EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轮对非线性动力学系统蛇行运动的解析解

史禾慕 曾晓辉 吴晗

史禾慕, 曾晓辉, 吴晗. 轮对非线性动力学系统蛇行运动的解析解. 力学学报, 2022, 54(7): 1807-1819 doi: 10.6052/0459-1879-22-003
引用本文: 史禾慕, 曾晓辉, 吴晗. 轮对非线性动力学系统蛇行运动的解析解. 力学学报, 2022, 54(7): 1807-1819 doi: 10.6052/0459-1879-22-003
Shi Hemu, Zeng Xiaohui, Wu Han. Analytical solution of the hunting motion of a wheelset nonlinear dynamical system. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(7): 1807-1819 doi: 10.6052/0459-1879-22-003
Citation: Shi Hemu, Zeng Xiaohui, Wu Han. Analytical solution of the hunting motion of a wheelset nonlinear dynamical system. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(7): 1807-1819 doi: 10.6052/0459-1879-22-003

轮对非线性动力学系统蛇行运动的解析解

doi: 10.6052/0459-1879-22-003
基金项目: 国家自然科学基金(11672306, 51805522), 中国科学院先导项目(XDB22020101), 国家重点研发计划课题(2016YFB1200602)和大连理工大学海岸和近海工程国家重点实验室开放基金(LP21V1)资助
详细信息
    作者简介:

    曾晓辉, 研究员, 主要研究方向: 工程结构系统动力学、海洋工程力学、车辆系统动力学. E-mail: zxh@imech.ac.cn

  • 中图分类号: U270.1+1

ANALYTICAL SOLUTION OF THE HUNTING MOTION OF A WHEELSET NONLINEAR DYNAMICAL SYSTEM

  • 摘要: 在对铁路车辆系统的极限环幅值和非线性临界速度进行分析时通常采用数值方法, 不便于研究其随系统参数的变化规律. 轮对系统保留了影响车辆系统动力学性能的几个关键要素: 如轮轨几何非线性约束、轮轨接触蠕滑关系和悬挂系统等, 可以反映铁路车辆系统蛇行运动的本质特性. 轮对系统自由度少、参数少, 可以采用解析方法进行分析. 本文选取合适的特征量把轮对非线性动力学方程无量纲化, 得到了带有小参数的两自由度微分方程; 采用多尺度方法对该方程进行了解析求解; 给出了轮对系统极限环幅值的解析表达式并对其稳定性进行了判定; 给出了轮对系统的分岔速度解析表达式, 并进而获得系统的非线性临界速度的解析表达式. 在对得到的解析解用数值结果进行验证后, 用得到的解析解进行了系统参数影响分析. 传统的分岔图计算方法(如降速法、路径跟踪法等)需对微分方程进行大量数值积分计算方可求解系统的非线性临界速度值, 而通过本文获得的解析表达式可直接给出系统的非线性临界速度值和极限环幅值, 便于研究轮对系统动力学特性随参数的变化规律,进行快速方案比对和筛选, 为转向架结构优化设计提供参考.

     

  • 图  1  轮对模型示意图

    Figure  1.  Schematic diagram of the wheelset model

    图  2  tan(δRθ) − tan(δL + θ) 随轮对横摆变化关系

    Figure  2.  tan(δRθ) − tan(δL + θ) varies with the lateral displacement of wheelset

    图  3  本研究结果与文献[20]结果对比

    Figure  3.  Comparison of results between this paper and Ref. [20]

    图  4  时间历程曲线与相平面内相轨迹

    Figure  4.  Time-history curves and phase trajectories in the phase plane

    图  5  x1x2的频谱图

    Figure  5.  Frequency spectra of x1 and x2

    图  6  fh对应的时间历程曲线

    Figure  6.  Time-history curves corresponding to fh

    图  7  摄动解与数值积分结果对比

    Figure  7.  Comparison between perturbation solution and numerical integration

    图  8  摄动解计算分岔图和数值积分结果对比

    Figure  8.  Comparison of bifurcation diagrams calculated by perturbation solution and numerical integration

