NUMERICAL STUDY OF DYNAMIC CHARACTERISTICS FOR OFFSHORE WIND TURBINE UNDER COMPLEX ATMOSPHERIC INFLOW
-
摘要: 随着风能技术的不断进步, 风机叶片逐渐向大型化发展, 这使得真实复杂大气入流对风机运行性能的影响愈发显著. 为研究真实复杂大气入流下海上风机的力学特性响应, 利用基于大涡模拟的域前模拟方法生成复杂大气入流, 并结合致动线模型模拟风机叶片, 对中性复杂大气入流下海上固定式风机进行数值模拟, 重点分析风机的气动性能及转子和叶片根部的力学特性, 并与均匀入流计算工况进行对比. 计算结果表明, 中性复杂大气入流中的大尺度低速气流团使得风机气动功率输出值在较长一段时间处于较低水平, 此外, 中性复杂大气入流的高湍流强度特征使得风机气动功率的变化幅值和标准差较均匀入流工况大幅增加; 风机轴向推力的标准差值增加到均匀入流的53倍, 中性复杂大气入流的来流流场扰动引起偏航力矩的最大值、均方根和标准差分别增加到均匀入流的10、4.4和4.3倍; 速度垂向分布的不均匀性以及轮毂高度附近的大尺度低速羽流结构导致摆振剪力和弯矩的标准差响应值分别为均匀入流的2倍和4.6倍.Abstract: With the great development of wind energy technology, the blades of wind turbine have gradually developed to large-scale, which makes the real and complex atmospheric inflow have more and more significant impacts on the operating performance of wind turbines. The numerical simulation of bottom-fixed offshore wind turbine under neutral complex atmospheric inflow is performed to study the dynamic responses of wind turbine under that complex inflow. A precursor simulation method based on large eddy simulations is used to generate the complex atmospheric inflow, and the actuator line model is combined to model the wind turbine blades. The numerical results are compared with the uniform inflow condition, and the results are focusing on the analysis of aerodynamic performance and the dynamic characteristics of rotor and blade root. The numerical results show that the large-scale low-velocity airflow in the neutral and complex atmospheric inflow is responsible for the lower output of wind turbine aerodynamic power in a long period time. In addition, the high turbulence intensity characteristics of the neutral and complex atmospheric inflow lead to the significant increase of varying amplitude and standard deviation of wind turbine aerodynamic power. The standard deviation of rotor thrust increased to 53 times of the uniform inflow condition, and the maximum value, root mean square and standard deviation of yaw moment increased to 10, 4.4 and 4.3 times of uniform inflow condition, because of the disturbance of the neutral and complex atmospheric inflow. The standard deviation values of flapwise shear force and bending moment reach up to 2 and 4.6 times of uniform inflow condition, respectively, caused by the collective effects between the inhomogeneity of the velocity vertical distribution and the large-scale low-velocity plume structures near the hub height.
