[1] |
Rapp DC, Zurawski RL. Characterization of Aluminum/RP-1 gel propellant properties//24th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Boston, Massachusetts, 1988: 1-21
|
[2] |
Hodge KF, Crofoot TA, Nelson S. Gelled propellants for tactical missile applications//35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Los Angeles, California, 1999: 1-7
|
[3] |
Varma M, Pein R. Optimisation of processing conditions for gel propellant production. International Journal of Energetic Materials and Chemical Propulsion, 2009, 8(6): 501-513 doi: 10.1615/IntJEnergeticMaterialsChemProp.v8.i6.30
|
[4] |
Caldas PP, Hopfe N, Ramsel J, et al. Scalability of gelled propellant rocket motors//7th European Conference for Aeronautics and Space Sciences Milan, Italy, 2017
|
[5] |
Haddad A, Natan B, Arieli R. The performance of a boron-loaded gel-fuel ramjet//Progress in Propulsion Physics, 2012: 499-518
|
[6] |
Baek G, Kim C. Rheological properties of carbopol containing nanoparticles. Journal of Rheology, 2011, 55(2): 313-330 doi: 10.1122/1.3538092
|
[7] |
Globus RH, Vander Wall EM, Cabeal JA. System analysis of gelled space-storable propellants//6th Propulsion Joint Specialist Conference, 1970: 1-8
|
[8] |
Ciezki HK, Naumann KW. Some aspects on safety and environmental impact of the German green gel propulsion technology. Propellants, Explosives, Pyrotechnics, 2016, 41(3): 539-547 doi: 10.1002/prep.201600039
|
[9] |
Natan B, Rahimi S. c. Combustion of Energetic Materials, 2001, 5: 172-194 doi: 10.1615/IntJEnergeticMaterialsChemProp.v5.i1-6.200
|
[10] |
王宝成, 李鑫, 赵凤起等. 凝胶推进剂研究进展. 化学推进剂与高分子材料, 2015, 13(1): 6 (Wang Baocheng, Li Xin, Zhao Fengqi, et al. Research progress of gel propellant. Chinese Journal of Theoretical and Applied Mechanics, 2015, 13(1): 6 (in Chinese)
|
[11] |
闫大庆, 周宏民, 单建胜. 凝胶/膏状推进剂研究发展状况. 火箭推进, 2003, 29(1): 38-46 (Yan Daqing, Zhou Hongmin, Shan Jiansheng. Research and development status of gel/paste propellant. Journal of Rocket Propulsion, 2003, 29(1): 38-46 (in Chinese) doi: 10.3969/j.issn.1672-9374.2003.01.009
|
[12] |
孙瑜. 凝胶推进剂静电雾化行为规律研究. [硕士论文]. 厦门: 厦门大学, 2018Sun Yu. Study on behaviors and rules of electrostatic atomization of gel propellant. [Master Thesis]. Xiamen: Xiamen University, 2018 (in Chinese)
|
[13] |
Dennis JD, Yoon C, Santos PH, et al. Characterization of gelling systems for development of hypergolic gels//4th European Conference for Aerospace Sciences (EUCASS), Saint Petersburg, 2011: 1-15
|
[14] |
Fineman CN. High shear capillary rheometry of gelled hypergolic propellants. [Master Thesis]. West Lafayette: Purdue University, 2012
|
[15] |
Mallory JA, DeFini SJ, Sojka PE. Formulation of gelled propellant simulants//46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Nashville, TN, 2010: 1-9
|
[16] |
Rahimi S, Natan B. Atomization characteristics of gel fuels//34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 1998: 1-14
|
[17] |
Qian J, Law CK. Regimes of coalescence and separation in droplet collision. Journal of Fluid Mechanics, 1997, 331: 59-80
|
[18] |
Finotello G, De S, Vrouwenvelder JCR, et al. Experimental investigation of non-newtonian droplet collisions: the role of extensional viscosity. Experiments in Fluids, 2018, 59(7): 113 doi: 10.1007/s00348-018-2568-2
|
[19] |
Minakov AV, Shebeleva AA, Strizhak PA, et al. Study of the weber number impact on secondary breakup of droplets of coal water slurries containing petrochemicals. Fuel, 2019, 254: 115606 doi: 10.1016/j.fuel.2019.06.014
|
[20] |
