EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

绕水翼空化流动多尺度数值研究

田北晨 李林敏 陈杰 黄彪 曹军伟

田北晨, 李林敏, 陈杰, 黄彪, 曹军伟. 绕水翼空化流动多尺度数值研究. 力学学报, 2022, 54(6): 1557-1571 doi: 10.6052/0459-1879-22-022
引用本文: 田北晨, 李林敏, 陈杰, 黄彪, 曹军伟. 绕水翼空化流动多尺度数值研究. 力学学报, 2022, 54(6): 1557-1571 doi: 10.6052/0459-1879-22-022
Tian Beichen, Li Linmin, Chen Jie, Huang Biao, Cao Junwei. Numerical study of multiscale cavitating flow around a hydrofoil. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1557-1571 doi: 10.6052/0459-1879-22-022
Citation: Tian Beichen, Li Linmin, Chen Jie, Huang Biao, Cao Junwei. Numerical study of multiscale cavitating flow around a hydrofoil. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1557-1571 doi: 10.6052/0459-1879-22-022

绕水翼空化流动多尺度数值研究

doi: 10.6052/0459-1879-22-022
基金项目: 国家自然科学基金(52079004, 52006197)和北京市自然科学基金(3212023)资助项目
详细信息
    作者简介:

    李林敏, 副教授, 主要研究方向: 多尺度多相流数值计算方法. E-mail: lilinmin@zstu.edu.cn

    黄彪, 教授, 主要研究方向: 多相流体动力学. E-mail: huangbiao@bit.edu.cn

  • 中图分类号: O357.5

NUMERICAL STUDY OF MULTISCALE CAVITATING FLOW AROUND A HYDROFOIL

  • 摘要: 空化的多尺度效应是一种涉及连续介质尺度、微尺度空化泡以及不同尺度间相互转化的复杂水动力学现象, 跨尺度模型的构建是解析该多尺度现象的关键. 本文基于欧拉-拉格朗日联合算法, 通过界面捕捉法求解欧拉体系下大尺度空穴演化, 通过拉格朗日体系下离散空泡模型求解亚网格尺度离散空泡的运动及生长溃灭. 同时, 通过判断空泡与网格尺度间的关系判定不同尺度空化泡的求解模型. 基于建立的多尺度算法对绕NACA66水翼空化流动进行模拟, 将数值结果与实验进行对比, 验证了数值计算方法的准确性. 研究结果表明, 离散空泡数量与空化发展阶段密切相关, 在附着型片状空穴生长阶段, 离散空泡数量波动较小, 离散空泡主要分布在气液交界面位置; 在回射流发展阶段, 离散空泡逐渐增加并分布在回射流扰动区; 在云状空穴溃灭阶段, 离散空泡数量增多且主要分布在气液掺混剧烈的空化云团溃灭区. 在各空化发展阶段, 离散空泡直径概率密度函数均符合伽玛分布. 空化湍流流场特性对拉格朗日空泡空间分布具有重要影响, 离散空泡主要分布在强湍脉动区、旋涡及回射流发展区域.

     

  • 图  1  欧拉−拉格朗日转换过程动量源项耦合示意图

    Figure  1.  Schematic of the process of the momentum source term coupling during Euler−Lagrange transforms

    图  2  欧拉−拉格朗日模型计算流程图

    Figure  2.  Flow diagram of Euler−Lagrange model

    图  3  计算域及边界条件设置

    Figure  3.  Computational domain and boundary conditions

    图  4  计算域网格划分

    Figure  4.  Computational domain mesh

    图  5  相同计算时刻水翼吸力面y+ 分布

    Figure  5.  The y+ value distributions on the suction side of hydrofoil at the same calculation time

    图  6  典型周期绕水翼多尺度空泡时空演化(气相体积分数αv = 0.1)

    Figure  6.  Spatial-temporal evolution of multiscale cavitation around hydrofoil on typical period (αv = 0.1)

    图  7  空泡欧拉−拉格朗日多尺度转化及演变过程

    Figure  7.  The process of transition and evolution between Euler−Lagrangian frame of bubble

    图  8  水翼升力系数及振动位移频谱对比

    Figure  8.  Comparison of lift coefficient and vibration displacement spectrum of hydrofoil

    图  9  单周期内空泡数变化曲线

    Figure  9.  Variation of the number of bubbles in one cycle

    图  10  微尺度空泡数密度谱

    Figure  10.  Microscale cavitation number density spectrum

    图  11  离散空泡群索特直径及微尺度空泡期望直径随时间变化曲线

    Figure  11.  Sauter diameter of discrete cavitation group and expected diameter of microscale bubble verse time

