EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于修正光滑粒子流体动力学算法的低能量耗散数值波浪水池开发

黄晓婷 孙鹏楠 吕鸿冠 钟诗蕴

黄晓婷, 孙鹏楠, 吕鸿冠, 钟诗蕴. 基于修正光滑粒子流体动力学算法的低能量耗散数值波浪水池开发. 力学学报, 2022, 54(6): 1502-1515 doi: 10.6052/0459-1879-22-041
引用本文: 黄晓婷, 孙鹏楠, 吕鸿冠, 钟诗蕴. 基于修正光滑粒子流体动力学算法的低能量耗散数值波浪水池开发. 力学学报, 2022, 54(6): 1502-1515 doi: 10.6052/0459-1879-22-041
Huang Xiaoting, Sun Pengnan, Lü Hongguan, Zhong Shiyun. Development of a numerical wave tank with a corrected smoothed particle hydrodynamics scheme to reduce nonphysical energy dissipation. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1502-1515 doi: 10.6052/0459-1879-22-041
Citation: Huang Xiaoting, Sun Pengnan, Lü Hongguan, Zhong Shiyun. Development of a numerical wave tank with a corrected smoothed particle hydrodynamics scheme to reduce nonphysical energy dissipation. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1502-1515 doi: 10.6052/0459-1879-22-041

基于修正光滑粒子流体动力学算法的低能量耗散数值波浪水池开发

doi: 10.6052/0459-1879-22-041
基金项目: 国家自然科学基金(12002404, 52171329)和广州市基础与应用基础研究项目(202102020371 )资助
详细信息
    作者简介:

    孙鹏楠, 副教授, 主要研究方向: 光滑粒子流体动力学理论与方法. E-mail: sunpn@mail.sysu.edu.cn

  • 中图分类号: O352

DEVELOPMENT OF A NUMERICAL WAVE TANK WITH A CORRECTED SMOOTHED PARTICLE HYDRODYNAMICS SCHEME TO REDUCE NONPHYSICAL ENERGY DISSIPATION

Funds: The project was supported by the National Natural Science Foundation of China(12002404, 52171329)and Guangzhou Basic and Applied Basic Research Project (202102020371 ).
  • 摘要: 目前, 无网格光滑粒子流体动力学SPH粒子法在波浪与结构物相互作用研究方面得到广泛应用, 但该方法模拟波浪远距离传播时, 常常面临严重的能量耗散问题, 导致波高非物理性降低, 给大范围海域、长时间作用下的波-物耦合作用研究带来一定困难. 对此, 本文采用一种核函数修正算法, 在确保粒子间相互作用对称性的同时, 改进压力梯度离散项的计算精度, 设法解决SPH方法中能量非物理性耗散的难题. 相较于前人减缓能量非物理性衰减的方法, 本文的修正SPH算法避免了自由液面搜索等复杂处理过程, 并能保证动量守恒特性. 数值结果中, 采用振荡液滴、规则波、不规则波等算例, 验证本修正SPH算法的准确性和有效性. 结果表明, 该修正SPH算法能准确模拟振荡液滴形态变化, 且动能保持较好守恒性. 通过数值水池与物理水池两者规则波与不规则波结果的对比分析表明, 基于本文修正SPH算法建立的数值波浪水池具有较好的抗能量衰减效果, 能实现长时间、远距离波浪传播的准确模拟. 此外, 本算法能在低光滑长度系数条件下, 实现精确模拟, 将极大缩减三维SPH模拟的时间, 从而节约计算成本.

     

  • 图  1  振荡液滴初始速度分布

    Figure  1.  Initial velocity distribution

    图  2  振荡液滴初始压力分布

    Figure  2.  Initial pressure distribution

    图  3  不同粒子分辨率下角动量${M_A}$的时历曲线

    Figure  3.  Time evolution of the angular momentum ${M_A}$ with different particle resolutions

    图  4  线动量时历曲线

    Figure  4.  Time evolution of the linear momentum

    图  5  αs = 2.0, 不同粒子分辨率时机械能衰减率${E_{per}}$时历曲线

    Figure  5.  Time evolution of the decay rate of mechanical energy at different particle resolutions with αs = 2.0

    图  6  αs = 1.3(上)和αs = 2.0(下)时, 振荡液滴形态: 理论值(虚线)和SPH结果(压力云图)

    Figure  6.  With smoothing length coefficient αs =1.3 (top) and αs = 2.0 (bottom), the shapes of oscillating droplet: theoretical results (dash line) and SPH results (pressure contour)

