相场理论的锂电池电极颗粒断裂模拟研究

doi: 10.6052/0459-1879-22-057
基金项目: 国家杰出青年科学基金(No. 52125801)和土木工程防灾国家重点实验室开放课题(SLDRCE20-01)资助项目
详细信息
    作者简介:

    吴建营, 教授, 主要研究方向: 固体结构损伤与破坏力学. E-mail: jywu@scut.edu.cn

  • 中图分类号: O346.1, O346.5, TU311.4

PHASE-FIELD COHESIVE MODELING OF FRACTURE IN STORAGE PARTICLES OF LITHIUM-ION BATTERIES

  • 摘要: 锂电池充放电过程中, 锂离子的脱出和嵌入会引发电极颗粒的不均匀体积变化和机械应力. 上述锂离子扩散过程诱发的应力与电极颗粒的尺寸大小、截面形状和冲放电速率有关, 可能会导致电极颗粒出现裂缝起裂、扩展甚至断裂等力学失效, 对锂离子电池的容量和循环寿命等性能产生不利影响. 为准确模拟并预测电极颗粒的力学失效过程, 在笔者前期提出的统一相场理论框架内进一步考虑化学扩散、力学变形和裂缝演化等耦合过程, 建立化学–力学耦合相场内聚裂缝模型, 发展相应的多场有限元数值实现算法, 并应用于二维柱状和三维球体锂电池电极颗粒的力学失效分析. 由于同时涵括了基于强度的起裂准则、基于能量的扩展准则以及基于变分原理的裂缝路径判据, 这一模型不仅适用于带初始缺陷电极颗粒的开裂行为模拟, 而且适用于无初始缺陷电极颗粒的损伤破坏全过程分析. 数值计算结果表明, 相场内聚裂缝模型能够模拟锂离子扩散引发的电极颗粒裂缝起裂、扩展、汇聚等复杂演化过程, 可为锂离子电池电极颗粒的力学失效预测和优化设计提供有益的参考.

     

  • 图  1  具有线性软化曲线的相场内聚裂缝模型

    Figure  1.  Phase-field cohesive zone model with a linear softening law

    图  2  锂电池电极颗粒的扩散−开裂−变形耦合过程

    Figure  2.  Chemo-mechanical coupling in storage particles of LIBs

    图  3  求解浓度–相场–位移耦合控制方程的交错迭代算法流程图

    Figure  3.  Flow chart of the staggered algorithm in solving the coupled governing equations

    图  4  二维电极颗粒的几何及边界条件

    Figure  4.  A cylindrical storage particle: Geometry and boundary conditions

    图  5  脱锂过程电极颗粒的应力状态

    Figure  5.  The mechanical stress state in the particle during Li extraction

    图  6  电极颗粒弹性分析结果: 最大主应力随时间的变化曲线

    Figure  6.  Elastic results of the particle: Evolution of the maximum principal stress

    图  7  电极颗粒的弹性分析结果: 静水压力(左)和平均浓度(右)等值线

    Figure  7.  Elastic analysis results of the storage particle: Isolines of the hydrostatic stress (left) and concentration (right)

    图  8  含初始缺陷电极颗粒的裂缝不扩展模式: 裂缝相场和离子浓度云图(左: $a_{0} = 0.1 $μm; 右: $a_{0} = 1.0$μm)

    Figure  8.  Pre-notched particles with no cracking growth: Profiles of the crack phase-field and concentration field

    图  9  含初始缺陷电极颗粒的裂缝不扩展模式: 最大主应力

    Figure  9.  Pre-notched particles with no cracking growth: Evolution of the maximum principal stress

    图  10  含初始缺陷电极颗粒的裂缝不扩展模式: 最大浓度与最小浓度之差$\Delta C_{\max}$以及充放电状态SOC

    Figure  10.  Pre-notched particles with no cracking growth: Evolution of the maximum concentration difference and state of charging

    图  11  含初始缺陷电极颗粒的裂缝不扩展模式: 离子浓度梯度$-\nabla C$和静水应力梯度$\nabla \sigma_{_\text{H}}$

    Figure  11.  Pre-notched particles with no cracking growth: Gradients of the concentration and hydrostatic stress

    图  12  含初始缺陷电极颗粒的单裂缝扩展模式:不同时刻的裂缝相场云图

    Figure  12.  Pre-notched storage particles with a single cracking growth: Profiles of the crack phase-field at various time instants

    图  13  含初始缺陷电极颗粒的多裂缝扩展模式:不同时刻的裂缝相场云图

    Figure  13.  Pre-notched particles with multiple cracking growths: Profiles of the crack phase-field at various instants