    图  12  附着型空泡生长阶段不同尺度离散空泡数概率密度分布云图

    Figure  12.  The probability density of discrete cavitation numbers at different scales during the stage of the growth of attached cavity

    图  13  回射流发展阶段不同尺度离散空泡数概率密度分布云图

    Figure  13.  The probability density of discrete cavitation numbers at different scales during the stage of the development of re-entrant jet

    图  14  云状空化脱落阶段不同尺度离散空泡数概率密度沿水翼分布云图

    Figure  14.  The probability density of discrete cavitation numbers at different scales during the stage of the cloud sheds

    15  附着型空泡生长阶段湍流流场特性

    15.  Characteristics of turbulent flow field during the stage of the growth of attached cavity

    15  附着型空泡生长阶段湍流流场特性(续)

    15.  Characteristics of turbulent flow field during the stage of the growth of attached cavity (continued)

    16  云状空化脱落阶段不同尺度离散空泡数概率密度沿水翼分布云图

    16.  The probability density of discrete cavitation numbers at different scales during the stage of the cloud sheds

    16  云状空化脱落阶段不同尺度离散空泡数概率密度沿水翼分布云图(续)

    16.  The probability density of discrete cavitation numbers at different scales during the stage of the cloud sheds (continued)

    17  云状空化脱落阶段湍流流场特性

    17.  Characteristics of turbulent flow field during the stage of the cloud sheds

    17  云状空化脱落阶段湍流流场特性(续)

    17.  Characteristics of turbulent flow field during the stage of the cloud sheds (continued)

    表  1  网格数、$x^+ $$z^+ $

    Table  1.   Number of grids, x+ and $z^+$ values

    Grid number/106x + z +
    MeshⅠ2.3522052
    MeshⅡ4.78922.5
    Mesh Ⅲ6.77516
    下载: 导出CSV
  • [1] Wang GY, Senocak I, Shyy W, et al. Dynamics of attached turbulent cavitating flows. Progress in Aerospace Sciences, 2001, 37(6): 551-581 doi: 10.1016/S0376-0421(01)00014-8
    [2] Li LM, Huo YK, Wang ZD, et al. Large eddy simulation of tip-leakage cavitating flow using a multiscale cavitation model and investigation on model parameters. Physics of Fluids, 2021, 33: 092104 doi: 10.1063/5.0060590
    [3] Wu WB, Liu YL, Zhang AM, et al. Numerical investigation on underwater explosion cavitation characteristics near water wave. Ocean Engineering, 2020, 205: 107321 doi: 10.1016/j.oceaneng.2020.107321
    [4] Yang J, Xie T, Liu XH, et al. Study of unforced unsteadiness in centrifugal pump at partial flow rates. Journal of Thermal Science, 2021, 30: 88-99 doi: 10.1007/s11630-019-1241-2
    [5] 王巍, 张庆典, 唐滔等. 射流对绕水翼云空化流动抑制机理研究. 力学学报, 2020, 52(1): 12-23 (Wang Wei, Zhang Qingdian, Tang Tao, et al. Mechanism investigation of water injection on suppressing hydrofoil cloud cavitation flow. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 12-23 (in Chinese) doi: 10.6052/0459-1879-19-282

    Wang Wei, Zhang Qingdian, Tang Tao, et al. Mechanism investigation of water injection on suppressing hydrofoil cloud cavitation flow. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 12-23 (in Chinese) doi: 10.6052/0459-1879-19-282
    [6] Wang ZH, Zhang B. In-situ study on cavitation erosion behavior of super ferritic stainless steel. Wear, 2021, 482-483: 203986 doi: 10.1016/j.wear.2021.203986
    [7] Wu PF, Wang XM, Lin WJ, et al. Acoustic characterization of cavitation intensity: A review. Ultrasonics Sonochemistry, 2022, 82: 105878 doi: 10.1016/j.ultsonch.2021.105878
    [8] 王畅畅, 王国玉, 黄彪等. 可压缩空化流动空穴演化及压力脉动特性实验研究. 力学学报, 2019, 51(5): 1296-1309 (Wang Changchang, Wang Guoyu, Huang Biao, et al. Experimental investigation of cavitation characteristics and dynamics in compressible turbulent cavitating flows. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1296-1309 (in Chinese) doi: 10.6052/0459-1879-19-128

