EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多孔泡沫牺牲层的动态压溃及缓冲吸能机理研究

范东宇 苏彬豪 彭辉 裴晓阳 郑志军 张建勋 秦庆华

范东宇, 苏彬豪, 彭辉, 裴晓阳, 郑志军, 张建勋, 秦庆华. 多孔泡沫牺牲层的动态压溃及缓冲吸能机理研究. 力学学报, 2022, 54(6): 1630-1640 doi: 10.6052/0459-1879-22-047
引用本文: 范东宇, 苏彬豪, 彭辉, 裴晓阳, 郑志军, 张建勋, 秦庆华. 多孔泡沫牺牲层的动态压溃及缓冲吸能机理研究. 力学学报, 2022, 54(6): 1630-1640 doi: 10.6052/0459-1879-22-047
Fan Dongyu, Su Binhao, Peng Hui, Pei Xiaoyang, Zheng Zhijun, Zhang Jianxun, Qin Qinghua. Research on dynamic crushing and mechanism of mitigation and energy absorption of cellular sacrificial layers. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1630-1640 doi: 10.6052/0459-1879-22-047
Citation: Fan Dongyu, Su Binhao, Peng Hui, Pei Xiaoyang, Zheng Zhijun, Zhang Jianxun, Qin Qinghua. Research on dynamic crushing and mechanism of mitigation and energy absorption of cellular sacrificial layers. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1630-1640 doi: 10.6052/0459-1879-22-047

多孔泡沫牺牲层的动态压溃及缓冲吸能机理研究

doi: 10.6052/0459-1879-22-047
基金项目: 国家自然科学基金(11972281), 冲击波物理与爆轰物理重点实验室开放基金(JCKYS2019212008), 航空科学基金(201941070001)和陕西省自然科学基金(2020JM-034)资助项目
详细信息
    作者简介:

    秦庆华, 教授, 主要研究方向: 冲击动力学、轻质多功能化材料与结构防护设计. E-mail: qhqin@mail.xjtu.edu.cn

  • 中图分类号: O38

RESEARCH ON DYNAMIC CRUSHING AND MECHANISM OF MITIGATION AND ENERGY ABSORPTION OF CELLULAR SACRIFICIAL LAYERS

  • 摘要: 本文对强动载荷下多孔泡沫牺牲层的动态压溃行为及缓冲吸能机理进行了研究. 基于刚性-理想塑性-锁定(R-PP-L)及刚性-塑性硬化(R-PH)两类多孔泡沫材料本构, 建立了强动载荷下多孔泡沫牺牲层动态响应的理论分析模型, 分析了一维冲击波在多孔泡沫牺牲层中的传播规律; 利用Voronoi方法建立了多孔泡沫牺牲层的二维细观有限元模型, 获得了冲击载荷下多孔泡沫牺牲层的变形模式和动态响应曲线, 讨论了多孔泡沫材料的层间界面效应对多孔泡沫牺牲层缓冲吸能的影响. 研究结果表明, 考虑多孔泡沫材料塑性硬化影响的理论分析模型能够预测入射波在远端的反射及对多孔泡沫牺牲层的二次压缩过程和端部应力增强现象; 相比较存在界面的多孔泡沫牺牲层, 连续设计的多孔泡沫牺牲层可增强其缓冲吸能能力, 但在界面处增加设计刚性面板则能够降低界面胞元不完整对缓冲吸能的影响; 相同冲量载荷下, 端部应力峰值随冲击能量增大而增大, 而端部冲击波的反射可能是端部应力增强的主要诱因.

