EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多个柔性梁V型集群行为节能机理研究

张磊 敖雷 裴志勇

张磊, 敖雷, 裴志勇. 多个柔性梁V型集群行为节能机理研究. 力学学报, 2022, 54(6): 1706-1719 doi: 10.6052/0459-1879-21-688
引用本文: 张磊, 敖雷, 裴志勇. 多个柔性梁V型集群行为节能机理研究. 力学学报, 2022, 54(6): 1706-1719 doi: 10.6052/0459-1879-21-688
Zhang Lei, Ao Lei, Pei Zhiyong. Energy saving mechanism of hydrodynamic collective behavior of multiple flexible beams in V formation. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1706-1719 doi: 10.6052/0459-1879-21-688
Citation: Zhang Lei, Ao Lei, Pei Zhiyong. Energy saving mechanism of hydrodynamic collective behavior of multiple flexible beams in V formation. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1706-1719 doi: 10.6052/0459-1879-21-688

多个柔性梁V型集群行为节能机理研究

doi: 10.6052/0459-1879-21-688
基金项目: 中国博士后科学基金资助项目(2019M652650)
详细信息
    作者简介:

    张磊, 副研究员, 主要研究方向: 计算流体力学、流固耦合. E-mail: kellyioy@126.com

  • 中图分类号: O35

ENERGY SAVING MECHANISM OF HYDRODYNAMIC COLLECTIVE BEHAVIOR OF MULTIPLE FLEXIBLE BEAMS IN V FORMATION

  • 摘要: V型排列是自然界中常见的动物(如大雁等迁徙性鸟类)集群模式, 普遍推测该模式可以有效地降低能耗, 然而目前没有研究给出相关的直接数据证据. 开展其节能机理研究有助于提升对集群自然现象的认知水平, 为集群仿生应用打下基础. 本文采用基于Fluent二次开发的数值方法求解多个柔性体−流体介质相互作用的流固耦合问题, 其中流体动力学方程采用有限体积法进行求解, 柔性体动力学控制方程通过用户自定义模块(UDF)嵌入, 并采用模态叠加法和4阶龙格库塔法求解, 流固交界面形变使用动网格技术处理. 实现了多个自推进二维柔性梁自主形成V型集群运动过程的数值模拟, 并将得到的推进性能参数(平均速度, 输入功率和效率)与单独自推进柔性体的数据进行对比. 研究发现: 该V型集群运动中不仅后排柔性梁的速度和推进效率得到提升, 领头柔性梁性能也得到大幅提升, 增幅均超过14%. 此外, 对V型集群运动的流场细节(涡量和压力云图)开展分析, 揭示了多柔性梁V型集群行为产生的原因和节能的内在机理, 特别是对领头柔性梁的节能机理进行了阐述.

     

  • 图  1  多个柔性体自推进V型排列计算模型示意图

    Figure  1.  Schematic of multiple self-propelled flexible beams in V configuration

    图  2  松耦合方法流程图

    Figure  2.  Flow chart of the proposed loosely-coupled scheme

    图  3  计算域空间离散示意图

    Figure  3.  Spatial discretization of the fluid domain

    图  4  纵向排列柔性梁导边运动参数时历曲线对比: (a) 水平运动速度; (b) 纵向间距

    Figure  4.  Comparison of time history of (a) streamwise velocity and (b) longitudinal separation distance of two tandem beams between the present solutions and Ref. [23]

    5  柔性梁导边水平运动速度时历曲线对比: (a) 网格无关性分析; (b) 时间步长无关性分析; (c) 模态截断分析

    5.  Comparison of streamwise velocity curves of the leading edge in (a) grid independence study, (b) time-step independence study, and (c) mode truncation study

    5  柔性梁导边水平运动速度时历曲线对比: (a) 网格无关性分析; (b) 时间步长无关性分析; (c) 模态截断分析(续)

