EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

极高超声速稀薄气体原子辐射效应的p-DSMC方法

杨全顺 方明 李埌全 粟斯尧 杨彦广

杨全顺, 方明, 李埌全, 粟斯尧, 杨彦广. 极高超声速稀薄气体原子辐射效应的p-DSMC方法. 力学学报, 2022, 54(7): 1-9 doi: 10.6052/0459-1879-22-046
引用本文: 杨全顺, 方明, 李埌全, 粟斯尧, 杨彦广. 极高超声速稀薄气体原子辐射效应的p-DSMC方法. 力学学报, 2022, 54(7): 1-9 doi: 10.6052/0459-1879-22-046
Yang Quanshun, Fang Ming, Li Langquan, Su Siyao, Yang Yanguang. p-dsmc method of radiation effect of rarefied gas atomic with extremely supersonic. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(7): 1-9 doi: 10.6052/0459-1879-22-046
Citation: Yang Quanshun, Fang Ming, Li Langquan, Su Siyao, Yang Yanguang. p-dsmc method of radiation effect of rarefied gas atomic with extremely supersonic. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(7): 1-9 doi: 10.6052/0459-1879-22-046

极高超声速稀薄气体原子辐射效应的p-DSMC方法

doi: 10.6052/0459-1879-22-046
详细信息
    作者简介:

    方明, 副研究员, 主要研究方向: 稀薄气体动力学, Email: fangm@cardc.cn

    杨彦广, 研究员, 主要研究方向: 稀薄气体动力学, Email: yangyanguang@cardc.cn

  • 中图分类号: V19

p-DSMC METHOD OF RADIATION EFFECT OF RAREFIED GAS ATOMIC WITH EXTREMELY SUPERSONIC

  • 摘要: 极高超声速流动激波层内的高温导致内能模态的激发并伴随热辐射发生, 过高的温度使得空气分子完全解离, 原子组分对辐射热的贡献将达到80%以上. 本文基于优化的原子辐射模型, 提出追踪光子−直接模拟蒙特卡罗(p-DSMC)方法, 研究了稀薄流区不同马赫数下的高超声速二维圆柱绕流的壁面辐射加热, 获得了有无激发辐射效应的壁面压力和热流以及沿驻点线变化的平动、振动和转动温度. 在不考虑激发辐射效应的情况下, 得到的壁面压力和热流与已有的模拟结果符合的非常好, 误差均在5%以内, 尤其是在驻点位置, 误差在1%以内; 获得的平动、振动以及转动温度均与文献结果符合的很好. 在相同的来流条件下, 考虑辐射效应后发现, 来流速度低于10 km/s时, 辐射加热不明显, 在驻点区域, 辐射加热占对流加热比重在7%左右; 来流速度大于10 km/s时, 在驻点区域, 辐射加热占对流加热比重将超过30%. 考虑辐射效应后, 对非平衡区的平动、转动和振动温度的最大值影响不大. 此外, 另一个重要结论是, 流场中原子的浓度是影响壁面辐射热流大小的一个重要因素.

     

  • 图  2  光子追踪示意图

    Figure  2.  Photon tracing diagram

    图  1  N(上)、O(下)原子群组能级跃迁

    Figure  1.  Energy level transition of N (upper) and O (lower) atomic groups

    图  3  马赫数24.58时沿壁面的热流和压力(上)以及沿驻点线变化的平动、转动和振动温度(下)

    Figure  3.  Heating flux and pressure on wall (upper) and translational, rotational and vibrational temperatures along the stagnation line (lower) at Mach 24.58

    图  4  原子辐射效应对流场的影响Ma = 24.58(一排左)Ma = 30(一排右)Ma = 37(二排左)

    Figure  4.  Influence of atomic radiation effect on the flow field at Ma = 24.58 (left of the first row) Ma = 30(right of the first row) and Ma = 37(left of the second row)

    图  5  原子辐射效应对平动(一排左)转动(一排右)振动(二排左)温度的影响

    Figure  5.  Influence of atomic radiation effect on the translational (left of the first row), rotational (right of the first row) and vibrational (left of the second row) temperature.