     

  • 图  1  二维Voronoi有限元模型的准静态应力应变曲线及本构模型

    Figure  1.  Quasi-static stress-strain curve and constitutive laws of the two-dimensional Voronoi finite element model

    图  2  欧拉坐标系下基于R-PP-L本构的冲击波传播示意图

    Figure  2.  Shock wave propagation model based on the R-PP-L constitutive law in Euler coordinate system

    图  3  欧拉坐标系下基于R-PH本构的冲击波传播示意图

    Figure  3.  Shock wave propagation model based on the R-PH constitutive law in Euler coordinate system

    图  4  多孔结构示意图

    Figure  4.  Porous structure

    5  不同界面类型的多边形细观有限元模型

    5.  Two-dimensional Voronoi meso-level finite element models of different interfaces

    5  不同界面类型的多边形细观有限元模型(续)

    5.  Two-dimensional Voronoi meso-level finite element models of different interfaces (continued)

    图  6  多孔泡沫牺牲层动态响应的理论预测值和有限元模拟结果对比

    Figure  6.  Comparison between the theoretical prediction result and the finite element simulation result of the dynamic response of the cellular sacrificial layers

    图  7  入射波及反射波的波后应变及密度分布的理论预测值比较

    Figure  7.  Comparison of strain and density distributions based on different constitutive laws behind primary and reflected compaction wave fronts.

    图  8  不同质量刚性板模型的远端应力比较

    Figure  8.  Comparison of distal stresses for inserted rigid plate models of different rigid plate masses

    图  9  不同界面类型的多孔牺牲层的细观变形过程. (a)连续界面; (b)分离界面; (c)增加刚性板

    Figure  9.  Meso-deformation process of multicellular sacrificial layers with different interfaces. (a) Continuous interface; (b) Separated interface; (c) Added rigid plate

    图  10  不同界面类型的多孔泡沫牺牲层的动态响应比较

    Figure  10.  Comparison of dynamic response of multi-cell sacrificial layers with different interfaces

    图  11  不同冲击能量下多孔泡沫牺牲层的细观变形过程比较. (a)${E_K} = 90\;{\rm{ J}}$; (b)${E_K} = 67.5\;{\rm{ J}}$; (c)${E_K} = 45\;{\rm{ J}}$

    Figure  11.  Comparison of the meso-deformation process of the multi-cell sacrificial layers under different impact energy. (a) ${E_K} = 90\;{\rm{ J}}$; (b) ${E_K} = 67.5\;{\rm{ J}}$; (c) ${E_K} = 45\;{\rm{ J}}$

    图  12  不同冲击能量下多孔泡沫牺牲层的动态响应比较

    Figure  12.  Comparison of dynamic response of multi-cell sacrificial layers under different impact energy

    表  1  模型参数

    Table  1.   The parameters of model

    Impact plate mass
    MP/g
    Voronoi foam mass
    MF/g
    Separated plate mass
    MR/g
    L0/mmW/mmh/mmRelative density $\bar \rho $
    6.006.220.0160800.360.16
    下载: 导出CSV

    表  2  基体材料参数

    Table  2.   The parameters of the base material

    MaterialDensity$ {\rho _s} $/(kg·m−3)Young modulus${E_s}$/GPaPoisson ratio${\gamma _s}$Yield stress${\sigma _{Ys}}$/MPa
    aluminum (L060)2700660.3175
    下载: 导出CSV
  • [1] 华云龙, 余同希. 多胞材料的力学行为. 力学进展, 1991, 4: 457-469 (Hua Yunlong, Yu Tongxi. Mechanial behaviour of cellular solids. Advances in Mechanics, 1991, 4: 457-469 (in Chinese) doi: 10.6052/1000-0992-1991-4-J1991-052

    Hua Yunlong, Yu Tongxi. Mechanial behaviour of cellular solids. Chinese Journal of Advances in Mechanics, 1991, 4: 457-469(in Chinese)) doi: 10.6052/1000-0992-1991-4-J1991-052
    [2] 卢天健, 何德坪, 陈常青等. 超轻多孔金属材料的多功能特性及应用. 力学进展, 2006, 4(4): 517-535 (Lu Tianjian, He Deping, Chen Changqing, et al. The multi-functionality of ultra-light cellular metals and their applications. Advances in Mechanics, 2006, 4(4): 517-535 (in Chinese) doi: 10.3321/j.issn:1000-0992.2006.04.004

