EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Oldroyd-B黏弹性液滴碰撞过程的数值模拟

关新燕 富庆飞 刘虎 杨立军

关新燕, 富庆飞, 刘虎, 杨立军. Oldroyd-B黏弹性液滴碰撞过程的数值模拟. 力学学报, 2022, 54(3): 644-652 doi: 10.6052/0459-1879-22-020
引用本文: 关新燕, 富庆飞, 刘虎, 杨立军. Oldroyd-B黏弹性液滴碰撞过程的数值模拟. 力学学报, 2022, 54(3): 644-652 doi: 10.6052/0459-1879-22-020
Guan Xinyan, Fu Qingfei, Liu Hu, Yang Lijun. Numerical simulation of Oldroyd-B viscoelastic droplet collision. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 644-652 doi: 10.6052/0459-1879-22-020
Citation: Guan Xinyan, Fu Qingfei, Liu Hu, Yang Lijun. Numerical simulation of Oldroyd-B viscoelastic droplet collision. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 644-652 doi: 10.6052/0459-1879-22-020

Oldroyd-B黏弹性液滴碰撞过程的数值模拟

doi: 10.6052/0459-1879-22-020
基金项目: 国家自然科学基金资助项目(11872091)
详细信息
    作者简介:

    富庆飞, 研究员, 主要研究方向: 液体火箭发动机雾化机理. E-mail: fuqingfei@buaa.edu.cn

  • 中图分类号: TQ021.1

NUMERICAL SIMULATION OF OLDROYD-B VISCOELASTIC DROPLET COLLISION

  • 摘要: 复杂的流变特性使凝胶推进剂的雾化过程存在一定困难, 这制约了它的发展. 聚合物胶凝剂的加入使凝胶推进剂具有黏弹性, 从而在雾化时会产生黏弹性液滴, 因此为了进一步认识凝胶推进剂的雾化机理、提高凝胶推进剂的雾化性能, 对黏弹性液滴的碰撞行为进行数值模拟研究. 针对凝胶推进剂雾化过程中出现的液滴撞击现象, 考虑流体具有的黏弹性效应, 采用流体体积法(VOF)、自适应网格细化技术(AMR)和对数构象张量方法相结合, 使用Oldroyd-B本构模型描述液滴的黏弹性, 对两个相等体积的黏弹性液滴的碰撞过程进行直接数值模拟, 主要关注黏弹性液滴的正撞过程, 研究了松弛时间、黏度比、韦伯数对液滴正撞的影响, 并对不同参数下黏弹性液滴的撞击过程进行能量计算, 另外观察了不同偏心度下的液滴碰撞行为. 通过改变撞击速度, 得到了合并和反弹的碰撞结果, 结果表明增大松弛时间有利于合并液滴的挤压和回缩程度, 并且延迟液滴的变形过程, 这与牛顿流体得到的结果不同. 增大黏度比会阻碍合并液滴的振荡行为, 碰撞的偏心程度较大时会出现拉伸旋转, 偏心度越大时拉伸距离越长, 偏心度越小时动能耗散的速率越快, 并且耗散的动能越多.

     

  • 图  1  黏弹性液滴碰撞的计算模型

    Figure  1.  Computational model of viscoelastic droplet collision

    图  2  不同时刻下液滴撞击的自适应网格

    Figure  2.  Adaptive mesh of droplet collision at different time

    图  3  黏弹性液滴的碰撞融合过程(u = 1 m/s)

    Figure  3.  Collision and coalescence process of viscoelastic droplet (u = 1 m/s)

    图  4  液滴尺寸随时间的变化曲线

    Figure  4.  Curve of droplet size over time

    图  5  黏弹性液滴的碰撞反弹过程(u = 0.5 m/s)

    Figure  5.  Collision and bounce process of viscoelastic droplet (u = 0.5 m/s)

    图  6  不同松弛时间λ下液滴最大宽度Dmax随时间的变化

    Figure  6.  The curve of droplet maximum width Dmax with time at different relaxation time λ

    图  7  不同松弛时间λ下动能KE随时间的变化

    Figure  7.  Kinetic energy KE variation curve with time at different relaxation time λ

    图  8  不同松弛时间λ下表面能SE随时间的变化

    Figure  8.  Surface energy SE variation curve with time at different relaxation time λ

    图  9  不同黏度比β下液滴最大宽度Dmax随时间的变化

    Figure  9.  The curve of droplet maximum width Dmax with time at different viscosity ratio β

    图  10  不同黏度比β下动能KE随时间的变化

    Figure  10.  Kinetic energy KE variation curve with time at different viscosity ratio β

    图  11  不同黏度比β下表面能SE随时间的变化

    Figure  11.  Surface energy SE variation curve with time at different viscosity ratio β

