EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于实测载荷谱的重载铁路货车车钩钩尾框剩余寿命预测

秦天宇 任鑫焱 胡飞飞 刘宇杰 奥妮 阚前华 吴圣川 康国政

秦天宇, 任鑫焱, 胡飞飞, 刘宇杰, 奥妮, 阚前华, 吴圣川, 康国政. 基于实测载荷谱的重载铁路货车车钩钩尾框剩余寿命预测. 力学学报, 2022, 54(7): 1-9 doi: 10.6052/0459-1879-21-687
引用本文: 秦天宇, 任鑫焱, 胡飞飞, 刘宇杰, 奥妮, 阚前华, 吴圣川, 康国政. 基于实测载荷谱的重载铁路货车车钩钩尾框剩余寿命预测. 力学学报, 2022, 54(7): 1-9 doi: 10.6052/0459-1879-21-687
Qin Tianyu, Ren Xinyan, Hu Feifei, Liu Yujie, Ao Ni, Kan Qianhua, Wu Shengchuan, Kang Guozheng. Remaining life assessment of hook tail frame in railway heavy-haul wagon based on real loading spectrum. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(7): 1-9 doi: 10.6052/0459-1879-21-687
Citation: Qin Tianyu, Ren Xinyan, Hu Feifei, Liu Yujie, Ao Ni, Kan Qianhua, Wu Shengchuan, Kang Guozheng. Remaining life assessment of hook tail frame in railway heavy-haul wagon based on real loading spectrum. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(7): 1-9 doi: 10.6052/0459-1879-21-687

基于实测载荷谱的重载铁路货车车钩钩尾框剩余寿命预测

doi: 10.6052/0459-1879-21-687
基金项目: 国铁集团科技开发系统性重大课题(P2018J003, P2019J002)和国家能源集团项目(SHGF-17-56)资助
详细信息
    作者简介:

    吴圣川, 研究员, 主要研究方向: 车辆结构的损伤、疲劳与断裂研究. E-mail: wusc@swjtu.edu.cn

  • 中图分类号: TH117.1

REMAINING LIFE ASSESSMENT OF HOOK TAIL FRAME IN RAILWAY HEAVY-HAUL WAGON BASED ON REAL LOADING SPECTRUM

  • 摘要: 随着我国重载铁路货车运行规模及开行频次的增加, 车钩钩尾框断裂破坏问题日益严重. 本文以国产16/17型车钩钩尾框(锻造E级钢)为研究对象, 首先通过系统的材料试验获得了锻造E级钢的基本力学性能和断裂性能参数; 其次建立了含初始裂纹缺陷的钩尾框有限元模型; 最后基于实测线路载荷谱, 采用NASGRO方程开展了伤损钩尾框剩余寿命预测. 计算结果表明: 当裂纹形貌比a/c为0.8, 0.5, 0.3时计算得到的车钩钩尾框剩余寿命逐渐减小, 疲劳裂纹从深度2 mm扩展至20 mm的计算剩余寿命分别为36, 32, 26万公里, 均不足一个段修期; 3种裂纹形貌比下裂纹扩展至12 mm后的剩余寿命占比均较小, 仅为总剩余服役里程的4.7%, 4.0%, 2.2%, 因此可将12 mm作为钩尾框损伤容限止裂判据较为合理; 为研究近门槛区对裂纹扩展寿命的影响, 当裂纹形貌比为0.5且初始裂纹的尺寸降低至0.5 mm时, 裂纹将处于裂纹扩展门槛区附近, 剩余服役里程约为156万公里, 约为2 mm初始裂纹的4.9倍, 跨越了三个段修期. 论文研究结果可为重载铁路货车钩尾框检修周期的优化提供基本参考.

     

  • 图  1  铸造E级钢试样的取样位置及尺寸(单位:mm)

    Figure  1.  Position and size of forged E-grade steel specimens (unit: mm)

    图  2  锻造E级钢的单轴拉伸应力-应变曲线

    Figure  2.  Uniaxial tensile stress-strain curve of forged E-grade steel

    图  3  应力比R = 0.1时的锻造E级钢疲劳裂纹扩展速率实验和拟合曲线

    Figure  3.  Experimental and fitting fatigue crack propagation rate curves of forged E-grade steel at R = 0.1 stress ratio

    图  4  断裂力学框架下钩尾框剩余寿命评估过程

    Figure  4.  Remaining life assessment process for the hook tail frame in the fracture mechanics framework

    图  5  实测大秦线2万吨重载5级载荷谱[28]

    Figure  5.  The actual measurement of 20 000 tons of heavy load grade 5 load spectrum of the Daqin railway[28]

    图  6  裂纹前缘应力分布和应力强度因子示意图

    Figure  6.  Schematic diagram of stress distribution and stress intensity factor ahead of the crack tip

