EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复杂大气入流下海上风机力学特性研究

徐顺 赵伟文 万德成

徐顺, 赵伟文, 万德成. 复杂大气入流下海上风机力学特性研究. 力学学报, 2022, 54(4): 872-880 doi: 10.6052/0459-1879-21-693
引用本文: 徐顺, 赵伟文, 万德成. 复杂大气入流下海上风机力学特性研究. 力学学报, 2022, 54(4): 872-880 doi: 10.6052/0459-1879-21-693
Xu Shun, Zhao Weiwen, Wan Decheng. Numerical study of dynamic characteristics for offshore wind turbine under complex atmospheric inflow. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 872-880 doi: 10.6052/0459-1879-21-693
Citation: Xu Shun, Zhao Weiwen, Wan Decheng. Numerical study of dynamic characteristics for offshore wind turbine under complex atmospheric inflow. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 872-880 doi: 10.6052/0459-1879-21-693

复杂大气入流下海上风机力学特性研究

doi: 10.6052/0459-1879-21-693
基金项目: 国家自然科学基金(51879159, 52131102)和国家重点研发计划(2019YFB1704200)资助项目
详细信息
    作者简介:

    万德成, 教授, 主要研究方向: 计算流体力学(船舶与海洋工程). E-mail: dcwan@sjtu.edu.cn

  • 中图分类号: TK89

NUMERICAL STUDY OF DYNAMIC CHARACTERISTICS FOR OFFSHORE WIND TURBINE UNDER COMPLEX ATMOSPHERIC INFLOW

  • 摘要: 随着风能技术的不断进步, 风机叶片逐渐向大型化发展, 这使得真实复杂大气入流对风机运行性能的影响愈发显著. 为研究真实复杂大气入流下海上风机的力学特性响应, 利用基于大涡模拟的域前模拟方法生成复杂大气入流, 并结合致动线模型模拟风机叶片, 对中性复杂大气入流下海上固定式风机进行数值模拟, 重点分析风机的气动性能及转子和叶片根部的力学特性, 并与均匀入流计算工况进行对比. 计算结果表明, 中性复杂大气入流中的大尺度低速气流团使得风机气动功率输出值在较长一段时间处于较低水平, 此外, 中性复杂大气入流的高湍流强度特征使得风机气动功率的变化幅值和标准差较均匀入流工况大幅增加; 风机轴向推力的标准差值增加到均匀入流的53倍, 中性复杂大气入流的来流流场扰动引起偏航力矩的最大值、均方根和标准差分别增加到均匀入流的10、4.4和4.3倍; 速度垂向分布的不均匀性以及轮毂高度附近的大尺度低速羽流结构导致摆振剪力和弯矩的标准差响应值分别为均匀入流的2倍和4.6倍.

     

  • 图  1  二维翼型的速度矢量

    Figure  1.  Velocity vectors of two-dimensional airfoil

    图  2  局部坐标系示意图

    Figure  2.  Local coordinate systems

    图  3  域前模拟计算域及边界条件(单位: km)

    Figure  3.  Calculation region and boundary conditions of precursor simulation (unit: km)

    图  4  主模拟计算域布置 (单位: m)

    Figure  4.  Successor simulation calculation region (unit: m)

    图  5  均匀入流计算域布置

    Figure  5.  Calculation region of uniform inflow

    图  6  功率对比

    Figure  6.  Comparison of rotor power

    图  7  轴向推力和偏航力矩对比

    Figure  7.  Comparisons of rotor thrust and yaw moment

    图  8  摆振剪力和弯矩对比

    Figure  8.  Comparisons of flapwise shear force and bending moment

    图  9  瞬时速度尾流场

    Figure  9.  Instantaneous velocity wake field

    图  10  尾涡结构($ \left|Liutex\right|=0.18 $)

    Figure  10.  Vortex structures ($ \left|Liutex\right|=0.18 $)

    表  1  NREL 5 MW风机主要参数

    Table  1.   Main parameters of NREL 5 MW wind turbine

    ParameterValue
    rated power/MW5
    rated wind speed/(m·s−1)11.4
    rated rotor speed/(r·min−1)12.1
    hub height/m90
    number of blades3
    rotor orientationupwind
    下载: 导出CSV

    表  2  气动功率统计值

    Table  2.   Aerodynamic power statistics

    CaseAerodynamic power/MW
    maxminmeanrmsstd
    ABL6.044.205.215.220.26
    uniform5.335.265.305.300.07
    下载: 导出CSV