    图  9  Vnλ的关系曲线

    Figure  9.  Relationship between the Vn with λ

    图  10  VnKx的关系曲线

    Figure  10.  Relationship between the Vn with Kx

    图  11  不同Kx值对应系统的分岔图

    Figure  11.  Bifurcation diagram of the system with different Kx

    图  12  不同λ值对应系统的分岔图

    Figure  12.  Bifurcation diagram of the system with different λ

    A1  轮对参数

    A1.   Wheelset parameters

    ParametersValue
    m/kg2000
    J/(kg·m2)980
    Kx/(MN·m−1)3.0
    Ky/(MN·m−1)7.48
    b/m0.7465
    l/m1.0
    r0/m0.43
    f11/MN1.5232
    f22/MN1.4019
    δ0/(N·m−1)3.4158 × 105
    δ1/(N·m−3)2.0053 × 1010
    δ2/(N·m−5)5.7054 × 1014
    λ0.05
    g/(m·s−2)9.80
    V
    下载: 导出CSV
  • [1] Schupp G. Bifurcation analysis of railway vehicles. Multibody System Dynamics, 2006, 15(1): 25-50 doi: 10.1007/s11044-006-2360-6
    [2] Cheng YC, Lee SY, Chen HH. Modeling and nonlinear hunting stability analysis of high-speed railway vehicle moving on curved tracks. Journal of Sound and Vibration, 2009, 324(1): 139-160
    [3] Cheng YC, Lee CK. Integration of uniform design and quantum-behaved particle swarm optimization to the robust design for a railway vehicle suspension system under different wheel conicities and wheel rolling radii. Acta Mechanica Sinica, 2017, 33(5): 963-980 doi: 10.1007/s10409-017-0658-7
    [4] Zboinski K, Dusza M. Self-exciting vibrations and Hopf’s bifurcation in non-linear stability analysis of rail vehicles in a curved track. European Journal of Mechanics - A/Solids, 2010, 29(2): 190-203 doi: 10.1016/j.euromechsol.2009.10.001
    [5] Zboinski K, Dusza M. Bifurcation analysis of 4-axle rail vehicle models in a curved track. Nonlinear Dynamics, 2017, 89(2): 863-885 doi: 10.1007/s11071-017-3489-y
    [6] Polach O, Kaiser I. Comparison of methods analyzing bifurcation and hunting of complex rail vehicle models. Journal of Computational and Nonlinear Dynamics, 2012, 7(4): 614-620
    [7] True H. Multiple attractors and critical parameters and how to find them numerically: the right, the wrong and the gambling way. Vehicle System Dynamics, 2013, 51(3): 443-459 doi: 10.1080/00423114.2012.738919
    [8] Iwnicki SD, Stichel S, Orlova A, et al. Dynamics of railway freight vehicles. Vehicle System Dynamics, 2015, 53: 995-1033 doi: 10.1080/00423114.2015.1037773
    [9] 翟婉明. 车辆-轨道耦合动力学. 第4版. 北京: 科学出版社, 2015

    Zhai Wanming. Vehicle-Track Coupled Dynamics, 4th edn. Beijing: Science Press, 2015 (in Chinese)
    [10] 曾京. 车辆系统的蛇行运动分岔及极限环的数值计算. 铁道学报, 1996, 18(3): 13-19 (Zeng Jing. Numerical calculation of bifurcation and limit cycles for hunting motion of vehicle systems. Journal of The China Railway Society, 1996, 18(3): 13-19 (in Chinese) doi: 10.3321/j.issn:1001-8360.1996.03.003