    6  原子辐射效应对速度的影响Ma = 24.58(一排左)Ma = 30(一排右)Ma = 37(二排左)

    6.  Influence of atomic radiation effect on the velocity at Ma = 24.58 (left of the first row) Ma = 30(right of the first row) and Ma = 37(left of the second row)

    6  原子辐射效应对速度的影响Ma = 24.58(一排左)Ma = 30(一排右)Ma = 37(二排左) (续)

    6.  Influence of atomic radiation effect on the velocity at Ma = 24.58 (left of the first row) Ma = 30(right of the first row) and Ma = 37(left of the second row) (continued)

    图  7  原子辐射效应对壁面的辐射加热和对流加热Ma = 24.58(一排左)Ma = 30(一排右)Ma = 37(二排左)

    Figure  7.  Influence of atomic radiation effect on the radiative heating and convective heating on the wall at Ma = 24.58 (left of the first row) Ma = 30(right of the first row) and Ma = 37(left of the second row).

    表  1  N、O原子群组能级的能量和简并度

    Table  1.   Energy and degeneracy of energy levels of N and O atomic groups

    AtomGroupEnergy/JDegeneracy
    N104
    23.820 E-1910
    35.730 E-196
    41.688 E-1818
    51.907 E-1854
    62.073 E-18108
    72.127 E-1854
    AtomGroupEnergy/JDegeneracy
    O109
    23.16 E-195
    36.71 E-191
    41.49 E-188
    51.73 E-1824
    61.93 E-1878
    72.04 E-18128
    下载: 导出CSV

    表  2  N(上)、O(下)原子群组激发态的辐射寿命和跃迁辐射几率

    Table  2.   Radiation lifetime and transition radiation probability of excited states of N (upper) and O (lower) atomic groups

    atomtransitonlifetme/sprobability
    O2→10.50
    3→10.50
    4→10.10
    5→43.3 × 10−80.60
    6→12.5 × 10−80.10
    6→42.0 × 10−60.01
    6→52.5 × 10−80.50
    7→10.4 × 10−80.10
    7→51.0 × 10−70.40
    atomtransitonlifetme/sprobability
    N2→10.70
    3→10.50
    3→20.50
    4→10.5 × 10−80.50
    4→20.2 × 10−80.25
    4→30.5 × 10−80.25
    5→20.2 × 10−80.15
    5→46.0 × 10−80.08
    6→21.0 × 10−80.10
    6→31.0 × 10−80.10
    6→55.0 × 10−80.70
    7→41.0 × 10−60.10
    下载: 导出CSV

