EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

密度梯度柱壳链的弹性波传播特性研究

彭克锋 郑志军 周风华 虞吉林

彭克锋, 郑志军, 周风华, 虞吉林. 密度梯度柱壳链的弹性波传播特性研究. 力学学报, 2022, 54(8): 1-9 doi: 10.6052/0459-1879-22-019
引用本文: 彭克锋, 郑志军, 周风华, 虞吉林. 密度梯度柱壳链的弹性波传播特性研究. 力学学报, 2022, 54(8): 1-9 doi: 10.6052/0459-1879-22-019
Peng Kefeng, Zheng Zhijun, Zhou Fenghua, Yu Jilin. Elastic wave propagation characteristics of density gradient cylindrical shell chains. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 1-9 doi: 10.6052/0459-1879-22-019
Citation: Peng Kefeng, Zheng Zhijun, Zhou Fenghua, Yu Jilin. Elastic wave propagation characteristics of density gradient cylindrical shell chains. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 1-9 doi: 10.6052/0459-1879-22-019

密度梯度柱壳链的弹性波传播特性研究

doi: 10.6052/0459-1879-22-019
基金项目: 国家自然科学基金(11872360, 12102429)和中央高校基本科研业务费专项资金(WK2480000008)资助项目
详细信息
    作者简介:

    郑志军,副教授,主要研究方向:冲击动力学. zjzheng@ustc.edn.cn

  • 中图分类号: O347.4

ELASTIC WAVE PROPAGATION CHARACTERISTICS OF DENSITY GRADIENT CYLINDRICAL SHELL CHAINS

  • 摘要: 均匀圆柱壳链可以调控弹性波传播, 引入密度梯度有望进一步提高波形调控能力. 通过建立密度梯度柱壳链的细观有限元模型和连续介质模型, 研究了密度梯度柱壳链的弹性波传播特性. 通过将密度梯度柱壳链等效为变密度连续介质弹性杆, 建立了其在应力脉冲作用下的控制方程. 运用拉普拉斯积分变换方法, 考虑杆中密度遵循线性分布, 获得了方程的解析解. 以三角形应力脉冲作用为例, 通过与细观有限元模拟结果比较, 发现解析解可以较好地预测梯度柱壳链中载荷的演化趋势. 正梯度链中载荷峰值随着波传播逐渐增大, 负梯度链中载荷峰值随着波传播逐渐减小. 正梯度链支撑端峰值载荷高于均匀链, 负梯度链支撑端峰值载荷低于均匀链, 这表明相较于均匀柱壳链, 密度梯度柱壳链可以在更大范围内对波形进行调控. 线性密度梯度参数对梯度柱壳链的波形调控能力影响较大, 梯度参数越小, 传递到支撑端的峰值载荷越小; 相反, 梯度参数越大, 支撑端的峰值载荷越大. 建立的理论模型及其解析解为研究梯度柱壳链中应力波传播规律及揭示载荷调控机理提供了理论基础.

     

  • 图  1  密度梯度柱壳链结构的细观有限元模型

    Figure  1.  Meso-scale finite element model of a density gradient cylindrical shell chain

    图  2  不同梯度柱壳链结构在t = 2.0 ms时刻的应力云图

    Figure  2.  Von Mises stress distributions of cylindrical shell chains with different density distributions at t = 2.0 ms

    图  3  密度梯度杆受到线性应力脉冲作用

    Figure  3.  A density gradient rod subjected to a linear stress pulse

    图  4  不同初始相对密度柱壳的材料参数

    Figure  4.  The apparent material parameters of cylindrical shells with different initial relative densities

    图  5  理论和有限元模拟的不同密度梯度链中加载端位移历史曲线

    Figure  5.  Theoretical and FE simulated displacement histories of the loading end in the chains with different density distributions

    图  6  理论和有限元模拟的不同密度梯度链中支撑端的载荷历史曲线

    Figure  6.  Theoretical and FE simulated forces at the support end in the chains with different density distributions

    图  7  密度梯度柱壳链中的载荷演化

    Figure  7.  Force evolutions in the density gradient cylindrical shell chains

    图  8  密度梯度柱壳链中的应变分布

    Figure  8.  Strain distributions in the density gradient cylindrical shell chains

    图  9  密度梯度参数γ对支撑端载荷的影响

    Figure  9.  Effects of density gradient parameter γ on the peak force at the support end