    图  7  δ-SPH与δ-SPHC动能比较: 总体图(上)与局部放大图(下), 其中黑矩形框为放大区域

    Figure  7.  The comparison between time evolutions of kinetic energy between δ-SPH (top) and δ-SPHC (bottom), an enlarged zone view of the results in the dark rectangle is shown in the bottom panel

    图  8  振荡液滴粒子分布

    Figure  8.  Particle distribution of oscillating droplet

    图  9  不同算法和光滑长度系数下, 振荡液滴机械能衰减率时历曲线

    Figure  9.  Time evolution of the decay rate of mechanical energy for the oscillating droplet with different SPH models and different smoothing length coefficient

    图  10  中山大学波浪试验水槽

    Figure  10.  Experimental wave tank in Sun Yat-sen University

    图  11  造波推板横向位移随时间变化: (a)周期为T = 1 s的规则波, (b)不规则波

    Figure  11.  Paddle motions of the regular wave with (a) period T = 1 s and (b) irregular wave

    图  12  SPH数值水池示意图, 红竖线表示波高仪, 选取距离波高仪一个粒子间距内自由面粒子的最大高度为波面高度

    Figure  12.  Schematic diagram of the numerical wave tank, the red vertical line represents wave gage. Maximum height of the free-surface particle within one-particle distance from the red line is measured to represent the wave elevation

    图  13  ${\alpha _s}$=2.0时, 不同粒子分辨率下波面高度的δ-SPH模拟值与试验值对比

    Figure  13.  Comparison of the wave elevations between δ-SPH results and experimental data, SPH results with different particle resolutions and ${\alpha _s} = 2.0$ are provided

    图  14  ${\alpha _s}$= 1.3, $d/\Delta x$ = 60条件下, 传统δ-SPH模拟的波面形态

    Figure  14.  Wave surface simulated by δ-SPH method with ${\alpha _s}$= 1.3 and $d/\Delta x$= 60

    图  15  ${\alpha _s} = 1.3$, $d/\Delta x$= 60条件下, 传统δ-SPH模型计算的不同位置波面高度时历曲线

    Figure  15.  Wave elevation probed at different positions simulated by δ-SPH method with ${\alpha _s} = 1.3$ and $d/\Delta x$= 60

    图  16  ${\alpha _s} = 2.0$, $d/\Delta x$ = 60条件下, 传统δ-SPH模拟的波面形态

    Figure  16.  Wave surface simulated by δ-SPH method with ${\alpha _s}$= 2.0 and $ d/\Delta x $= 60

    图  17  ${\alpha _s}$= 2.0, $ d/\Delta x $= 60条件下, 传统δ-SPH模拟的不同位置波面高度时历曲线

    Figure  17.  Wave elevation probed at different positions simulated by δ-SPH method with ${\alpha _s}$= 2.0 and $d/\Delta x$= 60

    图  18  αs = 1.3和$d/\Delta x$= 15, 30, 60条件下, δ-SPHC计算的波面高度时历曲线与试验值对比

    Figure  18.  Comparison between δ-SPHC results and experimental data for wave elevation: SPH results with αs = 1.3 and $d/\Delta x$= 15, 30, 60

    图  19  αs = 2.0和$d/\Delta x$=15, 30, 60条件下, δ-SPHC计算的波面高度时历曲线与试验值对比

    Figure  19.  Comparison between δ-SPHC results and experimental data for wave elevation: SPH results with αs = 2.0 and $d/\Delta x$= 15, 30, 60

    图  20  ${x_{{\rm{probe}}}}$=2.37 m处, 不同SPH算法下的波面高度数值结果与试验值对比

    Figure  20.  Comparison between different SPH simulations and experimental data for wave elevations at${x_{{\rm{probe}}}}$= 2.37 m

    图  21  规则波压力云图(δ-SPHC, ${\alpha _s}$= 2.0, $d/\Delta x$= 60)

    Figure  21.  Pressure contour of regular wave (δ-SPHC, ${\alpha _s}$= 2.0, $d/\Delta x$= 60)

    图  22  ${\alpha _s}$=1.3, $d/\Delta x$ = 60时, δ-SPHC算法模拟的波面形态

    Figure  22.  The wave surface simulated by δ-SPHC with ${\alpha _s}$= 1.3 and $d/\Delta x$= 60

    图  23  ${\alpha _s}$=1.3, $d/\Delta x$ =60时, δ-SPHC模拟的不同位置波面高度时历曲线

    Figure  23.  Wave elevations probed at different positions simulated by δ-SPHC method with ${\alpha _s}$= 1.3 and $d/\Delta x$= 60