-
表 1 NREL 5 MW风机主要参数
Table 1. Main parameters of NREL 5 MW wind turbine
Parameter Value rated power/MW 5 rated wind speed/(m·s−1) 11.4 rated rotor speed/(r·min−1) 12.1 hub height/m 90 number of blades 3 rotor orientation upwind 表 2 气动功率统计值
Table 2. Aerodynamic power statistics
Case Aerodynamic power/MW max min mean rms std ABL 6.04 4.20 5.21 5.22 0.26 uniform 5.33 5.26 5.30 5.30 0.07 表 3 轴向推力和偏航力矩统计值
Table 3. Statistics of rotor thrust and yaw moment
Case Rotor thrust/kN max min mean rms std ABL 745 559 632 633 35.2 uniform 605 598 601 601 0.67 Case Yaw moment/(kN·m) max min mean rms std ABL 2990 −2409 −111 803 796 uniform 294.4 −294.7 1.85 184 184 表 4 摆振剪力和弯矩统计值
Table 4. Statistics of flapwise shear force and bending moment
Case Flapwise shear force/kN max min mean rms std ABL 323.4 174.8 252.8 253.5 18.4 uniform 258.9 230.4 244.5 244.7 9.11 Case Flapwise bending moment/(kN·m) max min mean rms std ABL 11530 6002 8943 8974 741.7 uniform 8861 8347 8609 8610 160.1 -
[1] Chehouri A, Younes R, Ilinca A, et al. Review of performance optimization techniques applied to wind turbines. Applied Energy, 2015, 142: 361-388 doi: 10.1016/j.apenergy.2014.12.043 [2] Council GWE. GWEC global wind report 2021//Global Wind Energy Council, Brussels, Belgium, 2021 [3] 周桐, 闫渤文, 杨庆山等. 大气边界层大涡模拟入口湍流生成方法研究. 工程力学, 2020, 37(7): 68-76 (Zhou Tong, Yan Bowen, Yang Qingshan, et al. Study of inflow turbulence generation methods with large eddy simulation for atmospheric. Engineering Mechanics, 2020, 37(7): 68-76 (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.07.0381 [4] 宁旭. 大气边界层内风机气动及尾流特性的数值研究. [硕士论文]. 上海: 上海交通大学, 2020Ning Xu. Numerical study of wind turbine aerodynamics and wake characteristics under atmospheric boundary layer. [Master Thesis]. Shanghai: Shanghai Jiao Tong University, 2020 (in Chinese) [5] Huang SH, Li QS, Wu JR. A general inflow turbulence generator for large eddy simulation. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(10-11): 600-617 doi: 10.1016/j.jweia.2010.06.002 [6] Castro HG, Paz RR. A time and space correlated turbulence synthesis method for large eddy simulations. Journal of Computational Physics, 2013, 235: 742-763 doi: 10.1016/j.jcp.2012.10.035 [7] Xie B, Gao F, Boudet J, et al. Improved vortex method for large-eddy simulation inflow generation. Computers & Fluids, 2018, 168: 87-100 [8] Hlevca D, Degeratu M. Atmospheric boundary layer modeling in a short wind tunnel. European Journal of Mechanics-B/Fluids, 2020, 79: 367-375 doi: 10.1016/j.euromechflu.2019.10.003 [9] Li QA, Murata J, Endo M, et al. Experimental and numerical investigation of the effect of turbulent inflow on a horizontal axis wind turbine (Part I: Power performance). Energy, 2016, 113: 713-722 doi: 10.1016/j.energy.2016.06.138 [10] Murata J, Endo M, Maeda T, et al. Experimental and numerical investigation of the effect of turbulent inflow on a horizontal axis wind turbine (Part II: Wake characteristics). Energy, 2016, 113: 1304-1315 doi: 10.1016/j.energy.2016.08.018 [11] Phuc PV, Nozu T, Kikuchi H, et al. Wind pressure distributions on buildings using the coherent structure Smagorinsky model for LES. Computation, 2018, 6(2): 32 doi: 10.3390/computation6020032 [12] 周桐, 杨庆山, 闫渤文等. 大气边界层大涡模拟入口湍流生成方法综述. 