    图  7  不同深度裂纹网格敏感性计算

    Figure  7.  Crack mesh sensitivity calculation at different depths

    图  8  裂纹尖端应力强度因子范围随裂纹深度变化趋势

    Figure  8.  Trend of crack tip stress intensity factor with crack depth

    图  9  基于NASGRO方程的裂纹扩展速率

    Figure  9.  Crack propagation rate based on NASGRO equation

    图  10  初始裂纹深度为2 mm时钩尾框的剩余寿命曲线

    Figure  10.  Remaining life curves of the hook tail frame with the initial crack depth of 2 mm

    图  11  不同深度初始裂纹钩尾框剩余寿命对比

    Figure  11.  Comparison of remaining life of the hook tail frame with initial cracks at different depths

    表  1  钩尾框所用E级钢的力学性能

    Table  1.   Mechanical properties of E-grade steel used for hook tail frames

    E/GPaYield strength/MPaTensile strength/MPaExtension rate/%
    20984894016
    下载: 导出CSV

    表  2  基于NASGRO方程的疲劳断裂参数

    Table  2.   Fatigue fracture parameters based on the NASGRO equation

    C2m2pq
    1.286$\times$10−102.60.50.002
    下载: 导出CSV

    表  3  锻造E级钢的裂纹扩展门槛值∆Kth和断裂韧性值KIC

    Table  3.   Fatigue crack growth threshold ∆Kth and fracture toughness KIC of forged E-grade steel

    Kth/(MPa·m1/2)KIC/(MPa·m1/2)R
    6.71570.1
    下载: 导出CSV
  • [1] 吴圣川, 任鑫焱, 康国政等. 铁路车辆部件抗疲劳评估的进展与挑战. 交通运输工程学报, 2021, 21(1): 81-114 (Wu Shengchuan, Ren Xinyan, Kang Guozheng, et al. Progress and challenge on fatigue resistance assessment of railway vehicle components. Journal of Traffic and Transportation Engineering, 2021, 21(1): 81-114 (in Chinese)

    Wu Shengchuan, Ren Xinyan, Kang Guozheng, et al. Progress and challenge on fatigue resistance assessment of railway vehicle components. Journal of Traffic and Transportation Engineering, 2021, 21(1): 81-114. (in Chinese))
    [2] Ge X, Ling L, Chen ZG, et al. Experimental assessment of the dynamic performance of slave control locomotive couplers in 20 000-tonne heavy-haul trains. Journal of Rail and Rapid Transit, 2021, 235(10): 1225-1236 doi: 10.1177/0954409721993618
    [3] 景致明. 重载列车17型锻造钩尾框寿命预测研究. [硕士论文]. 成都: 西南交通大学, 2021

    Jing Zhiming. Study on life predection of the type 17 forged coupler yoke. [Master Thesis]. Chengdu: Southwest Jiaotong University (in Chinese))
    [4] 郭光玉, 高志, 宋亮. 17型车钩及其零部件故障简析. 铁道机车车辆, 2009, 29(1): 47-49 (Guo Guangyu, Gao Zhi, Song Liang. Fault analysis of 17 type coupler and its components. Railway Locomotive &Car, 2009, 29(1): 47-49 (in Chinese)

    Guo Guangyu, Gao Zhi, Song Liang. Fault analysis of 17 type coupler and its components. Railway Locomotive & Car, 2009, 29(1): 47-49 (in Chinese))
    [5] 金希红, 曾燕军, 周坤等. 重载机车与102车钩系统的相互作用关系. 科学通报, 2019, 64(25): 2617-2624 (Jin Xihong, Zeng Yanjun, Zhou Kun, et al. Interactions research between heavy haul locomotive and 102 coupler system. Chinese Science Bulletin, 2019, 64(25): 2617-2624 (in Chinese) doi: 10.1360/N972018-01243

    Jin Xihong, Zeng Yanjun, Zhou Kun, et al. Interactions research between heavy haul locomotive and 102 coupler system. Chinese Science Bulletin, 2019, 64(25): 2617-2624. (in Chinese)) doi: 10.1360/N972018-01243
    [6] Guo LR, Wang KY. Analysis of coupler jackknifing and its effect on locomotives on a tangent track. Journal of Rail and Rapid Transit, 2018, 232(5): 1559-1573 doi: 10.1177/0954409717738429
    [7] 朱涛, 张敬科, 吴启凡等. 车钩缓冲装置对轨道列车碰撞安全性的影响综述. 交通运输工程学报, 2021, 21(1): 233-249 (Zhu Tao, Zhang Jingke, Wu Qifan, et al. Review on influence of coupler and draft gear on safety of railway train collision. Journal of Traffic and Transportation Engineering, 2021, 21(1): 233-249 (in Chinese)