    5.  Comparison of streamwise velocity curves of the leading edge in (a) grid independence study, (b) time-step independence study, and (c) mode truncation study (continued)

    图  6  3个柔性梁V型排列运动参数时历曲线: (a) 速度差值Uij(t) = ui(t)−uj(t); (b) 纵向间距Hij(t) = Xi(s = 0, t)−Xj(s = 0, t) (i, j = 1, 2, 3)

    Figure  6.  Time history of (a) velocity difference Uij(t) = ui(t)−uj(t), and (b) longitudinal separation distance Hij(t) = Xi(s = 0, t)−Xj(s = 0, t) (i, j = 1, 2, 3) of three beams in V configuration

    7  3个柔性梁V型排列流场细节图: (a~d) 涡量云图; (e~h) 压力云图. 特征值ωref=Uref /Lpref=ρf$U_{ref}^2 $分别被用来无因次化计算得到的涡量和压力

    7.  Fluid details: (a~d) vortices contour and (e~h) pressure contour of three beams in V configuration. The vortices and pressures are normalized by ωref=Uref /L, pref=ρf$U_{ref}^2 $, respectively

    图  8  3个柔性梁水平受力时历曲线, 特征值Fref=(1/2)ρf$U_{ref}^2{L}$被用来无因次化计算得到的合力

    Figure  8.  Hydrodynamic force experienced by three flexible beams in the horizontal direction during one heaving motion period. The forces are normalized by Fref=(1/2)ρf$U_{ref}^2{L}$

    图  9  5个柔性梁V型排列运动参数时历曲线: (a, b) 速度差值Uij(t) = ui(t)−uj(t); (c, d) 纵向间距Hij(t) = Xi(s = 0, t)−Xj(s = 0, t) (i, j = 1, 2, 3, 4, 5)

    Figure  9.  Time history of (a, b) velocity difference Uij(t) = ui(t)−uj(t), and (c, d) longitudinal separation distance Hij(t) = Xi(s = 0, t)−Xj(s = 0, t) (i, j = 1, 2, 3, 4, 5) of five beams in V configuration

    图  10  5个柔性梁V型排列流场涡量云图. 特征值ωref = Uref /L被用来无因次化计算得到的涡量

    Figure  10.  Vortices contour of five beams in V configuration. The vortices are normalized by ωref = Uref /L

    图  11  5个柔性梁V型排列流场压力云图. 特征值pref = ρf$U_{ref}^2 $被用来无因次化计算得到的压力

    Figure  11.  Pressure contour of five beams in V configuration. The pressures are normalized by pref = ρf$U_{ref}^2 $

    图  12  5个柔性梁水平受力时历曲线, 特征值Fref = (1/2)ρf$U_{ref}^2{L}$被用来无因次化计算得到的合力

    Figure  12.  Hydrodynamic force experienced by five flexible beams in the horizontal direction during three heaving motion periods. The forces are normalized by Fref = (1/2)ρf$U_{ref}^2{L}$

    图  13  领头柔性梁对比: (a) 水平受力时历曲线; (b) 横向形变时历曲线. 特征值Fref = (1/2)ρf$U_{ref}^2{L} $被用来无因次化计算得到的合力

    Figure  13.  The comparison of the leading beams: (a) hydrodynamic force in the horizontal direction and (b) lateral deformation during one heaving motion period. The forces are normalized by Fref = (1/2)ρf$U_{ref}^2{L}$

    14  单柔性体和3个柔性梁流场细节图: (a~c) 涡量云图; (d~f) 压力云图. 特征值ωref = Uref /Lpref = ρf$U_{ref}^2$分别被用来无因次化计算得到的涡量和压力

    14.  Fluid details of single beam and 3 beams: (a-c) vortices contour and (d-f) pressure contour. The vortices and pressures are normalized by ωref = Uref /L, pref = ρf$U_{ref}^2$, respectively