    Lu Tianjian, He Deping, Chen Changqing, et al. The multi-functionality of ultra-light cellular metals and their applications. Chinese Journal of Advances in Mechanics, 2006(4): 517-535(in Chinese)) doi: 10.3321/j.issn:1000-0992.2006.04.004
    [3] 陈祥, 李言祥. 金属泡沫材料研究进展. 材料导报, 2003, 5: 5-8, 11 (Chen Xiang, Li Yanxiang. Cellular metals: research advances and applications. Chinese Journal of Materials Reports, 2003, 5: 5-8, 11 (in Chinese) doi: 10.3321/j.issn:1005-023X.2003.11.002

    Chen Xiang, Li Yanxiang. Cellular metals: research advances and applications. Chinese Journal of Materials Reports, 2003, 5: 5-8 + 11(in Chinese)) doi: 10.3321/j.issn:1005-023X.2003.11.002
    [4] Deshpande V, Fleck NA. One-dimensional response of sandwich plates to underwater shock loading. Journal of the Mechanics and Physics of Solids, 2005, 53(11): 2347-2383 doi: 10.1016/j.jmps.2005.06.006
    [5] Sun G, Wang E, Wang H, et al. Low-velocity impact behaviour of sandwich panels with homogeneous and stepwise graded foam cores. Materials & Design, 2018, 160: 1117-1136
    [6] Wang E, Gardner N, Shukla A. The blast resistance of sandwich composites with stepwise graded cores. International Journal of Solids and Structures, 2009, 46(18-19): 3492-3502 doi: 10.1016/j.ijsolstr.2009.06.004
    [7] Cai S, Liu J, Zhang P, et al. , Experimental study on failure mechanisms of sandwich panels withmultilayered aluminum foam/UHMWPE laminate core under combined blast and fragments loading. Thin-Walled Structures, 2021, 159: 107227 doi: 10.1016/j.tws.2020.107227
    [8] Duan Y, Zhao X, Liu Z, et al. Dynamic response of additively manufactured graded foams. Composites Part B, 2020, 183: 107630 doi: 10.1016/j.compositesb.2019.107630
    [9] Duan Y, Ding Y, Liu Z, et al. Effects of cell size vs cell-wall thickness gradients on compressive behavior of additively manufactured foams. Composites Science and Technology, 2020, 199: 108339
    [10] Rapaka SD, Pandey M, Annabattul RK. Effect of defects on the dynamic compressive behavior of cellular solids. International Journal of Mechanical Sciences, 2020, 170: 105365 doi: 10.1016/j.ijmecsci.2019.105365
    [11] Liu H, Ding S, Feng B. Impact response and energy absorption of functionally graded foam under temperature gradient environment. Composites Part B:Engineering, 2019, 172: 516-532 doi: 10.1016/j.compositesb.2019.05.072
    [12] Czarnota C, Molinari A, Mercier S. Steady shock waves in cellular metals: Viscosity and micro-inertia effects. International Journal of Plasticity, 2020, 135: 102816 doi: 10.1016/j.ijplas.2020.102816
    [13] Reid SR, Peng C. Dynamic uniaxial crushing of wood. International Journal of Impact Engineering, 1997, 19(5-6): 531-570 doi: 10.1016/S0734-743X(97)00016-X
    [14] Lopatnikov SL, Gama BA, Jahirul HM, et al. Dynamics of metal foam deformation during Taylor cylinder–Hopkinson bar impact experiment. Composite Structures, 2003, 61(1-2): 61-71 doi: 10.1016/S0263-8223(03)00039-4
    [15] Hanssen AG, Hopperstad OS, Langseth M, et al. Validation of constitutive models applicable to aluminium foams. International Journal of Mechanical Sciences, 2002, 44(2): 359-406 doi: 10.1016/S0020-7403(01)00091-1
    [16] Zheng Z, Wang C, Yu J, et al. Dynamic stress–strain states for metal foams using a 3 D cellular model. Journal of the Mechanics and Physics of Solids, 2014, 72: 93-114 doi: 10.1016/j.jmps.2014.07.013
    [17] Ding Y, Wang S, Zheng Z, et al. Dynamic crushing of cellular materials: A unique dynamic stress-strain state curve. Mechanics of Materials, 2016, 100: 219-231 doi: 10.1016/j.mechmat.2016.07.001
    [18] Sun Y, Li QM. Dynamic compressive behaviour of cellular materials: A review of phenomenon, mechanism and modelling. International Journal of Impact Engineering, 2018, 112: 74-115 doi: 10.1016/j.ijimpeng.2017.10.006
    [19] Hanssen AG, Enstock L, Langseth M. Close-range blast loading of aluminum foam panels. International Journal of Impact Engineering, 2002, 27(6): 593-618 doi: 10.1016/S0734-743X(01)00155-5
    [20] 丁圆圆, 王士龙, 郑志军等. 多胞牺牲层的抗爆炸分析. 力学学报, 2014, 46(6): 825-833 (Ding Yuanyuan, Wang Shilong, Zheng Zhijun, et al. Anti-blast analysis of cellular sacrificial cladding. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(6): 825-833 (in Chinese) doi: 10.6052/0459-1879-14-187