    Zhu Tao, Zhang Jingke, Wu Qifan, et al. Review on influence of coupler and draft gear on safety of railway train collision[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 233-249. (in Chinese))
    [8] Beretta S, Carboni M, Fiore G, et al. Corrosion–fatigue of A1 N railway axle steel exposed to rainwater. International Journal of Fatigue, 2010, 32(6): 952-961 doi: 10.1016/j.ijfatigue.2009.08.003
    [9] Beretta S, Carboni M, Cantini S, et al. Application of fatigue crack growth algorithms to railway axles and comparison of two steel grades. Journal of Rail & Rapid Transit, 2004, 218(4): 317-326
    [10] Traupe M, Jenne S, Lütkepohl K, et al. Experimental validation of inspection intervals for railway axles accompanying the engineering process. International Journal of Fatigue, 2016, 86(792): 44-51
    [11] Makino T, Kato T, Hirakawa K. Review of the fatigue damage tolerance of high-speed railway axles in Japan. Engineering Fracture Mechanics, 2011, 78(5): 810-825 doi: 10.1016/j.engfracmech.2009.12.013
    [12] 李晓慧, 谢基龙. 重载列车E级钢钩舌疲劳裂纹扩展条件及寿命预测. 北京交通大学学报, 2006(4): 102-104 (Li Xiaohui, Xie Jilong. Prediction of fatigue crack growth condition and lifetime on coupler guard arm area of E grade steel of burden strain. Journal of Beijing Jiaotong University, 2006(4): 102-104 (in Chinese) doi: 10.3969/j.issn.1673-0291.2006.04.025

    Li Xiaohui, Xie Jilong. Prediction of fatigue crack growth condition and lifetime on coupler guard arm area of E grade steel of burden strain. Journal of Beijing Jiaotong University, 2006(4): 102-104. (in Chinese)) doi: 10.3969/j.issn.1673-0291.2006.04.025
    [13] 刘青峰, 谢基龙, 缪龙秀等. 钩尾框尾部弯角疲劳裂纹扩展寿命预测研究. 铁道学报, 2002, 24(5): 42-46 (Liu Qingfeng, Xie Jilong, Miao Longxiu, et al. Prediction of fatigue crack lifetime of the end flanged corner of coupler yoke. Journal of the China Railway Society, 2002, 24(5): 42-46 (in Chinese)

    Liu Qingfeng, Xie Jilong, Miao Longxiu, et al. Prediction of fatigue crack lifetime of the end flanged corner of coupler yoke. Journal of the China Railway Society, 2002, 24(5): 42-46. (in Chinese))
    [14] Hu YN, Qin QB, Wu SC, et al. Fatigue resistance and remaining life assessment of induction-hardened S38 C steel railway axles. International Journal of Fatigue, 2021, 144: 106068 doi: 10.1016/j.ijfatigue.2020.106068
    [15] Guo F, Wu SC, Liu JX, et al. A time-domain stepwise fatigue assessment to bridge small-scale fracture mechanics with large-scale system dynamics for high-speed maglev lightweight bogies. Engineering Fracture Mechanics, 2021, 248: 107711 doi: 10.1016/j.engfracmech.2021.107711
    [16] Makino T, Sakai H, Kozuka C, et al. Overview of fatigue damage evaluation rule for railway axles in Japan and fatigue property of railway axle made of medium carbon steel. International Journal of Fatigue, 2020, 132: 105361 doi: 10.1016/j.ijfatigue.2019.105361
    [17] 董志波, 周守振, 武继胜等. 基于轮廓法与固有应变理论焊接纵向残余应力的三维重构. 中国科学: 技术科学, 2020, 50(7): 957-963 (Dong Zhibo, Zhen Shouzhen, Wu Jisheng, et al. Reconstructing a 3 D map of longitudinal residual stress by combining the inherent strain theory and contour method. Scientia Sinica: Technologica, 2020, 50(7): 957-963 (in Chinese) doi: 10.1360/SST-2020-0070

