EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳氢燃料超声速燃烧分区实验研究

孟凡钊 周芮旭 李忠朋 连欢

孟凡钊, 周芮旭, 李忠朋, 连欢. 碳氢燃料超声速燃烧分区实验研究. 力学学报, 2022, 54(6): 1533-1547 doi: 10.6052/0459-1879-21-686
引用本文: 孟凡钊, 周芮旭, 李忠朋, 连欢. 碳氢燃料超声速燃烧分区实验研究. 力学学报, 2022, 54(6): 1533-1547 doi: 10.6052/0459-1879-21-686
Meng Fanzhao, Zhou Ruixu, Li Zhongpeng, Lian Huan. Experimental investigation on the regimes of hydrocarbon supersonic combustion. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1533-1547 doi: 10.6052/0459-1879-21-686
Citation: Meng Fanzhao, Zhou Ruixu, Li Zhongpeng, Lian Huan. Experimental investigation on the regimes of hydrocarbon supersonic combustion. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1533-1547 doi: 10.6052/0459-1879-21-686

碳氢燃料超声速燃烧分区实验研究

doi: 10.6052/0459-1879-21-686
基金项目: 国家自然科学基金资助项目(91941104, 11872366)
详细信息
    作者简介:

    连欢, 研究员, 主要研究方向: 空天发动机、湍流燃烧 . E-mail: hlian@imech.ac.cn

  • 中图分类号: O354.4, O354.7

EXPERIMENTAL INVESTIGATION ON THE REGIMES OF HYDROCARBON SUPERSONIC COMBUSTION

  • 摘要: 高保真度空天发动机数值模拟通常基于快速化学反应火焰面假设, 即超声速燃烧反应的特征尺度小于湍流Kolmgorov尺度, 该模型方法对于氢气燃料仿真计算结果较好, 但对于乙烯等碳氢燃料仍需进一步研究. 受限于极端环境特种非接触测量技术, 目前尚未见超声速燃烧火焰分区判别的实验研究, 导致目前超声速燃烧火焰面模型适用性以及分区燃烧物理模型认识不清, 进而也制约了数值发动机技术发展. 本工作基于自主研发的MHz发动机内窥光纤传感器, 针对单边扩张双模态冲压发动机超声速燃烧火焰分区开展实验研究, 通过化学自发光信号的最小香农熵定义超声速燃烧的特征时间${\tau _{sc}}$, 根据理论方法和来流工况估算了超声速燃烧的流动特征时间, 结合分区燃烧理论分析了双模态超燃冲压发动机内碳氢燃料燃烧的分区情况. 通过燃烧分区情况以及与泰勒尺度的比较结果, 验证了碳氢燃料超燃冲压发动机典型飞行条件下燃烧室内超声速燃烧处于旋涡小火焰区域(Re$ \cong $50000; Da∈1.80~2.60, B区 ), 多尺度湍流涡结构发挥重要作用, 并随着相对于泰勒尺度的不同大小, 分别对应了不同尺度的涡结构主导该过程. 同时给出了当量比、通量比以及来流马赫数对燃烧特征时间的影响规律. 实验发现, 在一定范围内随着当量比增加燃烧逐渐增强, 并且增强效果明显强于通量比的影响; 而通量比的变化会使得燃烧出现分岔等情况; 来流马赫数的变化对于燃烧的影响效果更为明显, 也表明了宽域来流影响作用机制是未来宽域湍流燃烧理论研究的重要方向.

     

  • 图  1  Ingenito等给出的火焰分区分布

    Figure  1.  Flame mode distribution given by Ingenito

    图  2  直连式超声速燃烧实验台示意图

    Figure  2.  Schematic diagram of direct connected supersonic combustion test bench

    图  3  当量比变化时沿程压力分布

    Figure  3.  Pressure distribution along the model of different stoichiometric ratios

    图  4  当量比变化时一维沿程马赫数分布

    Figure  4.  One-dimensional Mach number distribution along model of different stoichiometric ratios

    图  5  动量通量比变化时沿程压力分布

    Figure  5.  Pressure distribution along the model of different momentum flux ratios

    图  6  动量通量比变化时一维沿程马赫数分布

    Figure  6.  One-dimensional Mach number distribution along model of different momentum flux ratios

    图  7  加速上行飞行轨迹沿程压力分布

    Figure  7.  Pressure distribution along the model of acceleration experiment

    图  8  加速上行飞行轨迹一维沿程马赫数分布

    Figure  8.  One-dimensional Mach number distribution along the model of acceleration experiment