    Ding Yuanyuan, Wang Shilong, Zheng Zhijun, et al. Anti-blast analysis of cellular sacrificial cladding. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(6): 825-833(in Chinese)) doi: 10.6052/0459-1879-14-187
    [21] Chang B, Zheng Z, Zhang Y, et al. Crashworthiness design of graded cellular materials: An asymptotic solution considering loading rate sensitivity. International Journal of Impact Engineering, 2020, 143: 103611
    [22] Karagiozova D, Langdon GS, Nurick GN. Propagation of compaction waves in metal foams exhibiting strain hardening. International Journal of Solids and Structures, 2012, 49(19-20): 2763-2777 doi: 10.1016/j.ijsolstr.2012.03.012
    [23] Karagiozova D, Alves M. Compaction of a double-layered metal foam block impacting a rigid wall. International Journal of Solids and Structures, 2014, 51(13): 2424-2438 doi: 10.1016/j.ijsolstr.2014.03.012
    [24] Karagiozova D, Alves M. Stress waves in layered cellular materials—Dynamic compaction under axial impact. International Journal of Mechanical Sciences, 2015, 101-102: 196-213 doi: 10.1016/j.ijmecsci.2015.07.024
    [25] Ding Z, Zheng Z, Yu J. A wave propagation model of distributed energy absorption system for trains. International Journal of Crashworthiness, 2019, 24(5): 508-522 doi: 10.1080/13588265.2018.1479482
    [26] Li L, Han B, Zhang Q, et al. Dynamic response of clamped sandwich beams: analytical modeling. Theoretical and Applied Mechanics Letters, 2019, 9(6): 391-396 doi: 10.1016/j.taml.2019.06.002
    [27] Yang B, Cao Z, Chang Z, et al. The effect of the reflected shock wave on the foam material. International Journal of Impact Engineering, 2021, 149: 103773 doi: 10.1016/j.ijimpeng.2020.103773
    [28] Fleck NA, Deshpande VS. The resistance of clamped sandwich beams to shock loading. Jouenal of Applied Mechanics, 2004, 71(3): 386-401 doi: 10.1115/1.1629109
    [29] Ma GW, Ye ZQ. Analysis of foam claddings for blast alleviation. International Journal of Impact Engineering, 2007, 34(1): 60-70 doi: 10.1016/j.ijimpeng.2005.10.005
    [30] Karagiozova D. Velocity attenuation and force transfer by a single- and double-layer claddings made of foam materials. International Journal of Protective Structures, 2011, 2(4): 417-437 doi: 10.1260/2041-4196.2.4.417
    [31] Zheng Z, Yu J, Li J. Dynamic crushing of 2D cellular structures: A finite element study. International Journal of Impact Engineering, 2005, 32: 650-664 doi: 10.1016/j.ijimpeng.2005.05.007
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  466
  • HTML全文浏览量:  82
  • PDF下载量:  121
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-24
  • 录用日期:  2022-04-14
  • 网络出版日期:  2022-04-15
  • 刊出日期:  2022-06-18

目录

    /

    返回文章
    返回