    表  1  多个自推进柔性体性能参数比较

    Table  1.   Propulsive performance of multiple self-propelled flexible beams

    Collective behaviorVelocityInput powerEfficiency/%
    UP1P2P3P4P5η1η2η3η4η5
    single beam1.741.227.90
    3 beams2.011.261.291.2810.210.010.1
    5 beams2.021.241.441.441 271.2810.59.059.0510.310.2
    下载: 导出CSV
  • [1] Humston R, Ault JS, Lutcavage M, et al. Schooling and migration of large pelagic fishes relative to environmental cues. Fisheries Oceanography, 2010, 9(2): 136-146
    [2] Olson RS, Hintze A, Dyer FC, et al. Predator confusion is sufficient to evolve swarming behavior. Journal of the Royal Society Interface, 2013, 10(85): 20130305 doi: 10.1098/rsif.2013.0305
    [3] Peng H, Maldonado-Chaparro AA, Farine DR. The role of habitat configuration in shaping social structure: a gap in studies of animal social complexity. Behavioral Ecology and Sociobiology, 2019, 73(1): 1-14
    [4] Shelton DS, Shelton SG, Daniel DK, et al. Collective behavior in wild zebrafish. Zebrafish, 2020, 17(4): 243-252 doi: 10.1089/zeb.2019.1851
    [5] Lissaman PBS, Schollenberger CA. Formation flight of birds. Science, 1970, 168(3934): 1035
    [6] Weihs D. Hydromechanics of fish schooling. Nature, 1973, 241: 290-291 doi: 10.1038/241290a0
    [7] Weimerskirch H, Martin J, Clerquin Y, et al. Energy saving in flight formation. Nature, 2001, 413: 697-698 doi: 10.1038/35099670
    [8] Portugal SJ, Hubel TY, Fritz J, et al. Upwash exploitation and downwash avoidance by flap phasing in ibis formation flight. Nature, 2014, 505(7483): 399 doi: 10.1038/nature12939
    [9] Liao JC, Beal DN, Lauder GV, et al. Fish exploiting vortices decrease muscle activity. Science, 2003, 302: 1566-1569 doi: 10.1126/science.1088295
    [10] Gopalkrishnan R, Triantafyllou MS, Triantafyllou GS, et al. Active vorticity control in a shear flow using a flapping foil. Journal of Fluid Mechanics, 1994, 274: 1-21 doi: 10.1017/S0022112094002016
    [11] Beal DN, Hover FS, Triantafyllou MS, et al. Passive propulsion in vortex wakes. Journal of Fluid Mechanics, 2006, 549: 385-402 doi: 10.1017/S0022112005007925
    [12] Lauder GV, Anderson EJ, Tangorra J, et al. Fish biorobotics: kinematics and hydrodynamics of self-propulsion. Journal of Experimental Biology, 2007, 210: 2767-2780 doi: 10.1242/jeb.000265
    [13] Ristroph L, Zhang J. Anomalous hydrodynamic drafting of interacting flapping flags. Physical Review Letters, 2008, 101(19): 194502 doi: 10.1103/PhysRevLett.101.194502
    [14] 王思滢. 柔性体与流体耦合运动的数值模拟和试验研究. [博士论文]. 合肥: 中国科学技术大学, 2010