  • [1] Duan Y, Ding Y, Liu ZY, et al. Effects of cell size vs cell-wall thickness gradients on compressive behavior of additively manufactured foams. Composites Science and Technology, 2020, 199: 108339
    [2] Meng ZQ, Liu MC, Zhang YF, et al. Multi-step deformation mechanical metamaterials. Journal of the Mechanics and Physics of Solids, 2020, 144: 104095 doi: 10.1016/j.jmps.2020.104095
    [3] Peng KF, Zheng ZJ, Chang BX, et al. Wide-range control of impulse transmission by cylindrical shell chains with varying aspect ratios. International Journal of Impact Engineering, 2021, 158: 104017 doi: 10.1016/j.ijimpeng.2021.104017
    [4] Karagiozova D, Alves M. Stress waves in layered cellular materials—Dynamic compaction under axial impact. International Journal of Mechanical Sciences, 2015, 101: 196-213
    [5] Tang F, Sun Y, Guo Z, et al. Dynamic responses and energy absorption of hollow sphere structure subjected to blast loading. Materials & Design, 2019, 181: 107920
    [6] Wang SL, Ding YY, Yu F, et al. Crushing behavior and deformation mechanism of additively manufactured Voronoi-based random open-cell polymer foams. Materials Today Communications, 2020, 25: 101406 doi: 10.1016/j.mtcomm.2020.101406
    [7] Shim VPW, Guo YB, Lan R. Elastic stress transmission in cellular systems—Analysis of wave propagation. International Journal of Impact Engineering, 2008, 35(8): 845-869 doi: 10.1016/j.ijimpeng.2008.01.001
    [8] Zheng ZJ, Wang CF, Yu JL, et al. Dynamic stress–strain states for metal foams using a 3D cellular model. Journal of the Mechanics and Physics of Solids, 2014, 72: 93-114 doi: 10.1016/j.jmps.2014.07.013
    [9] Zhou H, Wang X, Zhao Z. High velocity impact mitigation with gradient cellular solids. Composites Part B:Engineering, 2016, 85: 93-101 doi: 10.1016/j.compositesb.2015.09.042
    [10] Valencia C, Restrepo D, Mankame ND, et al. Computational characterization of the wave propagation behavior of multi-stable periodic cellular materials. Extreme Mechanics Letters, 2019, 33: 100565 doi: 10.1016/j.eml.2019.100565
    [11] Zhang W, Xu J. Tunable traveling wave properties in one-dimensional chains composed from hollow cylinders: From compression to rarefaction waves. International Journal of Mechanical Sciences, 2021, 191: 106073 doi: 10.1016/j.ijmecsci.2020.106073
    [12] Gibson LJ, Ashby MF. Cellular Solids: Structure and Properties, Cambridge University Press, 1999
    [13] Wang SL, Zheng ZJ, Zhu CF, et al. Crushing and densification of rapid prototyping polylactide foam: Meso-structural effect and a statistical constitutive model. Mechanics of Materials, 2018, 127: 65-76 doi: 10.1016/j.mechmat.2018.09.003
    [14] Roberts AP, Garboczi EJ. Elastic moduli of model random three-dimensional closed-cell cellular solids. Acta Materialia, 2001, 49(2): 189-197 doi: 10.1016/S1359-6454(00)00314-1
    [15] Gibson IJ, Ashby MF. The mechanics of three-dimensional cellular materials. Proceedings of the Royal Society of London. A. Mathematical Physical Sciences, 1982, 382(1782): 43-59 doi: 10.1098/rspa.1982.0088
    [16] Cuan-Urquizo E, Shalchy F, Bhaskar A. Compressive stiffness of staggered woodpile lattices: Mechanics, measurement, and scaling laws. International Journal of Mechanical Sciences, 2020, 187: 105932 doi: 10.1016/j.ijmecsci.2020.105932
    [17] Yin S, Chen DH, Xu J. Novel propagation behavior of impact stress wave in one-dimensional hollow spherical structures. International Journal of Impact Engineering, 2019, 134: 103368 doi: 10.1016/j.ijimpeng.2019.103368
    [18] Wang XK, Zheng ZJ, Yu JL. Crashworthiness design of density-graded cellular metals. Theoretical and Applied Mechanics Letters, 2013, 3(3): 031001 doi: 10.1063/2.1303101
    [19] Chang BX, Zheng ZJ, Zhang YL, et al. Crashworthiness design of graded cellular materials: An asymptotic solution considering loading rate sensitivity. International Journal of Impact Engineering, 2020, 143: 103611 doi: 10.1016/j.ijimpeng.2020.103611
    [20] Yang J, Wang SL, Ding YY, et al. Crashworthiness of graded cellular materials: A design strategy based on a nonlinear plastic shock model. Materials Science and Engineering:A, 2017, 680: 411-420 doi: 10.1016/j.msea.2016.11.010
    [21] Chaunsali R, Toles M, Yang J, et al. Extreme control of impulse transmission by cylinder-based nonlinear phononic crystals. Journal of the Mechanics and Physics of Solids, 2017, 107: 21-32 doi: 10.1016/j.jmps.2017.06.015
    [22] Kim H, Kim E, Chong C, et al. Demonstration of dispersive rarefaction shocks in hollow elliptical cylinder chains. Physical Review Letters, 2018, 120(19): 194101 doi: 10.1103/PhysRevLett.120.194101
    [23] Kim H, Kim E, Yang J. Nonlinear wave propagation in 3 D-printed graded lattices of hollow elliptical cylinders. Journal of the Mechanics and Physics of Solids, 2019, 125: 774-784 doi: 10.1016/j.jmps.2019.02.001
    [24] 王礼立. 应力波基础, 第2版. 北京: 国防工业出版社, 2005