    图  24  ${\alpha _s}$=2.0, $d/\Delta x$ =60时, δ-SPHC算法模拟的波面形态

    Figure  24.  The wave surface simulated by δ-SPHC with${\alpha _s}$= 2.0 and $d/\Delta x$=60

    图  25  ${\alpha _s}$= 2.0, $d/\Delta x$ = 60时, δ-SPHC模拟的不同位置波面高度时历曲线

    Figure  25.  Wave elevations probed at different positions simulated by δ-SPHC method with ${\alpha _s}$= 2.0 and $d/\Delta x$= 60

    图  26  ${x_{{\rm{probe}}}}$= 6.37 m处, 规则波波面高度数值模拟结果与试验结果

    Figure  26.  Time evolution of the regular wave elevation at ${x_{{\rm{probe}}}}$= 6.37 m: SPH results and experimental data

    图  27  δ-SPHC在不同黏性系数α时, ${x_{{\rm{probe}}}}$ = 6.37 m处波面高度时历曲线

    Figure  27.  Time history of wave elevation at ${x_{{\rm{probe}}}}$= 6.37 m simulated by δ-SPHC with different α

    图  28  ${\alpha _s}$=1.3和不同粒子分辨率条件下, 不规则波δ-SPHC模拟结果的收敛性分析

    Figure  28.  Convergence analysis of irregular waves simulated by δ-SPHC with αs=1.3 at different particle resolutions

    图  29  不规则波压力云图(δ-SPHC, ${\alpha _s}$=2.0, $d/\Delta x$=60)

    Figure  29.  Pressure contour of irregular wave (δ-SPHC, ${\alpha _s}$=2.0, $d/\Delta x$=60)

    图  30  $ x_{\text {probe }} $= 6.37处, 不规则波的波面高度时历曲线

    Figure  30.  Time evolution of the irregular wave elevation measured at ${x_{{\rm{probe}}}}$= 6.37 m

    表  1  δ-SPH算法与δ-SPHC算法计算效率比较

    Table  1.   Comparison of computational efficiency between δ-SPH and δ-SPHC schemes

    SchemeCPU time
    of single step/s
    t2/t1
    δ-SPHt1 = 0.59631.09
    δ-SPHCt2 = 0.6576 1.09
    下载: 导出CSV

    表  2  不同算法在${{\boldsymbol{x}}_{{\bf{probe}}}}$= 6.37 m 处平均波高对比

    Table  2.   Comparison of average wave heights probed at 6.37 m simulated with different methods

    MethodExp.δ-SPH, αs = 1.3δ-SPH, αs = 2.0δ-SPHC, αs = 1.3δ-SPHC, αs = 2.0
    wave height H/m0.04280.02240.03970.04190.0427
    relative error $\varepsilon $/%47.667.242.100.23
    下载: 导出CSV
  • [1] Luo M, Khayyer A, Lin P. Particle methods in ocean and coastal engineering. Applied Ocean Research, 2021, 114: 102734 doi: 10.1016/j.apor.2021.102734
    [2] Grilli ST, Vogelmann S, Watts P. Development of a 3D numerical wave tank for modeling tsunami generation by underwater landslides. Engineering Analysis with Boundary Elements, 2002, 26(4): 301-313 doi: 10.1016/S0955-7997(01)00113-8
    [3] Sung HG. BEM computations of 3D fully nonlinear free-surface flows caused by advancing surface disturbances. International Journal of Offshore and Polar Engineering, 2008, 18(4): 292-301
    [4] Baudic SF, Williams AN, Kareem A. A two-dimensional numerical wave flume—Part 1: Nonlinear wave generation, propagation, and absorption. Journal of Offshore Mechanics and Arctic Engineering, 2001, 123(2): 70-75 doi: 10.1115/1.1365117
    [5] 曹洪建, 万德成. 基于naoe-FOAM-SJTU求解器构建三维数值波浪水池. 复旦学报(自然科学版), 2013, 52(5): 627-634 (Cao Hongjian, Wan Decheng. Three-dimensional numerical wave tank based on naoe-FOAM-SJTU solver. Journal of Fudan University (Natural Science), 2013, 52(5): 627-634 (in Chinese)