    图  14  含初始缺陷电极颗粒的多裂缝扩展模式: 裂缝尖端和电极表面的最大主应力随时间的变化曲线

    Figure  14.  Pre-notched particles with multiple cracking growths: Evolution of the principal stresses at the crack tip and surface

    图  15  无初始缺陷电极颗粒的安全模式: 裂缝相场演化云图

    Figure  15.  Intact particles with no cracking grow: Profiles of the crack phase-field at various time instants

    图  16  无初始缺陷电极颗粒的多裂缝模式: 裂缝相场演化云图

    Figure  16.  Intact particles with multiple cracking grows: Profiles of the crack phase-field at various time instants

    图  17  无初始缺陷电极颗粒的多裂缝模式: 不同充放电速率下的最终裂缝相场云图

    Figure  17.  Intact particles with multiple cracking grows: Profiles of the crack phase-field for various charging rates

    17  无初始缺陷电极颗粒的多裂缝模式: 不同充放电速率下的最终裂缝相场云图(续)

    17.  Intact particles with multiple cracking grows: Profiles of the crack phase-field for various charging rates.(continued)

    图  18  截面面积相同、高宽比不同的电极颗粒: 最终裂缝相场云图

    Figure  18.  Damage profiles in storage particles with identical section area but of various aspect ratios

    图  19  截面面积相同、高宽比不同的电极颗粒: 裂缝长度演化曲线

    Figure  19.  Crack lengths in storage particles of identical section area but of various aspect ratios

    图  20  球体电极颗粒三维分析: 锂离子浓度分布示意图

    Figure  20.  Spherical storage particles: Concentration contour of Li-ion

    图  21  球体电极颗粒三维分析: 弹性阶段的主应力云图

    Figure  21.  Spherical storage particles: Contours of principal stresses in the elastic stage

    图  22  球体电极颗粒三维分析: 裂缝相场分布云图

    Figure  22.  Spherical storage particles: Profiles of the crack phase-field

    图  23  球体电极颗粒三维分析: $ X-Z$平面裂缝相场演化

    Figure  23.  Spherical storage particles: Evolution of the crack phase-field on the $ X-Z$ plane

    表  1  锰酸锂正极颗粒材料参数取值

    Table  1.   Material parameters of the storage particle.

    ParametersValues
    Young's modulus $E_{0}$93 GPa
    Poisson's ratio $\nu_{0}$0.3
    mass density $\rho$4140 kg/m3
    maximum concentration $C_{\max}$$2.29 \times 10^{4}$ mol/m3
    partial molar volume $V_{_\text{H}}$$3.497 \times 10^{-6}$ m3/mol
    diffusion coefficient $D$$7.08 \times 10^{-15}$ m2/s
    temperature $T$300 K
    failure strength $f_{\text{t}}$1300 MPa
    fracture energy $G_{\text{f}}$10 N/m
    下载: 导出CSV

    表  2  不同时刻圆柱体电极颗粒的截面锂离子平均浓度

    Table  2.   Average concentration of lithium ions in the cylindrical storage particle at various time instants.

    Time $t$/sAverage concentration $\bar{C}$
    320.9911
    3650.8987
    10000.7222
    下载: 导出CSV
  • [1] 王其钰, 王朔, 张杰男等. 锂离子电池失效分析概述. 储能科学与技术, 2017, 6(5): 1008-1025 (Wang Qiyu, Wang Shuo, Zhang Jienan, et al. Overview of failure analysis of lithium ion batteries. Energy Storage Science and Technology, 2017, 6(5): 1008-1025 (in Chinese)