    图  12  不同We下液滴最大宽度Dmax随时间的变化

    Figure  12.  The curve of droplet maximum width Dmax with time at different Weber number

    图  13  不同We下动能KE随时间的变化

    Figure  13.  Kinetic energy KE variation curve with time at different Weber number

    图  14  不同We下表面能SE随时间的变化

    Figure  14.  Surface energy SE variation curve with time at different Weber number

    图  15  不同碰撞因子B下液滴的碰撞过程

    Figure  15.  The collision process of droplet under different impact factor B

    图  16  不同B下动能KE随时间的变化

    Figure  16.  Kinetic energy KE variation curve with time at different impact factor B

    图  17  不同B下表面能SE随时间的变化

    Figure  17.  Surface energy SE variation curve with time at different impact factor B

  • [1] Rapp DC, Zurawski RL. Characterization of Aluminum/RP-1 gel propellant properties//24th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Boston, Massachusetts, 1988: 1-21
    [2] Hodge KF, Crofoot TA, Nelson S. Gelled propellants for tactical missile applications//35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Los Angeles, California, 1999: 1-7
    [3] Varma M, Pein R. Optimisation of processing conditions for gel propellant production. International Journal of Energetic Materials and Chemical Propulsion, 2009, 8(6): 501-513 doi: 10.1615/IntJEnergeticMaterialsChemProp.v8.i6.30
    [4] Caldas PP, Hopfe N, Ramsel J, et al. Scalability of gelled propellant rocket motors//7th European Conference for Aeronautics and Space Sciences Milan, Italy, 2017
    [5] Haddad A, Natan B, Arieli R. The performance of a boron-loaded gel-fuel ramjet//Progress in Propulsion Physics, 2012: 499-518
    [6] Baek G, Kim C. Rheological properties of carbopol containing nanoparticles. Journal of Rheology, 2011, 55(2): 313-330 doi: 10.1122/1.3538092
    [7] Globus RH, Vander Wall EM, Cabeal JA. System analysis of gelled space-storable propellants//6th Propulsion Joint Specialist Conference, 1970: 1-8
    [8] Ciezki HK, Naumann KW. Some aspects on safety and environmental impact of the German green gel propulsion technology. Propellants, Explosives, Pyrotechnics, 2016, 41(3): 539-547 doi: 10.1002/prep.201600039
    [9] Natan B, Rahimi S. c. Combustion of Energetic Materials, 2001, 5: 172-194 doi: 10.1615/IntJEnergeticMaterialsChemProp.v5.i1-6.200
    [10] 王宝成, 李鑫, 赵凤起等. 凝胶推进剂研究进展. 化学推进剂与高分子材料, 2015, 13(1): 6 (Wang Baocheng, Li Xin, Zhao Fengqi, et al. Research progress of gel propellant. Chinese Journal of Theoretical and Applied Mechanics, 2015, 13(1): 6 (in Chinese)
    [11] 闫大庆, 周宏民, 单建胜. 凝胶/膏状推进剂研究发展状况. 火箭推进, 2003, 29(1): 38-46 (Yan Daqing, Zhou Hongmin, Shan Jiansheng. Research and development status of gel/paste propellant. Journal of Rocket Propulsion, 2003, 29(1): 38-46 (in Chinese) doi: 10.3969/j.issn.1672-9374.2003.01.009
    [12] 孙瑜. 凝胶推进剂静电雾化行为规律研究. [硕士论文]. 厦门: 厦门大学, 2018