Fostiropoulos S, Strotos G, Nikolopoulos N, et al. Numerical investigation of heavy fuel oil droplet breakup enhancement with water emulsions. Fuel, 2020, 278: 118381 doi: 10.1016/j.fuel.2020.118381
|
[21] |
Tavangar S, Hashemabadi SH, Saberimoghadam A. CFD simulation for secondary breakup of coal–water slurry drops using OpenFOAM. Fuel Processing Technology, 2015, 132: 153-163
|
[22] |
Stefanitsis D, Malgarinos I, Strotos G, et al. Numerical investigation of the aerodynamic breakup of diesel and heavy fuel oil droplets. International Journal of Heat and Fluid Flow, 2017, 68: 203-215 doi: 10.1016/j.ijheatfluidflow.2017.10.012
|
[23] |
Jing L, Xu X. Direct numerical simulation of secondary breakup of liquid drops. Chinese Journal of Aeronautics, 2010, 23(2): 153-161 doi: 10.1016/S1000-9361(09)60199-0
|
[24] |
Khare P, Yang V. Breakup of non-newtonian liquid droplets//44th AIAA Fluid Dynamics Conference, 2014
|
[25] |
Gupta A, Sbragaglia M. Deformation and break-up of viscoelastic droplets using Lattice Boltzmann Models. Procedia IUTAM, 2015, 15: 215-227 doi: 10.1016/j.piutam.2015.04.030
|
[26] |
Izbassarov D, Muradoglu M. Effects of viscoelasticity on drop impact and spreading on a solid surface. Physical Review Fluids, 2016, 1(2): 023302 doi: 10.1103/PhysRevFluids.1.023302
|
[27] |
Liu Z, Wu J, Zhen H, et al. Numerical simulation on head-on binary collision of gel propellant droplets. Energies, 2013, 6(1): 204-219 doi: 10.3390/en6010204
|
[28] |
Qian L, Cong H, Zhu C. A numerical investigation on the collision behavior of polymer droplets. Polymers, 2020, 12(2): 263 doi: 10.3390/polym12020263
|
[29] |
Sun K, Zhang P, Law CK, et al. Collision dynamics and internal mixing of droplets of non-newtonian liquids. Physical Review Applied, 2015, 4(5): 054013 doi: 10.1103/PhysRevApplied.4.054013
|
[30] |
Focke C, Bothe D. Computational analysis of binary collisions of shear-thinning droplets. Journal of Non-Newtonian Fluid Mechanics, 2011, 166(14-15): 799-810 doi: 10.1016/j.jnnfm.2011.03.011
|
[31] |
Motzigemba M, Roth N, Bothe D, et al. The effect of non-newtonian flow behaviour on binary droplet collisions: VOF-simulation and experimental analysis//Institute for Liquid Atomization and Spray System-Europe, Zaragoza, 2002
|
[32] |
Focke C, Bothe D. Direct numerical simulation of binary off-center collisions of shear thinning droplets at high Weber numbers. Physics of Fluids, 2012, 24(7): 750-755
|
[33] |
Popinet S. An accurate adaptive solver for surface-tension-driven interfacial flows. Journal of Computational Physics, 2009, 228(16): 5838-5866 doi: 10.1016/j.jcp.2009.04.042
|
[34] |
Fattal R, Kupferman R. Constitutive laws for the matrix-logarithm of the conformation tensor. Journal of Non-Newtonian Fluid Mechanics, 2004, 123(2-3): 281-285 doi: 10.1016/j.jnnfm.2004.08.008
|
[35] |
Fattal R, Kupferman R. Time-dependent simulation of viscoelastic flows at high Weissenberg number using the log-conformation representation. Journal of Non-Newtonian Fluid Mechanics, 2005, 126(1): 23-37 doi: 10.1016/j.jnnfm.2004.12.003
|
[36] |
Hao J, Pan TW. Simulation for high Weissenberg number. Applied Mathematics Letters, 2007, 20(9): 988-993 doi: 10.1016/j.aml.2006.12.003
|
[37] |
Chen XD, Yang V. Direct numerical simulation of multiscale flow physics of binary droplet collision. Physics of Fluids, 2020, 32: 062103 doi: 10.1063/5.0006695
|
[38] |
Sun K, Jia M, Wang TY. Numerical investigation of head-on droplet collision with Lattice Boltzmann Method. International Journal of Heat and Mass Transfer, 2013, 58(1-2): 260-275 doi: 10.1016/j.ijheatmasstransfer.2012.11.014
|