    Wang Qiyu, Wang Shuo, Zhang Jienan, et al. Overview of failure analysis of lithium ion batteries. Energy Storage Science and Technology, 2017, 6(5): 1008-1025 (in Chinese)
    [2] Deng J, Bae C, Marcicki J, et al. Safety modelling and testing of lithium-ion batteries in electrified vehicles. Nature Energy, 2018: 261-266
    [3] Fu R, Xiao M, Choe S. Modeling, validation and analysis of mechanical stress generation and dimension changes of a pouch type high power Li-ion battery. Journal of Power Sources, 2013: 211-224
    [4] Zheng H, Tan L, Liu G, et al. Calendering effects on the physical and electrochemical properties of Li[Ni 1/3 Mn 1/3 Co 1/3]O 2 cathode. Journal of Power Sources, 2012: 52-57
    [5] Wang D, Wu X, Wang Z, et al. Cracking causing cyclic instability of LiFePO4 cathode material. Journal of Power Sources, 2005: 125-128
    [6] Bhattacharya S, Riahi AR, Alpas AT. A transmission electron microscopy study of crack formation and propagation in electrochemically cycled graphite electrode in lithium-ion cells. Journal of Power Sources, 2011: 8719-8727
    [7] Chakraborty A, Ramakrishnan N. Prediction of electronic conductivity of a degrading electrode material using finite element method. Computational Materials Science, 2013: 69
    [8] Markervich E, Salitra G, Levi MD, et al. Capacity fading of lithiated graphite electrodes studied by a combination of electroanalytical methods, Raman spectroscopy and SEM. Journal of Power Sources, 2005, 146: 146-150 doi: 10.1016/j.jpowsour.2005.03.107
    [9] Ramakrishnan N, Joglekar MM, Inguva S. A phenomenological degradation model for cyclic aging of lithium ion cell materials. Journal of The Electrochemical Society, 2012, 160: A125
    [10] Fincher CD, Ojeda D, Pharr, G M, et al. Mechanical properties of metallic lithium: from nano to bulk scales. Acta Materialia, 2020, 186: 215-222 doi: 10.1016/j.actamat.2019.12.036
    [11] Zhang X, Krischok A, Linder C. A variational framework to model diffusion induced large plastic deformation and phase field fracture during initial two-phase lithiation of silicon electrodes. Computer Methods in Applied Mechanics and Engineering, 2016, 312: 51-77 doi: 10.1016/j.cma.2016.05.007
    [12] Xu R, Sun H, de Vasconcelos LS, et al. Mechanical and structural degradation of LiNixMnyCozO2 cathode in Li. Journal of The Electrochemical Society, 2017, 164: A3333 doi: 10.1149/2.1751713jes
    [13] Klinsmann M, Rosato D, Kamlah M, et al. Modeling crack growth during Li extraction in storage particles using a fracture phase field approach. Journal of The Electrochemical Society, 2015, 163: A102
    [14] Klinsmann M, Rosato D, Kamlah M, et al. Modeling crack growth during Li insertion in storage particles using a fracture phase field approach. Journal of the Mechanics and Physics of Solids, 2016, 92: 313-344 doi: 10.1016/j.jmps.2016.04.004
    [15] Zhang Y, Zhao C, Guo Z. Simulation of crack behavior of secondary particles in Li-ion battery electrodes during lithiation/de-lithiation cycles. International Journal of Mechanical Sciences, 2019, 155: 178-186 doi: 10.1016/j.ijmecsci.2019.02.042
    [16] Mandal TK, Nguyen VP and Wu JY. Length scale and mesh bias sensitivity of phase-field models for brittle and cohesive fracture. Engineering Fracture Mechanics, 2019, 217: 106532 doi: 10.1016/j.engfracmech.2019.106532
    [17] Kumar A, Bourdin B, Francfort GA, et al. Revisiting nucleation in the phase-field approach to brittle fracture. Journal of the Mechanics and Physics of Solids, 2020, 142: 104027 doi: 10.1016/j.jmps.2020.104027
    [18] Wu JY. A unified phase-field theory for the mechanics of damage and quasi-brittle failure. Journal of the Mechanics and Physics of Solids, 2017, 103: 72-99 doi: 10.1016/j.jmps.2017.03.015
    [19] Bourdin B, Francfort GA, Marigo JJ. Numerical experiments in revisited brittle fracture. Journal of the Mechanics and Physics of Solids, 2000, 48: 797-826 doi: 10.1016/S0022-5096(99)00028-9
    [20] Pham K, Amor H, Marigo JJ, et al. Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics, 2011, 20: 618-652 doi: 10.1177/1056789510386852
    [21] Wu JY. A geometrically regularized gradient-damage model with energetic equivalence. Computer Methods in Applied Mechanics and Engineering, 2018, 328: 612-637 doi: 10.1016/j.cma.2017.09.027
    [22] Wu JY, Nguyen VP. A length scale insensitive phase-field damage model for brittle fracture. Journal of the Mechanics and Physics of Solids, 2018, 119: 20-42 doi: 10.1016/j.jmps.2018.06.006
    [23] Zhang P, Hu X, Wang X, et al. An iteration scheme for phase field model for cohesive fracture and its implementation in Abaqus. Engineering Fracture Mechanics, 2018, 204: 268-287 doi: 10.1016/j.engfracmech.2018.10.006
    [24] Mandal TK, Nguyen VP, Heidarpour A. Phase field and gradient enhanced damage models for quasi-brittle failure: A numerical comparative study. Engineering Fracture Mechanics, 2018, 207: 48-67