    Sun Yu. Study on behaviors and rules of electrostatic atomization of gel propellant. [Master Thesis]. Xiamen: Xiamen University, 2018 (in Chinese)
    [13] Dennis JD, Yoon C, Santos PH, et al. Characterization of gelling systems for development of hypergolic gels//4th European Conference for Aerospace Sciences (EUCASS), Saint Petersburg, 2011: 1-15
    [14] Fineman CN. High shear capillary rheometry of gelled hypergolic propellants. [Master Thesis]. West Lafayette: Purdue University, 2012
    [15] Mallory JA, DeFini SJ, Sojka PE. Formulation of gelled propellant simulants//46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Nashville, TN, 2010: 1-9
    [16] Rahimi S, Natan B. Atomization characteristics of gel fuels//34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 1998: 1-14
    [17] Qian J, Law CK. Regimes of coalescence and separation in droplet collision. Journal of Fluid Mechanics, 1997, 331: 59-80
    [18] Finotello G, De S, Vrouwenvelder JCR, et al. Experimental investigation of non-newtonian droplet collisions: the role of extensional viscosity. Experiments in Fluids, 2018, 59(7): 113 doi: 10.1007/s00348-018-2568-2
    [19] Minakov AV, Shebeleva AA, Strizhak PA, et al. Study of the weber number impact on secondary breakup of droplets of coal water slurries containing petrochemicals. Fuel, 2019, 254: 115606 doi: 10.1016/j.fuel.2019.06.014
    [20] Fostiropoulos S, Strotos G, Nikolopoulos N, et al. Numerical investigation of heavy fuel oil droplet breakup enhancement with water emulsions. Fuel, 2020, 278: 118381 doi: 10.1016/j.fuel.2020.118381
    [21] Tavangar S, Hashemabadi SH, Saberimoghadam A. CFD simulation for secondary breakup of coal–water slurry drops using OpenFOAM. Fuel Processing Technology, 2015, 132: 153-163
    [22] Stefanitsis D, Malgarinos I, Strotos G, et al. Numerical investigation of the aerodynamic breakup of diesel and heavy fuel oil droplets. International Journal of Heat and Fluid Flow, 2017, 68: 203-215 doi: 10.1016/j.ijheatfluidflow.2017.10.012
    [23] Jing L, Xu X. Direct numerical simulation of secondary breakup of liquid drops. Chinese Journal of Aeronautics, 2010, 23(2): 153-161 doi: 10.1016/S1000-9361(09)60199-0
    [24] Khare P, Yang V. Breakup of non-newtonian liquid droplets//44th AIAA Fluid Dynamics Conference, 2014
    [25] Gupta A, Sbragaglia M. Deformation and break-up of viscoelastic droplets using Lattice Boltzmann Models. Procedia IUTAM, 2015, 15: 215-227 doi: 10.1016/j.piutam.2015.04.030
    [26] Izbassarov D, Muradoglu M. Effects of viscoelasticity on drop impact and spreading on a solid surface. Physical Review Fluids, 2016, 1(2): 023302 doi: 10.1103/PhysRevFluids.1.023302
    [27] Liu Z, Wu J, Zhen H, et al. Numerical simulation on head-on binary collision of gel propellant droplets. Energies, 2013, 6(1): 204-219 doi: 10.3390/en6010204
    [28] Qian L, Cong H, Zhu C. A numerical investigation on the collision behavior of polymer droplets. Polymers, 2020, 12(2): 263 doi: 10.3390/polym12020263
    [29] Sun K, Zhang P, Law CK, et al. Collision dynamics and internal mixing of droplets of non-newtonian liquids. Physical Review Applied, 2015, 4(5): 054013 doi: 10.1103/PhysRevApplied.4.054013
    [30] Focke C, Bothe D. Computational analysis of binary collisions of shear-thinning droplets. Journal of Non-Newtonian Fluid Mechanics, 2011, 166(14-15): 799-810 doi: 10.1016/j.jnnfm.2011.03.011
    [31] Motzigemba M, Roth N, Bothe D, et al. The effect of non-newtonian flow behaviour on binary droplet collisions: VOF-simulation and experimental analysis//Institute for Liquid Atomization and Spray System-Europe, Zaragoza, 2002
    [32] Focke C, Bothe D. Direct numerical simulation of binary off-center collisions of shear thinning droplets at high Weber numbers. Physics of Fluids, 2012, 24(7): 750-755
    [33] Popinet S. An accurate adaptive solver for surface-tension-driven interfacial flows. Journal of Computational Physics, 2009, 228(16): 5838-5866 doi: 10.1016/j.jcp.2009.04.042
    [34] Fattal R, Kupferman R. Constitutive laws for the matrix-logarithm of the conformation tensor. Journal of Non-Newtonian Fluid Mechanics, 2004, 123(2-3): 281-285 doi: 10.1016/j.jnnfm.2004.08.008
    [35] Fattal R, Kupferman R. Time-dependent simulation of viscoelastic flows at high Weissenberg number using the log-conformation representation. Journal of Non-Newtonian Fluid Mechanics, 2005, 126(1): 23-37 doi: 10.1016/j.jnnfm.2004.12.003
    [36] Hao J, Pan TW. Simulation for high Weissenberg number. Applied Mathematics Letters, 2007, 20(9): 988-993 doi: 10.1016/j.aml.2006.12.003
    [37] Chen XD, Yang V. Direct numerical simulation of multiscale flow physics of binary droplet collision. Physics of Fluids, 2020, 32: 062103 doi: 10.1063/5.0006695
    [38] Sun K, Jia M, Wang TY. Numerical investigation of head-on droplet collision with Lattice Boltzmann Method. International Journal of Heat and Mass Transfer, 2013, 58(1-2): 260-275 doi: 10.1016/j.ijheatmasstransfer.2012.11.014
  • 加载中
图(17)
计量
  • 文章访问数:  129
  • HTML全文浏览量:  31
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-08
  • 录用日期:  2022-02-28
  • 网络出版日期:  2022-03-01
  • 刊出日期:  2022-03-18

目录

    /

    返回文章
    返回