    表  3  流场的初始参数

    Table  3.   Initial parameters of flow field

    stream parametervalue
    N01.447 × 1020 1/m3
    T0187.0 K
    Ma24.58/30.0/37.0
    Twall1000 K
    ρ6.958 × 10−6 kg/m3
    下载: 导出CSV
  • [1] Bird GA. Nonequilibrium radiation during re-Entry at 10 km/s. AIAA Paper, 1987, 87-1543.
    [2] Ozawa T, Zheng L, Sohn I, et al. Modeling of electronic excitation and radiation for hypersonic reentry flows in DSMC. In 48th AIAA Aerospace Science Meeting Including the New Horizons Forum and Aerospace Exposition, 2011
    [3] Carlson AB, Hassan HA. Radiation modeling with direct simulation monte carlo. Jouranl of Thermophysics and Heat Transfer, 1992, 6(4).
    [4] Taylo JC, Carlson AnnB, Hassan HA. Monte carlo simulation of radiating re-Entry flows. Jouranl of Thermophysics and Heat Transfer, 1994, 8(3).
    [5] Berghausen AK, Taylo JC, Hassan HA. Direct simulation of shock front radiation in air. Jouranl of Thermophysics and Heat Transfer, 1996, 10(3).
    [6] Annaloro J, Galera S, Thiebaut C, et al. Aerothermodynamics modelling of complex shapes in the DEBRISK atmospheric reentry tool: methodology and validation. Acta Astronautica, 2020, 171: 388-402 doi: 10.1016/j.actaastro.2020.03.006
    [7] Karimi MS, Oboodi MJ. Investigation and recent developments in aerodynamic heating and drag reduction for hypersonic flows. Heat and Mass Transfer, 2019, 55: 547–569.
    [8] Moreira FC, Wolf W, Azevedo JLF. Convective heat transfer in hypersonic non-equilibrium reactive flows over the fire II reentry capsule. AIAA SCITECH 2022 Forum, 2022, 0344
    [9] Ramjatan S, Lani A, Boccelli S, et al. Blackout analysis of Mars entry missions. Journal of Fluid Mechanics, 2020: 904
    [10] Collen PL. Development of a high-enthalpy ground test facility for shock-layer radiation. Ph. D. thesis. University of Oxford, 2021
    [11] Brandis AM, Cruden BA. NEQAIR v15.0 release notes: Nonequilibrium and equilibrium radiative transport and spectra program. NASA Ames Research Center, 2019.
    [12] Collen PL, Satchell M, di Mare L, et al. Analysis of shock deceleration effects on radiation experiments in the NASA electric arc shock tube. AIAA SCITECH 2022 Forum, 2022: 0267
    [13] Park C. Nonequilibrium Air Radiation (NEQAIR) Program: Users Manual. NASA TM, 1985.
    [14] Wang A, Modest MF. Investigation of radiative transfer by photon monte carlo methods in discrete particle fields. Journal of Heat Transfer, 2006, 128: 1041-1049.
    [15] Ozawa T, Wang A, Modest M, et al. Development of a coupled DSMC particle photon monte carlo method forsimulating atomic radiation in hypersonic reentry flows. AIAA, 2008: 3916
    [16] 周金伟, 李吉成, 石志广等. 高超声速飞行器红外可探测性能研究. 光学学报, 2015, 35(5) (Zhou Jinwei, Li Jicheng, Shi Zhiguang, et al. Research of infrared detectability of hypersonic vehicle. Acta Optica Sinica, 2015, 35(5) (in Chinese)
    [17] 何苹, 王莹莹, 樊雷. 临近空间超声速飞行器红外辐射特性分析. 红外技术, 2019, 41(12) (He Ping, Wang Yinyin, Fan Lei. Infrared radiation characteristics of near space hypersonic vehicles. Infrared Technology, 2019, 41(12) (in Chinese)
    [18] 周方方, 张二磊, 陈宜峰. 临近空间高超声速飞行器红外特性建模仿真. 红外技术, 2017, 39(8) (Zhou Fangfang, Zhang Erlei, Chen Yifeng. Infrared simulation of near space hypersonic vehicle. Infrared Technology, 2017, 39(8) (in Chinese)
    [19] 郝景科, 艾邦成, 吕俊明等. 高超声速再入飞船气体热辐射计算边界虚网格方法. 航空动力学报, 2017, 32(8) (Hao Jingke, Ai Bangcheng, Lu Junming, et al. Boundary ghost cell method for gas heat radiation calculation of hypersonic re-entry spacecraft. Journal of Aerospace Power, 2017, 32(8) (in Chinese)
    [20] Brandis A, Johnston C, Cruden B. Non-equilibrium radiation for Earth entry. AIAA, 2016, 3690.
    [21] Brandis A, Cruden B. Titan atmospheric entry radiative heating. AIAA, 2017, 4534.
    [22] Cruden B, Brandis A. Measurement and prediction of radiative non-equilibrium for air shocks between 7-9 km/s. AIAA, 2017, 4535
    [23] Brandis AM, Johnston CO, Cruden BA, et al. Equilibrium radiative heating from 9.5 to 15.5 km/s for earth atmospheric entry. Journal of Thermophysics and Heat Transfer, 2017, 31(1): 178-192 doi: 10.2514/1.T4878
    [24] 方明, 杜波强, 李中华等. 含电离化学反应DSMC模拟的稀有组分权重因子方法. 空气动力学学报, 2018, 37(5) (Fang Ming, Du Boqing, Li Zhonghua, et al. Weighting scheme for rare species in DSMC simulation involving ionization chemical reactions. Acta Aerodynamic Sinica, 2018, 37(5) (in Chinese)
    [25] Bird GA. Direct Simulation of typical AVTO entry flows. AIAA, 1987, 86-1310.
    [26] 朱正和. 原子分子反应静力学. 北京: 科学出版社, 1996

    Zhu Zhenghe. Atomic and Molecular reaction statics. Beijing: Science Press, 1996(in Chinese))
    [27] 沈青. 稀薄气体分子动力学. 北京: 国防工业出版社, 2003

    Shen Qing. Rarefied gas molecular dynamics. Beijing: National Defense Industry Press, 2003 (in Chinese)
    [28] Boyd ID. Modeling Backward Chemical Rate Processes in the direct simulation monte carlo method. Physics of Fluids, 2007, 19(12)
    [29] Scanlon T, White C, Borg MK, et al. Open-Source direct simulation monte carlo chemistry modeling for hypersonic flows. AIAA journal, 2015, 53(6): 1670-1680 doi: 10.2514/1.J053370
    [30] Bird GA. Simulation of multi-dimensional and chemically reacting flows(past Space Shuttle orbiter). Rarefied Gas Dynamics, 1979: 365-388
    [31] Bird GA. The QK model for gas-phase chemical reaction rates. Physics of Fluids, 2011, 23(10).
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  28
  • HTML全文浏览量:  12
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-25
  • 录用日期:  2022-04-24
  • 网络出版日期:  2022-04-18

目录

    /

    返回文章
    返回