    Wang Siying. Numerical and experimental investigation on the interaction between moving fluid and flexible bodies. [PhD Thesis]. Hefei: University of Science and Technology of China, 2010 (in Chinese)
    [15] Boschitshch BM, Dewey PA, Smith AJ. Propulsive performance of unsteady tandem hydrofoils in an in-line configuration. Physics of Fluids, 2014, 26: 051901 doi: 10.1063/1.4872308
    [16] Becker AD, Masoud H, Newbolt JW, et al. Hydrodynamic schooling of flapping swimmers. Nature Communications, 2015, 6: 8514 doi: 10.1038/ncomms9514
    [17] Ramananarivo S, Fang F, Oza A, et al. Flow interactions lead to orderly formations of flapping wings in forward flight. Physical Review Fluid, 2016, 1: 071201 doi: 10.1103/PhysRevFluids.1.071201
    [18] Zhu LD, Peskin CS. Interaction of two flapping filaments in a flowing soap film. Physics of Fluids, 2003, 15(7): 1954-1960 doi: 10.1063/1.1582476
    [19] Huang WX, Shin SJ, Sung HJ. Simulation of flexible filaments in a uniform flow by the immersed boundary method. Journal of Computational Physics, 2007, 226: 2206-2228 doi: 10.1016/j.jcp.2007.07.002
    [20] Zhang L, Zou SY, Wang CZ, et al. A loosely-coupled scheme for the flow-induced flapping problem of two-dimensional flexible plate with strong added-mass effect. Ocean Engineering, 2020, 217: 107656 doi: 10.1016/j.oceaneng.2020.107656
    [21] Zhu LD. Interaction of two tandem deformable bodies in a viscous incompressible flow. Journal of Fluid Mechanics, 2009, 635: 455-475 doi: 10.1017/S0022112009007903
    [22] Uddin E, Huang WX, Sung HJ. Actively flapping tandem flexible flags in a viscous flow. Journal of Fluid Mechanics, 2015, 780: 120-142 doi: 10.1017/jfm.2015.460
    [23] Zhu XJ, He GW, Zhang X. Flow-mediated interactions between two self-propelled flapping filaments in tandem configuration. Physical Review Letters, 2014, 113: 238105 doi: 10.1103/PhysRevLett.113.238105
    [24] Peng ZR, Huang HB, Lu XY. Hydrodynamic schooling of multiple self-propelled flapping plates. Journal of Fluid Mechanics, 2018, 853: 587-600 doi: 10.1017/jfm.2018.634
    [25] Peng ZR, Huang HB, Lu XY. Collective locomotion of two closely spaced self-propelled flapping plates. Journal of Fluid Mechanics, 2018, 849: 1068-1095 doi: 10.1017/jfm.2018.447
    [26] 彭泽瑞. 仿生自主推进柔性板集群运动的流固耦合数值研究. [博士论文]. 合肥: 中国科学技术大学, 2018

    Peng Zerui. Numerical investigation of hydrodynamic schooling of bio-inspired self-propulsive flexible plates. [PhD Thesis]. Hefei: University of Science and Technology of China, 2018 (in Chinese)
    [27] Zhang L, Wang CZ, Sun JL, et al. Study on the hydrodynamic aggregation of parallel self-propelled flexible plates based on a loosely coupled partitioned algorithm. Ocean Engineering, 2021, 223: 108703 doi: 10.1016/j.oceaneng.2021.108703
    [28] 克拉夫, 彭津. 结构动力学. 王光远译. 北京: 高等教育出版社, 2006

    Clough R, Penzein J. Dynamics of Structures. Wang GY trans. Beijing: Higher Education Press, 2006 (in Chinese)
    [29] Hua RN, Zhu L, Lu XY. Locomotion of a flapping flexible plate. Physics of Fluids, 2013, 25(12): 121901 doi: 10.1063/1.4832857
    [30] Liu K, Huang H, Lu XY. Hydrodynamic benefits of intermittent locomotion of a self-propelled flapping plate. Physical Review E, 2020, 102: 053106
    [31] Liu K, Huang H, Lu XY. Self-propelled plate in wakes behind tandem cylinders. Physical Review E, 2019, 100: 033114 doi: 10.1103/PhysRevE.100.033114
  • 加载中
图(17) / 表(1)
计量
  • 文章访问数:  312
  • HTML全文浏览量:  100
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-29
  • 录用日期:  2022-05-17
  • 网络出版日期:  2022-05-18
  • 刊出日期:  2022-06-18

目录

    /

    返回文章
    返回