    Wang Changchang, Wang Guoyu, Huang Biao, et al. Experimental investigation of cavitation characteristics and dynamics in compressible turbulent cavitating flows. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1296-1309 (in Chinese) doi: 10.6052/0459-1879-19-128
    [9] 高远, 黄彪, 吴钦等. 绕水翼空化流动及振动特性的实验研究. 力学学报, 2015, 47(6): 1009-1016 (Gao Yuan, Huang Biao, Wu Qin, et al. Experimental investigation of the vibration characteristics of hydrofoil in cavitating flow. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6): 1009-1016 (in Chinese) doi: 10.6052/0459-1879-15-173

    Gao Yuan, Huang Biao, Wu Qin, et al. Experimental investigation of the vibration characteristics of hydrofoil in cavitating flow. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6): 1009-1016 (in Chinese) doi: 10.6052/0459-1879-15-173
    [10] Tsuru W, Konishi T, Watanabe S, et al. Observation of inception of sheet cavitation from free nuclei. Journal of Thermal Science, 2017, 26: 223-228 doi: 10.1007/s11630-017-0933-8
    [11] Khoo MT, Venning JA, Pearce BW, et al. Statistical aspects of tip vortex cavitation inception and desinence in a nuclei deplete flow. Experiments in Fluids, 2020, 61: 145-158 doi: 10.1007/s00348-020-02967-x
    [12] Stutz B, Reboud JL. Measurements within unsteady cavitation. Experiments in Fluids, 2000, 29: 545-552 doi: 10.1007/s003480000122
    [13] Kubota A, Kato H, Yamaguchi H, et al. Unsteady structure measurement of cloud cavitation on a foil section using conditional sampling technique. Journal of Fluids Engineering, 1989, 111: 204-210 doi: 10.1115/1.3243624
    [14] Kawanami Y, Kato H, Yamauchi H, et al. , Mechanism and control of cloud cavitation. Journal of Fluids Engineering, 1997, 119(4): 788-794 doi: 10.1115/1.2819499
    [15] Maeda M, Yamaguchi H, Kato H. Laser holography measurement of bubble population in cavitation cloud on a foil section//1st Joint ASME/JSME Fluid Engineering Conference, Portland, FED, 1991, 116: 67-75
    [16] Wu Q, Huang B, Wang GY, et al, The transient characteristics of cloud cavitating flow over a flexible hydrofoil. International Journal of Multiphase Flow, 2018, 99: 162-173
    [17] Huang B, Young YL, Wang G, et al. Combined experimental and computational investigation of unsteady structure of sheet/cloud cavitation. Journal of Fluids Engineering, 2013, 135(7): 071301 doi: 10.1115/1.4023650
    [18] 程怀玉, 季斌, 龙新平等. 空化对叶顶间隙泄漏涡演变特性及特征参数影响的大涡模拟研究. 力学学报, 2021, 53(5): 1268-1287

    Cheng Huaiyu, Ji Bin, Long Xinping, et al. LES investigation on the influence of cavitation on the evolution and characteristics of tip leakage vortex. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1268-1287 (in Chinese)
    [19] 谢庆墨, 陈亮, 张桂勇等. 基于动力学模态分解法的绕水翼非定常空化流场演化分析. 力学学报, 2020, 52(4): 1045-1054