    图  9  被动式内窥镜火焰传感器测试系统示意图

    Figure  9.  Schematic diagram of passive endoscope flame sensor test system

    图  10  点火器与传感器集成

    Figure  10.  Igniter and sensor integration

    图  11  传感器安装位置示意图

    Figure  11.  Schematic diagram of sensor position

    图  12  火焰质心定义原理示意图

    Figure  12.  Schematic diagram of flame centroid definition principle

    图  13  工况1中P1测点自发光$\rm C{H^*}$信号

    Figure  13.  Self-luminous$\rm C{H^*}$signal of P1 point in experimental condition 1

    图  14  $ N = 2 $$\rm C{H^*}$信号离散化示意图

    Figure  14.  $\rm C{H^*}$signal discretization diagram when$ N = 2 $

    图  15  $T{\text{ = }}5\;{\rm{ ms}}$时工况1下 P1测点测得的香农熵

    Figure  15.  Shannon entropy measured at P1 point under experimental condition 1 when $T{\text{ = }}5\;{\rm{ ms}}$

    图  16  采样时长的敏感性分析

    Figure  16.  Sensitivity analysis of sampling duration

    图  17  采样时长敏感性变化的标准差分析

    Figure  17.  Standard deviation analysis of sensitivity variation in sampling duration

    图  18  工况1中火焰质心位置分布

    Figure  18.  Distribution of flame centroid position in condition 1

    图  19  工况1下不同测点燃烧特征时间

    Figure  19.  Combustion characteristic time of different points under condition 1

    图  20  工况1下不同测点燃烧特征时间标准差

    Figure  20.  Combustion characteristic time standard deviation at different points under condition 1

    图  21  不同当量比下火焰质心分布

    Figure  21.  Flame centroid distribution of different stoichiometric ratios

    图  22  不同当量比下燃烧特征时间

    Figure  22.  Combustion characteristic time of different stoichiometric ratios

    图  23  不同当量比下燃烧特征时间标准差

    Figure  23.  Combustion characteristic time standard deviation of different stoichiometric ratios

    图  24  不同通量比下火焰质心位置分布

    Figure  24.  Distribution of flame centroid positions with different momentum flux ratios

    图  25  不同通量比下燃烧特征时间

    Figure  25.  Combustion characteristic time of different momentum flux ratios

    图  26  不同通量比下燃烧特征时间标准差

    Figure  26.  Combustion characteristic time standard deviation of different momentum flux ratios

    图  27  加速上行实验火焰质心的分布

    Figure  27.  Distribution of flame centroid positions with acceleration

    图  28  加速上行实验不同测点的燃烧特征时间

    Figure  28.  Combustion characteristic time of different points under acceleration experiment

    图  29  加速上行实验不同测点燃烧特征时间标准差

    Figure  29.  Combustion characteristic time standard deviation at different points under acceleration experiment

    图  30  超声速燃烧高速纹影图像

    Figure  30.  High speed schlieren image of supersonic combustion

    图  31  全部工况的$Da$概率密度分布

    Figure  31.  $Da$ probability density distribution of all experiment conditions

    图  32  本次实验发动机工作范围

    Figure  32.  Working range of the engine in these experiments

    表  1  实验工况

    Table  1.   Experimental conditions

    NumberФJMa
    10.102.942.8
    20.133.822.8
    30.174.922.8
    40.175.042.8
    50.174.012.8
    60.10~0.173.27~4.472.5~3.0
    下载: 导出CSV
  • [1] Lin F, Karp M, Bose ST, et al. Shock-induced heating and transition to turbulence in a hypersonic boundary layer. Journal of Fluid Mechanics, 2020, 909(8): 1-49
    [2] Li N, Chang J, Xu K, et al. Instability of shock train behaviour with incident shocks. Journal of Fluid Mechanics, 2020, 907(40): 1-27
    [3] Micka D, Driscoll J. Dual-mode combustion of a jet in cross-flow with cavity flameholder//46th AIAA Aerospace Sciences Meeting and Exhibit, 2008
    [4] Fotia ML, Driscoll JF. Isolator-combustor interactions in a direct-connect ramjet-scramjet experiment. Journal of Propulsion & Power, 2012, 28(1): 83-95
    [5] Yuan Y, Zhang T, Yao W, et al. Characterization of flame stabilization modes in an ethylene fueled supersonic combustor using time-resolved CH* chemiluminescence. Proceedings of the Combustion Institute, 2016, 18(6): 1-7
    [6] Zhang C, Chang J, Zhang Y, et al. Flow field characteristics analysis and combustion modes classification for a strut/cavity dual-mode combustor. Acta Astronautica, 2017, 137(8): 44-51
    [7] Segal C. Flameholding Analyses in Supersonic Flow//12th AIAA International Space Planes and Hypersonic Systems and Technologies, 2003
    [8] Wang H, Wang Z, Sun M, et al. Combustion modes of hydrogen jet combustion in a cavitybased supersonic combustor. International Journal of Hydrogen Energy, 2013, 38(27): 12078-12089 doi: 10.1016/j.ijhydene.2013.06.132
    [9] Huang W, Du ZB, Yan L, et al. Flame propagation and stabilization in dual-mode scramjet combustors: A survey. Progress in Aerospace Sciences, 2018, 101(8): 13-30
    [10] Micka DJ, Driscoll JF. Combustion characteristics of a dual-mode scramjet combustor withcavity flameholder. Proceedings of the Combustion Institute, 2009, 32(2): 2397-2404 doi: 10.1016/j.proci.2008.06.192
    [11] Gonzalezjueze D, Kerstein AR. Advances and challenges in modeling higher-speed turbulent combustion in propulsion systems. Progress in Energy and Combustion Science, 2017, 60: 26-67
    [12] 杨越, 游加平, 孙明波. 超声速燃烧数值模拟中的湍流与化学反应相互作用模型. 航空学报, 2015, 36(1): 261-273 (Yang Yue, You Jiaping, Sun Mingbo. Modelling of turbulence-chemistry interaction in numerical simulations of supersonic combustion. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 261-273 (in Chinese)