    Cao Hongjian, Wan decheng. Three-dimensional numerical wave tank based on naoe-FOAM-SJTU solver. Journal of Fudan University (Natural Science), 2013, 52(05): 627-634 (in Chinese)
    [6] 董志, 詹杰民. 基于VOF方法的数值波浪水槽以及造波、消波方法研究. 水动力学研究与进展: A辑, 2009, 24(1): 15-21 (Dong Zhi, Zhan Jiemin. Comparison of existing methods for wave generating and absorbing in VOF-based numerical tank. Chinese Journal of Hydrodynamics, 2009, 24(1): 15-21 (in Chinese)

    Dong Zhi, Zhan Jiemin. Comparison of existing methods for wave generating and absorbing in VOF-based numerical tank. Chinese Journal of Hydrodynamics, 2009, 24(1): 15-21 (in Chinese)
    [7] Hirt CW, Nichols BD. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 1981, 39(1): 201-225 doi: 10.1016/0021-9991(81)90145-5
    [8] Huang C, Zhang DH, Si YL, et al. Coupled finite particle method for simulations of wave and structure interaction. Coastal Engineering, 2018, 140: 147-160
    [9] Ye T, Pan D, Huang C, et al. Smoothed particle hydrodynamics (SPH) for complex fluid flows: recent developments in methodology and applications. Physics of Fluids, 2019, 31(1): 011301 doi: 10.1063/1.5068697
    [10] Zhang A, Sun P, Ming F, et al. Smoothed particle hydrodynamics and its applications in fluid-structure interactions. Journal of Hydrodynamics, Ser. B, 2017, 29(2): 187-216 doi: 10.1016/S1001-6058(16)60730-8
    [11] Liu M, Zhang ZL. Smoothed particle hydrodynamics (SPH) for modeling fluid-structure interactions. Science China: Physics, Mechanics and Astronomy, 2019, 62(8): 5-42
    [12] 张华, 邵颂东. 水流结构相互作用的粒子法数值仿真. 水利水电技术, 2006, 9: 44-47

    Zhang Hua, Shao Songdong. Numerical simulation for fluid-structure interaction with particle method. Water Resources and Hydropower Engineering, 2006, 9: 44-47 (in Chinese)
    [13] Guilcher PM, Ducorzet G, Alessandrini B, et al. Water wave propagation using SPH models//Proceedings 2nd International Spheric Workshop, 2007: 119-122
    [14] Omidvar P, Norouzi H, Zarghami A. Smoothed particle hydrodynamics for water wave propagation in a channel. International Journal of Modern Physics C, 2015, 26(8): 1550085 doi: 10.1142/S0129183115500850
    [15] Antuono M, Colagrossi A, Marrone S, et al. Propagation of gravity waves through an SPH scheme with numerical diffusive terms. Computer Physics Communications, 2011, 182(4): 866-877
    [16] Colagrossi A, Souto-Iglesias A, Antuono M, et al. Smoothed-particle-hydrodynamics modeling of dissipation mechanisms in gravity waves. Physical Review E, 2013, 87(2): 023302 doi: 10.1103/PhysRevE.87.023302
    [17] Zhang DH, Shi YX, Huang C, et al. SPH method with applications of oscillating wave surge converter. Ocean Engineering, 2018, 152: 273-285 doi: 10.1016/j.oceaneng.2018.01.057
    [18] Macià F, Colagrossi A, Antuono M, et al. Benefits of using a Wendland kernel for free-surface flows//Proceedings of 6th Ercoftac Spheric Workshop on SPH Applications, 2011: 30-37
    [19] Meng Z, Zhang A, Wang P, et al. A targeted essentially non-oscillatory (TENO) SPH method and its applications in hydrodynamics. Ocean Engineering, 2022, 243: 110100 doi: 10.1016/j.oceaneng.2021.110100
    [20] Liu GR, Liu MB. Smoothed Particle Hydrodynamics: A Meshfree Particle Method. World Scientific, 2003
    [21] Bonet J, Lok T. Variational and momentum preservation aspects of smooth particle hydrodynamic formulations. Computer Methods in Applied Mechanics & Engineering, 1999, 180(1-2): 97-115
    [22] Wen H, Ren B, Yu X. An improved SPH model for turbulent hydrodynamics of a 2D oscillating water chamber. Ocean Engineering, 2018, 150: 152-166 doi: 10.1016/j.oceaneng.2017.12.047
    [23] Zago V, Schulize LJ, Bilotta G, et al. Overcoming excessive numerical dissipation in SPH modeling of water waves. Coastal Engineering, 2021, 170: 104018 doi: 10.1016/j.coastaleng.2021.104018
    [24] Marrone S, Antuono M, Colagrossi A, et al. δ-SPH model for simulating violent impact flows. Computer Methods in Applied Mechanics and Engineering, 2011, 200(13-16): 1526-1542 doi: 10.1016/j.cma.2010.12.016
    [25] Liu MB, Liu GR. Smoothed particle hydrodynamics (SPH): An overview and recent developments. Archives of Computational Methods in Engineering, 2010, 17(1): 25-76 doi: 10.1007/s11831-010-9040-7
    [26] 顾声龙, 吴玉帅, 解宏伟等. 基于CSPM方法对二维管嘴出流的数值模拟. 水利水电技术, 2016, 47(9): 39-43 (Gu Shenglong, Wu Yushuai, Jie Hongwei, et al. CSPM method-based numerical simulation on outflow from 2-D pipe nozzle. Water Resources and Hydropower Engineering, 2016, 47(9): 39-43 (in Chinese)