    Zeng Jing. Numerical calculation of bifurcation and limit cycles for hunting motion of vehicle systems. Journal of The China Railway Society, 1996, 18(3): 13-19 (in Chinese) doi: 10.3321/j.issn:1001-8360.1996.03.003
    [11] 罗仁, 曾京. 列车系统蛇行运动稳定性分析及其与单车模型的比较. 机械工程学报, 2008, 44(4): 184-188 (Luo Ren, Zeng Jing. Hunting stability analysis of train system and comparison with single vehicle model. Chinese Journal of Mechanical Engineering, 2008, 44(4): 184-188 (in Chinese) doi: 10.3321/j.issn:0577-6686.2008.04.033

    Luo Ren, Zeng Jing. Hunting stability analysis of train system and comparison with single vehicle model. Chinese Journal of Mechanical Engineering, 2008, 44(4): 184-188 (in Chinese) doi: 10.3321/j.issn:0577-6686.2008.04.033
    [12] 高学军, 李映辉, 乐源. 延续算法在简单轨道客车系统分岔中的应用. 振动与冲击, 2012, 31(20): 177-182 (Gao Xuejun, Li Yinghui, Yue Yuan. Continuation method and its application in bifurcation of a railway passenger car system car system with simple rails. Journal of Vibration and Shock, 2012, 31(20): 177-182 (in Chinese)

    Gao Xuejun, Li Yinghui, Yue Yuan. Continuation method and its application in bifurcation of a railway passenger car system car system with simple rails. Journal of Vibration and Shock, 2012, 31(20): 177-182 (in Chinese)
    [13] Gao XJ, Li YH, Yue Y, et al. Symmetric/asymmetric bifurcation behaviours of a bogie system. Journal of Sound and Vibration, 2013, 332(4): 936-951 doi: 10.1016/j.jsv.2012.09.011
    [14] Zeng XH, Wu H, Lai J, et al. Influences of aerodynamic loads on hunting stability of high-speed railway vehicles and parameter studies. Acta Mechanica Sinica, 2014, 30(6): 889-900 doi: 10.1007/s10409-014-0119-5
    [15] Zeng XH, Wu H, Lai J, et al. Hunting stability of high-speed railway vehicles on a curved track considering the effects of steady aerodynamic loads. Journal of Vibration and Control, 2016, 22: 4159-4175 doi: 10.1177/1077546315571986
    [16] Zeng XH, Wu H, Lai J, et al. The effect of wheel set gyroscopic action on the hunting stability of high-speed trains. Vehicle System Dynamics, 2017, 55: 924-944 doi: 10.1080/00423114.2017.1293833
    [17] Zeng XH, Lai J, Wu H. Hunting stability of high-speed railway vehicles under steady aerodynamic loads. International Journal of Structural Stability and Dynamics, 2018, 18: 1850093 doi: 10.1142/S0219455418500931
    [18] Wu H, Zeng XH, Lai J, et al. Nonlinear hunting stability of high-speed railway vehicle on a curved track under steady aerodynamic load. Vehicle System Dynamics, 2020, 58: 175-197 doi: 10.1080/00423114.2019.1572202
    [19] Zeng XH, Shi HM, Wu H. Nonlinear dynamic responses of high-speed railway vehicles under combined self-excitation and forced excitation considering the influence of unsteady aerodynamic loads. Nonlinear Dynamics, 2021, 105: 3025-3060 doi: 10.1007/s11071-021-06795-4
    [20] Wagner UV. Nonlinear dynamic behaviour of a railway wheelset. Vehicle System Dynamics, 2009, 47(5): 627-640 doi: 10.1080/00423110802331575
    [21] Casanueva C, Alonso A, Eziolaza, I, et al. Simple flexible wheelset model for low-frequency instability simulations. Journal of Rail and Rapid Transit, 2014, 228(2): 169-181
    [22] Antali M, Stepan G, Hogan SJ. Kinematic oscillations of railway wheelsets. Multibody System Dynamics, 2015, 34(3): 259-274
    [23] Antali M, Stepan G. On the nonlinear kinematic oscillations of railway wheelsets. Journal of Computational and Nonlinear Dynamics, 2016, 11(5): 051020 doi: 10.1115/1.4033034
    [24] Song KS, Baek SG, Choi YS, et al. Effect of conicity on lateral dynamic characteristics of railway vehicle through scaled wheelset model development. Journal of Mechanical Science and Technology, 2018, 32(11): 5433-5441 doi: 10.1007/s12206-018-1041-8
    [25] Pascal JP, Sany JR. Dynamics of an isolated railway wheelset with conformal wheel-rail interactions. Vehicle System Dynamics. 2019, 57(12): 1947-1969
    [26] Wei WY, Yabuno H. Subcritical Hopf and saddle-node bifurcations in hunting motion caused by cubic and quantic nonlinearities: Experimental identification of nonlinearities in a roller rig. Nonlinear Dynamics, 2019, 98: 657-670 doi: 10.1007/s11071-019-05220-1
    [27] Zhang TT, Dai HY. Loss of stability of a railway wheel-set, subcritical or supercritical. Vehicle System Dynamics, 2017, 55(11): 1731-1747 doi: 10.1080/00423114.2017.1319963
    [28] Ge PH, Wei XK, Liu JZ, at al. Bifurcation of a modified railway wheelset model with nonlinear equivalent conicity and wheel-rail force. Nonlinear Dynamics, 2020, 102(1): 79-100 doi: 10.1007/s11071-020-05588-5
    [29] Guo JY, Shi HL, Luo R, et al. Bifurcation analysis of a railway wheelset with nonlinear wheel-rail contact. Nonlinear Dynamics, 2021, 104: 989-1005 doi: 10.1007/s11071-021-06373-8
    [30] 武世江, 张继业, 隋皓等. 轮对系统的Hopf分岔研究. 力学学报, 2021, 53(9): 2569-2581 (Wu Shijiang, Zhang Jiye, Sui Hao, et al. Hopf bifurcation study of wheelset system. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2569-2581 (in Chinese) doi: 10.6052/0459-1879-21-321