    Wang Lili. Foundation of Stress Waves, 2nd edition. Beijing: National Defense Industry Press, 2005 (in Chinese)
    [25] 彭克锋, 崔世堂, 潘昊等. 冲击载荷作用下柱壳链中的弹性波传播简化模型及其解析解. 爆炸与冲击, 2021, 41(1): 011403 (Peng Kefeng, Cui Shitang, Pan Hao, et al. Simplified model of elastic wave propagation in cylindrical shell chain under impact load and its analytical solution. Explosion and Shock Waves, 2021, 41(1): 011403 (in Chinese) doi: 10.11883/bzycj-2020-0246

    Peng Kefeng, Cui Shitang, Pan Hao, et al. Simplified model of elastic wave propagation in cylindrical shell chain under impact load and its analytical solution. Explosion and Shock Waves, 2021, 41(1): 011403 (in Chinese) doi: 10.11883/bzycj-2020-0246
    [26] 王礼立, 王永刚. 应力波在用SHPB研究材料动态本构特性中的重要作用. 爆炸与冲击, 2005, 25(01): 17-25 (Wang Lili, Wang Yonggang. The important role of stress waves in the study on dynamic constitutive behavior of materials by SHPB. Explosion and Shock Waves, 2005, 25(01): 17-25 (in Chinese) doi: 10.3321/j.issn:1001-1455.2005.01.004

    Wang Lili, Wang Yonggang. The important role of stress waves in the study on dynamic constitutive behavior of materials by SHPB. Explosion and Shock Waves, 2005, 25(01): 17-25 (in Chinese) doi: 10.3321/j.issn:1001-1455.2005.01.004
    [27] Yang HS, Li YL, Zhou FH. Propagation of stress pulses in a Rayleigh-Love elastic rod. International Journal of Impact Engineering, 2021, 153: 103854 doi: 10.1016/j.ijimpeng.2021.103854
    [28] Bao RH, Yu TX. Impact and rebound of an elastic–plastic ring on a rigid target. International Journal of Mechanical Sciences, 2015, 91: 55-63 doi: 10.1016/j.ijmecsci.2014.03.031
    [29] Timoshenko SPG, James M. Theory of Elastic Stability, 2nd edition. Dover Publications, 2009
    [30] 杨洪升, 李玉龙, 周风华. 梯形应力脉冲在弹性杆中的传播过程和几何弥散. 力学学报, 2019, 51(6): 1820-1829 (Yang Hongsheng, Li Yulong, Zhou Fenghua. The propagation process and the geometric dispersion of trapezoidal stress pulses in elastic rods. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1820-1829 (in Chinese) doi: 10.6052/0459-1879-19-183

    Yang Hongsheng, Li Yulong, Zhou Fenghua. The propagation process and the geometric dispersion of trapezoidal stress pulses in elastic rods. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1820-1829 (in Chinese) doi: 10.6052/0459-1879-19-183
  • 加载中
图(9)
计量
  • 文章访问数:  84
  • HTML全文浏览量:  29
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-06
  • 录用日期:  2022-04-14
  • 网络出版日期:  2022-04-15

目录

    /

    返回文章
    返回