工程力学, 2020, 37(5): 15-25 (Zhou Tong, Yang Qingshan, Yan Bowen, et al. Review of inflow turbulence generation methods with large eddy simulation for atmospheric boundary layer. Engineering Mechanics, 2020, 37(5): 15-25 (in Chinese) [13] Fleming P, Gebraad P, van Wingerden JW, et al. SOWFA super-controller: A high-fidelity tool for evaluating wind plant control approaches//National Renewable Energy Laboratory, Golden, CO, USA, 2013 [14] Lee S, Churchfield M, Moriarty P, et al. Atmospheric and wake turbulence impacts on wind turbine fatigue loadings//Proceedings of the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2012: 540 [15] Ning X, Wan D. LES study of wake meandering in different atmospheric stabilities and its effects on wind turbine aerodynamics. Sustainability, 2019, 11(24): 6939 doi: 10.3390/su11246939 [16] 白鹤鸣, 万德成, 王尼娜等. 大气边界层入流下错列排布三风机气动性能数值模拟. 水动力学研究与进展(A辑), 2021, 36(1): 10-19 (Bai Heming, Wan Decheng, Wang Nina. Numerical simulation of aerodynamic performance of three wind turbines with staggered strategies under atmospheric boundary layer flow. Chinese Journal of Hydrodynamics, 2021, 36(1): 10-19 (in Chinese) [17] 李德顺, 郭涛, 李伟等. 中性大气边界层中风力机的湍流演化及叶根载荷分析. 科学通报, 2019, 64(17): 1832-1843 (Li Deshun, Guo Tao, Li Wei, et al. Evolution of turbulence in a wind turbine flow field with a neutral atmospheric boundary layer and an analysis of the blade root load. Chinese Science Bulletin, 2019, 64(17): 1832-1843 (in Chinese) doi: 10.1360/N972019-00213 [18] Johlas HM, Martínez-Tossas LA, Schmidt DP, et al. Large eddy simulations of floating offshore wind turbine wakes with coupled platform motion. Journal of Physics:Conference Series, 2019, 1256(1): 012018 doi: 10.1088/1742-6596/1256/1/012018 [19] Johlas HM, Martínez-Tossas LA, Lackner MA, et al. Large eddy simulations of offshore wind turbine wakes for two floating platform types. Journal of Physics:Conference Series, 2020, 1452(1): 012034 doi: 10.1088/1742-6596/1452/1/012034 [20] Jonkman JM, Buhl ML. FAST User's Guide. Golden, CO, USA: National Renewable Energy Laboratory, 2005 [21] Sørensen JN, Shen WZ. Numerical modeling of wind turbine wakes. Journal of Fluids Engineering, 2002, 124(2): 393-399 doi: 10.1115/1.1471361 [22] Troldborg N. Actuator line modeling of wind turbine wakes. [PhD Thesis]. Denmark: Technical University of Denmark, 2008 [23] Churchfield MJ, Lee S, Michalakes J, et al. A numerical study of the effects of atmospheric and wake turbulence on wind turbine dynamics. Journal of Turbulence, 2012, 13: N14 [24] Jonkman J, Butterfield S, Musial W, et al. Definition of a 5-MW reference wind turbine for offshore system development//National Renewable Energy Laboratory, Golden, CO, USA, 2009 [25] Moeng CH. A large-eddy-simulation model for the study of planetary boundary-layer turbulence. Journal of the Atmospheric Sciences, 1984, 41(13): 2052-2062 doi: 10.1175/1520-0469(1984)041<2052:ALESMF>2.0.CO;2 [26] Cheng P, Huang Y, Wan D. A numerical model for fully coupled aero-hydrodynamic analysis of floating offshore wind turbine. Ocean Engineering, 2019, 173: 183-196 doi: 10.1016/j.oceaneng.2018.12.021 [27] Huang Y, Cheng P, Wan D. Numerical analysis of a floating offshore wind turbine by coupled aero-hydrodynamic simulation. Journal of Marine Science and Application, 2019, 18(1): 82-92 doi: 10.1007/s11804-019-00084-8 [28] Huang Y, Wan D. Investigation of interference effects between wind turbine and spar-type floating platform under combined wind-wave excitation. Sustainability, 2020, 12(1): 246 [29] Yang J, Fang L, Song D, et al. Review of control strategy of large horizontal-axis wind turbines yaw system. Wind Energy, 2021, 24(2): 97-115 doi: 10.1002/we.2564 [30] 王义乾, 桂南. 第三代涡识别方法及其应用综述. 水动力学研究与进展(A辑), 2019, 34(4): 413-429 (Wang Yiqian, Gui Nan. A review of the third-generation vortex identification method and its applications. Chinese Journal of Hydrodynamics, 2019, 34(4): 413-429 (in Chinese) -