    表  3  轴向推力和偏航力矩统计值

    Table  3.   Statistics of rotor thrust and yaw moment

    CaseRotor thrust/kN
    maxminmeanrmsstd
    ABL74555963263335.2
    uniform6055986016010.67
    CaseYaw moment/(kN·m)
    maxminmeanrmsstd
    ABL2990−2409−111803796
    uniform294.4−294.71.85184184
    下载: 导出CSV

    表  4  摆振剪力和弯矩统计值

    Table  4.   Statistics of flapwise shear force and bending moment

    CaseFlapwise shear force/kN
    maxminmeanrmsstd
    ABL323.4174.8252.8253.518.4
    uniform258.9230.4244.5244.79.11
    CaseFlapwise bending moment/(kN·m)
    maxminmeanrmsstd
    ABL11530600289438974741.7
    uniform8861834786098610160.1
    下载: 导出CSV
  • [1] Chehouri A, Younes R, Ilinca A, et al. Review of performance optimization techniques applied to wind turbines. Applied Energy, 2015, 142: 361-388 doi: 10.1016/j.apenergy.2014.12.043
    [2] Council GWE. GWEC global wind report 2021//Global Wind Energy Council, Brussels, Belgium, 2021
    [3] 周桐, 闫渤文, 杨庆山等. 大气边界层大涡模拟入口湍流生成方法研究. 工程力学, 2020, 37(7): 68-76 (Zhou Tong, Yan Bowen, Yang Qingshan, et al. Study of inflow turbulence generation methods with large eddy simulation for atmospheric. Engineering Mechanics, 2020, 37(7): 68-76 (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.07.0381
    [4] 宁旭. 大气边界层内风机气动及尾流特性的数值研究. [硕士论文]. 上海: 上海交通大学, 2020