    [25] Wang Q, Feng YT, Zhou W, et al. A phase-field model for mixed-mode fracture based on a unified tensile fracture criterion. Computer Methods in Applied Mechanics and Engineering, 2020, 370: 113270 doi: 10.1016/j.cma.2020.113270
    [26] Loew PJ, Peters B, Beex LAA. Fatigue phase-field damage modeling of rubber using viscous dissipation: Crack nucleation and propagation. Mechanics of Materials, 2019, 142: 103282
    [27] Marboeuf A, Bennani L, Budinger M, et al. Electromechanical resonant ice protection systems: numerical investigation through a phase-field mixed adhesive/brittle fracture model. Engineering Fracture Mechanics, 2020, 230: 106926 doi: 10.1016/j.engfracmech.2020.106926
    [28] Mandal TK, Nguyen VP, Wu JY. A length scale insensitive anisotropic phase field fracture model for hyperelastic composites. International Journal of Mechanical Sciences, 2020, 188: 105941 doi: 10.1016/j.ijmecsci.2020.105941
    [29] Zhang XC, Shyy W, Sastry AM. Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles. Journal of the Electrochemical Society, 2007, 154(10): A910 doi: 10.1149/1.2759840
    [30] Gao YF, Zhou M. Strong stress-enhanced diffusion in amorphous lithium alloy nanowire electrodes. Journal of Applied Physics, 2011, 109: 014310 doi: 10.1063/1.3530738
    [31] Braides A. Approximation of Free-Discontinuity Problems. Berlin: Springer science & Business Media, 1998
    [32] Miehe C, Welschinger F, Hofacker M. Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations. International Journal for Numerical Methods in Engineering, 2010, 83(10): 1273-1311 doi: 10.1002/nme.2861
    [33] Wu JY. On the theoretical and numerical aspects of the unified phase-field theory for damage and failure in solids and structures. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 301-329 (in Chinese)
    [34] Hai L, Wu JY, Li J. A phase-field damage model with micro inertia effect for the dynamic fracture of quasi-brittle solids. Engineering Fracture Mechanics, 2020, 225: 106821 doi: 10.1016/j.engfracmech.2019.106821
    [35] Wu JY, Qiu JF, Nguyen VP, et al. Computational modeling of localized failure in solids: XFEM vs PF-CZM. Computer Methods in Applied Mechanics and Engineering, 2018, 345: 618-643
    [36] Feng DC, Wu JY. Phase-field regularized cohesive zone model (CZM) and size effect of concrete. Engineering Fracture Mechanics, 2018, 197: 66-79 doi: 10.1016/j.engfracmech.2018.04.038
    [37] Wu JY. Robust numerical implementation of non-standard phase-field damage models for failure in solids. Computer Methods in Applied Mechanics and Engineering, 2018, 340: 767-797 doi: 10.1016/j.cma.2018.06.007
    [38] Mandal TK, Nguyen VP, Wu JY. Comparative study of phase-field damage models for hydrogen assisted cracking. Theoretical and Applied Fracture Mechanics, 2021, 111: 102840 doi: 10.1016/j.tafmec.2020.102840
    [39] Newmark NM. A method of computation for structural dynamics. Journal of Engineering Mechanics, 1956, 85: 67-94
    [40] Hilber HM, Hughes TJR, Talor RL. Improved numerical dissipation for time integration algorithms in structural dynamics. Earthquake Engineering & Structural Dynamics, 1977, 5: 282-292
    [41] Garcia RE, Chiang YM, Carter WC, et al. Microstructural modeling and design of rechargeable lithium. Journal of The Electrochemical Society, 2004, 152(1): A255
    [42] John C, John N. A mathematical model of stress generation and fracture in lithium manganese oxide. Journal of The Electrochemical Society, 2006, 153(6): A1019 doi: 10.1149/1.2185287
    [43] Guo Z, Ji L, Chen L. Analytical solutions and numerical simulations of diffusion-induced stresses and concentration distributions in porous electrodes with particles of different size and shape. Journal of Materials Science, 2017, 52(23): 13606-13625 doi: 10.1007/s10853-017-1455-1
    [44] 吴建营, 陈万昕, 黄羽立. 基于统一相场理论的早龄期混凝土化-热-力多场耦合裂缝模拟与抗裂性能预测. 力学学报, 2021, 53(5): 1367-1382 (Wu Jianying, Chen Wanxin, Huang Yuli. Computational modeling of shrinkage induced cracking in early-age concrete based on the unified phase-field theory. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1367-1382 (in Chinese)

    Wu Jianying, Chen Wanxin, Huang Yuli. Computational modeling of shrinkage induced cracking in early-age concrete based on the unified phase-field theory. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1367-1382 (in Chinese)
    [45] Wu JY, Huang Y, Zhou H, et al. Three-dimensional phase-field modeling of mode I + II/III failure in solids. Computer Methods in Applied Mechanics and Engineering, 2021, 373: 113537 doi: 10.1016/j.cma.2020.113537
  • 加载中
图(24) / 表(2)
计量
  • 文章访问数:  111
  • HTML全文浏览量:  15
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-24
  • 录用日期:  2022-02-22
  • 网络出版日期:  2022-02-23

目录

    /

    返回文章
    返回