    Xie Qingmo, Chen Liang, Zhang Guiyong, et al. Analysis of unsteady cavitation flow over hydrofoil based on dynamic mode decomposition. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 1045-1054 (in Chinese)
    [20] Tomar G, Fuster D, Zaleski S, et al. Multiscale simulations of primary atomization. Computers & Fluids, 2010, 39(10): 1864-1874
    [21] Hsiao CT, Ma J, Chahine GL. Multiscale two-phase flow modeling of sheet and cloud cavitation. International Journal of Multiphase Flow, 2017, 90: 102-117 doi: 10.1016/j.ijmultiphaseflow.2016.12.007
    [22] Li LM, Wang ZD, Li XJ, et al. Very Large eddy simulation of cavitation from inception to sheet/cloud regimes by a multiscale model. China Ocean Engineering, 2021, 35(3): 361-371 doi: 10.1007/s13344-021-0033-0
    [23] Li LM, Wang ZD, Li XJ, et al. Multiscale modeling of tip-leakage cavitating flows by a combined volume of fluid and discrete bubble model. Physics of Fluids, 2021, 33: 062104 doi: 10.1063/5.0054795
    [24] Ebrahim G, Ström H, Bensow RE. Numerical simulation and analysis of multi-scale cavitating flows. Journal of Fluid Mechanics, 2021, 922(A22): 1-54
    [25] Wang ZY, Cheng HY, Ji B. Euler–Lagrange study of cavitating turbulent flow around a hydrofoil. Physics of Fluids, 2021, 33: 112108 doi: 10.1063/5.0070312
    [26] Brackbill JU, Kothe DB, Zemach C. A continuum method for modeling surface tension. Journal of Computational Physics, 1992, 100(2): 335-354 doi: 10.1016/0021-9991(92)90240-Y
    [27] Nicoud F, Ducros F. Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbulence and Combustion, 1999, 62(3): 183-200 doi: 10.1023/A:1009995426001
    [28] Foeth EJ, Terwisga TV, Doorne CV. On the collapse structure of an attached cavity on a three-dimensional hydrofoil. Journal of Fluid Eengineering, 2008, 130(7): 071303 doi: 10.1115/1.2928345
    [29] Morsi SA, Alexander AJ. An investigation of particle trajectories in two-phase flow systems. Journal of Fluid Mechanics, 1972, 55(2): 193-208 doi: 10.1017/S0022112072001806
    [30] Wang ZD, Li LM, Li XJ, et al. Large eddy simulation of cavitating flow around a twist hydrofoil and investigation on force element evolution using a multiscale cavitation model, Physics of Fluids, 2022, 34: 023303
    [31] Blake FG. Bjerknes forces in stationary sound fields. Journal of the Acoustical Society of America, 1949, 21(5): 551
    [32] Zwart PJ, Gerber AG, Belamri T, A two-phase flow model for predicting cavitation dynamics//Proceedings of Fifth International Conference on Multiphase Flow, Yokohama, Japan, 2004.
    [33] Chesters AK. Modelling of coalescence processes in fluid-liquid dispersions: A review of current understanding. Chemical Engineering Research and Design. 1991, 69: 59-70
    [34] Kamp AM, Chesters AK, Colin C. Bubble coalescence in turbulent flows: a mechanistic model for turbulence-induced coalescence applied to microgravity bubbly pipe flow. International Journal of Multiphase Flow, 2001, 27(8): 1363-1396 doi: 10.1016/S0301-9322(01)00010-6
    [35] Lau YM, Bai W, Deen NG. Numerical study of bubble break-up in bubbly flows using a deterministic Euler –Lagrange framework. Chemical Engineering Science, 2014, 108(28): 9-22
    [36] Giannadakis E, Gavaises M, Arcoumanis C. Modelling of cavitation in diesel injector nozzles. Journal of Fluid Mechanics. 2008, 616(10): 153-193
    [37] Li LM, Ding WY, Xue FF, et al. Multiscale mathematical model with discrete–continuum transition for gas–liquid–slag three-phase flow in gas-stirred ladles. JOM, 2018, 70(12): 2900-2908 doi: 10.1007/s11837-018-3116-5
    [38] Yang RY, Zou RP, Yu AB. Computer simulation of packing of fine particles. Physical Review E, 2000, 62(3): 3900-3908 doi: 10.1103/PhysRevE.62.3900
    [39] Li LM, Li BK, Liu ZQ. Modeling of spout-fluidized beds and investigation of drag closures using OpenFOAM. Powder Technology, 2017, 305: 364-376 doi: 10.1016/j.powtec.2016.10.005
    [40] Davidson L. Large eddy simulations: How to evaluate resolution. International Journal of Heat and Fluid Flow, 2009, 30(5): 1016-1025 doi: 10.1016/j.ijheatfluidflow.2009.06.006
    [41] Yu XM, Hendrickson K, Yue DKP. Scale separation and dependence of entrainment bubble-size distribution in free-surface turbulence. Journal of Fluid Mechanics, 2020, 885(R2): 1-12
    [42] Brocchini M, Peregrine DH. The dynamics of strong turbulence at free surfaces. Part 1. Description. Journal of Fluid Mechanics, 2001, 449(25): 225-254
  • 加载中
图(20) / 表(1)
计量
  • 文章访问数:  546
  • HTML全文浏览量:  158
  • PDF下载量:  144
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-08
  • 录用日期:  2022-03-24
  • 网络出版日期:  2022-03-25
  • 刊出日期:  2022-06-18

目录

    /

    返回文章
    返回