    Ning Xu. Numerical study of wind turbine aerodynamics and wake characteristics under atmospheric boundary layer. [Master Thesis]. Shanghai: Shanghai Jiao Tong University, 2020 (in Chinese)
    [5] Huang SH, Li QS, Wu JR. A general inflow turbulence generator for large eddy simulation. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(10-11): 600-617 doi: 10.1016/j.jweia.2010.06.002
    [6] Castro HG, Paz RR. A time and space correlated turbulence synthesis method for large eddy simulations. Journal of Computational Physics, 2013, 235: 742-763 doi: 10.1016/j.jcp.2012.10.035
    [7] Xie B, Gao F, Boudet J, et al. Improved vortex method for large-eddy simulation inflow generation. Computers & Fluids, 2018, 168: 87-100
    [8] Hlevca D, Degeratu M. Atmospheric boundary layer modeling in a short wind tunnel. European Journal of Mechanics-B/Fluids, 2020, 79: 367-375 doi: 10.1016/j.euromechflu.2019.10.003
    [9] Li QA, Murata J, Endo M, et al. Experimental and numerical investigation of the effect of turbulent inflow on a horizontal axis wind turbine (Part I: Power performance). Energy, 2016, 113: 713-722 doi: 10.1016/j.energy.2016.06.138
    [10] Murata J, Endo M, Maeda T, et al. Experimental and numerical investigation of the effect of turbulent inflow on a horizontal axis wind turbine (Part II: Wake characteristics). Energy, 2016, 113: 1304-1315 doi: 10.1016/j.energy.2016.08.018
    [11] Phuc PV, Nozu T, Kikuchi H, et al. Wind pressure distributions on buildings using the coherent structure Smagorinsky model for LES. Computation, 2018, 6(2): 32 doi: 10.3390/computation6020032
    [12] 周桐, 杨庆山, 闫渤文等. 大气边界层大涡模拟入口湍流生成方法综述. 工程力学, 2020, 37(5): 15-25 (Zhou Tong, Yang Qingshan, Yan Bowen, et al. Review of inflow turbulence generation methods with large eddy simulation for atmospheric boundary layer. Engineering Mechanics, 2020, 37(5): 15-25 (in Chinese)
    [13] Fleming P, Gebraad P, van Wingerden JW, et al. SOWFA super-controller: A high-fidelity tool for evaluating wind plant control approaches//National Renewable Energy Laboratory, Golden, CO, USA, 2013
    [14] Lee S, Churchfield M, Moriarty P, et al. Atmospheric and wake turbulence impacts on wind turbine fatigue loadings//Proceedings of the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2012: 540
    [15] Ning X, Wan D. LES study of wake meandering in different atmospheric stabilities and its effects on wind turbine aerodynamics. Sustainability, 2019, 11(24): 6939 doi: 10.3390/su11246939
    [16] 白鹤鸣, 万德成, 王尼娜等. 大气边界层入流下错列排布三风机气动性能数值模拟. 水动力学研究与进展(A辑), 2021, 36(1): 10-19 (Bai Heming, Wan Decheng, Wang Nina. Numerical simulation of aerodynamic performance of three wind turbines with staggered strategies under atmospheric boundary layer flow. Chinese Journal of Hydrodynamics, 2021, 36(1): 10-19 (in Chinese)
    [17] 李德顺, 郭涛, 李伟等. 中性大气边界层中风力机的湍流演化及叶根载荷分析. 科学通报, 2019, 64(17): 1832-1843 (Li Deshun, Guo Tao, Li Wei, et al. Evolution of turbulence in a wind turbine flow field with a neutral atmospheric boundary layer and an analysis of the blade root load. Chinese Science Bulletin, 2019, 64(17): 1832-1843 (in Chinese) doi: 10.1360/N972019-00213
    [18] Johlas HM, Martínez-Tossas LA, Schmidt DP, et al. Large eddy simulations of floating offshore wind turbine wakes with coupled platform motion. Journal of Physics:Conference Series, 2019, 1256(1): 012018 doi: 10.1088/1742-6596/1256/1/012018
    [19] Johlas HM, Martínez-Tossas LA, Lackner MA, et al. Large eddy simulations of offshore wind turbine wakes for two floating platform types. Journal of Physics:Conference Series, 2020, 1452(1): 012034 doi: 10.1088/1742-6596/1452/1/012034
    [20] Jonkman JM, Buhl ML. FAST User's Guide. Golden, CO, USA: National Renewable Energy Laboratory, 2005
    [21] Sørensen JN, Shen WZ. Numerical modeling of wind turbine wakes. Journal of Fluids Engineering, 2002, 124(2): 393-399 doi: 10.1115/1.1471361
    [22] Troldborg N. Actuator line modeling of wind turbine wakes. [PhD Thesis]. Denmark: Technical University of Denmark, 2008
    [23] Churchfield MJ, Lee S, Michalakes J, et al. A numerical study of the effects of atmospheric and wake turbulence on wind turbine dynamics. Journal of Turbulence, 2012, 13: N14
    [24] Jonkman J, Butterfield S, Musial W, et al. Definition of a 5-MW reference wind turbine for offshore system development//National Renewable Energy Laboratory, Golden, CO, USA, 2009
    [25] Moeng CH. A large-eddy-simulation model for the study of planetary boundary-layer turbulence. Journal of the Atmospheric Sciences, 1984, 41(13): 2052-2062 doi: 10.1175/1520-0469(1984)041<2052:ALESMF>2.0.CO;2
    [26] Cheng P, Huang Y, Wan D. A numerical model for fully coupled aero-hydrodynamic analysis of floating offshore wind turbine. Ocean Engineering, 2019, 173: 183-196 doi: 10.1016/j.oceaneng.2018.12.021
    [27] Huang Y, Cheng P, Wan D. Numerical analysis of a floating offshore wind turbine by coupled aero-hydrodynamic simulation. Journal of Marine Science and Application, 2019, 18(1): 82-92 doi: 10.1007/s11804-019-00084-8
    [28] Huang Y, Wan D. Investigation of interference effects between wind turbine and spar-type floating platform under combined wind-wave excitation. Sustainability, 2020, 12(1): 246
    [29] Yang J, Fang L, Song D, et al. Review of control strategy of large horizontal-axis wind turbines yaw system. Wind Energy, 2021, 24(2): 97-115 doi: 10.1002/we.2564
    [30] 王义乾, 桂南. 第三代涡识别方法及其应用综述. 水动力学研究与进展(A辑), 2019, 34(4): 413-429 (Wang Yiqian, Gui Nan. A review of the third-generation vortex identification method and its applications. Chinese Journal of Hydrodynamics, 2019, 34(4): 413-429 (in Chinese)
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  445
  • HTML全文浏览量:  223
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-29
  • 录用日期:  2022-02-18
  • 网络出版日期:  2022-02-19
  • 刊出日期:  2022-04-18

目录

    /

    返回文章
    返回