    Gu Shenglong, Wu Yushuai, Jie Hongwei et al. . CSPM method-based numerical simulation on outflow from 2-D pipe nozzle. Water Resources and Hydropower Engineering, 2016, 47(09): 39-43 (in Chinese)
    [27] 刘谋斌, 宗智, 常建忠. 光滑粒子动力学方法的发展与应用. 力学进展, 2011, 41(2): 217-234

    Liu Moubin, Zong Zhi, Chang Jianzhong. Developments and applications of smoothed particle hydrodynamics, Advances in Mechanics, 2011, 41(02): 217-234 (in Chinese)
    [28] Sun PN, Le Touze D, Oger G, et al. An accurate FSI-SPH modeling of challenging fluid-structure interaction problems in two and three dimensions. Ocean Engineering, 2021, 221: 108552 doi: 10.1016/j.oceaneng.2020.108552
    [29] Oger G, Doring M, Alessandrini B, et al. An improved SPH method: Towards higher order convergence. Journal of Computational Physics, 2007, 225(2): 1472-1492 doi: 10.1016/j.jcp.2007.01.039
    [30] Ganzenmüller GC, Hiermaier S, May M. On the similarity of meshless discretizations of peridynamics and smooth-particle hydrodynamics. Computers & Structures, 2015, 150: 71-78
    [31] Lyu HG, Deng R, Sun PN, et al. Study on the wedge penetrating fluid interfaces characterized by different density-ratios: Numerical investigations with a multi-phase SPH model. Ocean Engineering, 2021, 237: 109538
    [32] 杨秋足, 徐绯, 王璐等. 一种基于黎曼解处理大密度比多相流SPH的改进算法. 力学学报, 2019, 51(3): 730-742

    Yang Qiuzu, Xu Fei, Wang Lu, et al. An improved SPH algorithm for large density ratios multiphase flows based on riemann solution, Chinese Journal of Theoretical and Applied 2019, 51(3): 730-742 (in Chinese)
    [33] Antuono M, Marrone S, Colagrossi A, et al. Energy balance in the δ-SPH scheme. Computer Methods in Applied Mechanics and Engineering, 2015, 289: 209-226 doi: 10.1016/j.cma.2015.02.004
    [34] Colagrossi A, Bouscasse B, Antuono M, et al. Particle packing algorithm for SPH schemes. Computer Physics Communications, 2012, 183(8): 1641-1653 doi: 10.1016/j.cpc.2012.02.032
    [35] Antuono M, Colagrossi A, Marrone S, et al. Free-surface flows solved by means of SPH schemes with numerical diffusive terms. Computer Physics Communications, 2010, 181(3): 532-549 doi: 10.1016/j.cpc.2010.12.012
    [36] Cui J, Chen X, Sun P. Numerical investigation on the hydrodynamic performance of a new designed breakwater using smoothed particle hydrodynamic method. Engineering Analysis with Boundary Elements, 2021, 130: 379-403 doi: 10.1016/j.enganabound.2021.05.007
    [37] Adami S, Hu XY, Adams NA. A generalized wall boundary condition for smoothed particle hydrodynamics. Journal of Computational Physics, 2012, 231(21): 7057-7075 doi: 10.1016/j.jcp.2012.05.005
  • 加载中
图(30) / 表(2)
计量
  • 文章访问数:  696
  • HTML全文浏览量:  200
  • PDF下载量:  204
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-21
  • 录用日期:  2022-04-11
  • 网络出版日期:  2022-04-12
  • 刊出日期:  2022-06-18

目录

    /

    返回文章
    返回