    Dong Zhibo, Zhen Shouzhen, Wu Jisheng, et al. Reconstructing a 3 D map of longitudinal residual stress by combining the inherent strain theory and contour method [J]. Scientia Sinica: Technologica, 2020, 50(7): 957-963. (in Chinese)) doi: 10.1360/SST-2020-0070
    [18] Yao DC, Liu HC, Yang JW, et al. Implementation of a novel algorithm of wheelset and axle box concurrent fault identification based on an efficient neural network with the attention mechanism. Journal of Intelligent Manufacturing, 2021, 32: 729-743 doi: 10.1007/s10845-020-01701-y
    [19] Maierhofer J, Pippan R, Ganser HP. Modified NASGRO equation for short cracks and application to the fitness-for-purpose assessment of surface-treated components. Procedia Materials Science, 2014, 3: 930-935 doi: 10.1016/j.mspro.2014.06.151
    [20] Hirakawa K, Toyama K, Kubota M. The analysis and prevention of failure in railway axles. International Journal of Fatigue, 1998, 20(2): 135-144 doi: 10.1016/S0142-1123(97)00096-0
    [21] Newman JC. A crack opening stress equation for fatigue crack growth. International Journal of Fracture, 1984, 24(4): 131-135 doi: 10.1007/BF00020751
    [22] The British Standards Institution. BS 7910: 2019 guide to methods for assessing the acceptability of flaws in metallic structures. London: British Standard Institution, 2019
    [23] Chai GZ. A mixed mode fracture J integral criterion for elastic perfectly plastic materials in small scale yielding. Engineering Fracture Mechanics, 1990, 37(3): 667-674 doi: 10.1016/0013-7944(90)90389-X
    [24] 管艳华, 田武岭, 张建武等. 大秦线重载钩舌疲劳寿命有限元模拟分析. 机械设计与研究, 2012, 28(3): 122-123 (Guan Yanhua, Tian Wuling, Zhang Jianwu, et al. FEA coupler knuckle fatigue life of heavy-haul freight in Da-qing railway. Machine Design & Research, 2012, 28(3): 122-123 (in Chinese) doi: 10.3969/j.issn.1006-2343.2012.03.034

    Guan Yanhua, Tian Wuling, Zhang Jianwu, et al. FEA coupler knuckle fatigue life of heavy-haul freight in Da-qing railway. Machine Design & Research, 2012, 28(3): 122-123. (in Chinese)) doi: 10.3969/j.issn.1006-2343.2012.03.034
    [25] Vukšić Popović M, Tanasković J, Glišić D, et al. Experimental and numerical research on the failure of railway vehicles coupling links. Engineering Failure Analysis, 2021, 127: 105497 doi: 10.1016/j.engfailanal.2021.105497
    [26] Yao Y, Zhang XX, Zhang HJ, et al. The stability mechanism and its application to heavy-haul couplers with arc surface contact. Vehicle System Dynamics, 2013, 51(9): 1324-1341 doi: 10.1080/00423114.2013.801500
    [27] Infante V, Duarte P, Branco CM. Fatigue analysis of railway coupling joint. Engineering Failure Analysis, 2007, 14(6): 1175-1184 doi: 10.1016/j.engfailanal.2006.11.055
    [28] 薛海. 基于实测载荷谱的重载货车车钩疲劳可靠性研究. [博士论文]. 北京: 北京交通大学, 2017

    Xue Hai. Study on fatigue reliability of heavy haul freight car couplings based on measured load spectrum. [PhD Thesis]. Beijing: Beijing Jiaotong University, 2017 (in Chinese))
    [29] Schijve J. Fatigue of Structures and Materials. Berlin: Springer Netherlands, 2009
    [30] 丁然, 李强. 基于漏探概率的车轴探伤周期制定方法. 中国铁道科学, 2017, 38(4): 101-106 (Ding Ran, Li Qiang. Method for determining flaw detection period of axle based on missed detection probability. China Railway Science, 2017, 38(4): 101-106 (in Chinese) doi: 10.3969/j.issn.1001-4632.2017.04.14

    Ding Ran, Li Qiang. Method for determining flaw detection period of axle based on missed detection probability. China Railway Science, 2017, 38(4): 101-106. (in Chinese)) doi: 10.3969/j.issn.1001-4632.2017.04.14
    [31] 李守新, 翁宇庆, 惠卫军等. 高强度钢超高周疲劳性能. 北京: 冶金工业出版社, 2010

    Li Shouxin, Wen Yuqing, Hui Weijun, et al. Very High Cycle Fatigue Properties of High Strength Steels. Beijing: Metallurgical Industry Press, 2010 (in Chinese))
    [32] Trapp A, Wolfsteiner P. Fatigue assessment of non-stationary random loading in the frequency domain by a quasi-stationary Gaussian approximation. International Journal of Fatigue, 2021, 148: 106214 doi: 10.1016/j.ijfatigue.2021.106214
    [33] Li FS, Wu H, Wu PB. Vibration fatigue dynamic stress simulation under non-stationary state. Mechanical Systems and Signal Processing, 2021, 146: 107006 doi: 10.1016/j.ymssp.2020.107006
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  146
  • HTML全文浏览量:  39
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-27
  • 录用日期:  2022-03-08
  • 修回日期:  2022-01-30
  • 网络出版日期:  2022-03-09

目录

    /

    返回文章
    返回