    Wu Shijiang, Zhang Jiye, Sui Hao, et al. Hopf bifurcation study of wheelset system. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2569-2581 (in Chinese) doi: 10.6052/0459-1879-21-321
    [31] Nayfeh AH, Mook DT. Nonlinear Oscillations. New York: Wiley, 1995
    [32] 孙建锋, 池茂儒, 吴兴文等. 基于能量法的轮对蛇行运动稳定性. 交通运输工程学报, 2018, 18(2): 82-89 (Sun Jianfeng, Chi Maoru, Wu Xingwen, et al. Hunting motion stability of wheelset based on energy method. Journal of Traffic and Transportation Engineering, 2018, 18(2): 82-89 (in Chinese) doi: 10.3969/j.issn.1671-1637.2018.02.009

    Sun Jianfeng, Chi Maoru, Wu Xingwen, et al. Hunting motion stability of wheelset based on energy method. Journal of Traffic and Transportation Engineering, 2018, 18(02): 82-89 (in Chinese) doi: 10.3969/j.issn.1671-1637.2018.02.009
    [33] Lee SY, Cheng YC. Hunting stability analysis of high-speed railway vehicle trucks on tangent tracks. Journal of Sound and Vibration, 2005, 282: 881-898 doi: 10.1016/j.jsv.2004.03.050
    [34] 王福天. 车辆动力学. 北京: 中国铁道出版社, 1981

    Wang Futian. Vehicle Dynamics. Beijing: China Railway Publishing House, 1981 (in Chinese)
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  911
  • HTML全文浏览量:  248
  • PDF下载量:  138
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-30
  • 录用日期:  2022-03-02
  • 网络出版日期:  2022-03-03
  • 刊出日期:  2022-07-15

目录

    /

    返回文章
    返回