    Yang Yue, You Jiaping, Sun Mingbo. Modelling of turbulence-chemistry interaction in numerical simulations of supersonic combustion. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 261-273(in Chinese))
    [13] Ladeinde F. A critical review of scramjet combustion simulation//Advanced CFD Techniques for SCRAMJET Simulation, 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, 2009
    [14] Pitsch H. Large-eddy simulation of turbulent combustion. Annual Review of Fluid Mechanics, 2006, 38(38): 453-482
    [15] Veynante D, Vervisch L. Turbulent combustion modeling. Progress in Energy and Combustion Science, 2002, 28(28): 193-266
    [16] Chen C, Donzis D. Shock–turbulence interactions at high turbulence intensities. Journal of Fluid Mechanics, 2019, 870(2): 813-847
    [17] 张会强, 陈兴隆, 周力行等. 湍流燃烧数值模拟研究的综述. 力学进展, 1999, 29(4): 567-575 (Zhang Huiqiang, Chen Xinglong, Zhou Lixing, et al. A review on numerical modeling of turbulent combustion. Advances in Mechanics, 1999, 29(4): 567-575 (in Chinese) doi: 10.3321/j.issn:1000-0992.1999.04.013

    Zhang Huiqiang, Chen Xinglong, Zhou Lixing, et al. A review on numerical modeling of turbulent combustion. Advances in Mechanics, 1999, 29( 4): 567-575(in Chinese)) doi: 10.3321/j.issn:1000-0992.1999.04.013
    [18] Borghi R. On the Structure and Morphology of Turbulent Premixed Flames. New York : Springer, 1985: 117-138
    [19] Ingenito A, Bruno C. Physics and regimes of supersonic combustion. American Institute of Aeronautics and Astronautics, 2010, 48(3): 515-525 doi: 10.2514/1.43652
    [20] Pope SB. PDF methods for turbulent reactive flows. Progress in Energy and Combustion Science, 1985, 11(2): 119-192 doi: 10.1016/0360-1285(85)90002-4
    [21] Peters N. Laminar diffusion flamelet models in non-premixed turbulent combustion. Progress in Energy and Combustion Science, 1984, 10(3): 319-339 doi: 10.1016/0360-1285(84)90114-X
    [22] Berglund M, Fureby C. LES of supersonic combustion in a scramjet engine model. Proceedings of the Combustion Institute, 2007, 31(2): 2497-2504 doi: 10.1016/j.proci.2006.07.074
    [23] Klimenko AY, Bilger RW. Conditional moment closure or turbulent combustion. Progress in Energy and Combustion Science, 19, 25(6): 595-687
    [24] Kim SH, Pitsch H. Conditional filtering method for large-eddy simulation of turbulent non-premixed combustion. Physics of Fluids, 2005, 17(10): 65-113
    [25] Kerstein AR. Lineareddy modeling of turbulent transport. Part 7: Finite-rate chemistry and multi-stream mixing. Journal of Fluid Mechanics, 1992, 240(5): 289-313
    [26] 孙明波, 范周琴, 梁剑寒等. 部分预混超声速燃烧火焰面分区研究综述. 力学进展, 2010, 40(6): 634-641 (Sun Mingbo, Fan Zhouqin, Liang Jianhan, et al. Review on flame surface models of partial premixed supersonic combustion. Advances in Mechanics, 2010, 40(6): 634-641 (in Chinese) doi: 10.6052/1000-0992-2010-6-lxjzJ2009-127

    Sun Mingbo, Fan Zhouqin, Liang Jianhan, et al. Review on flame surface models of partial premixed supersonic combustion. Advances in Mechanics, 2010, 40(6): 634-641(in Chinese)) doi: 10.6052/1000-0992-2010-6-lxjzJ2009-127
    [27] Yoo CS, Richardson ES, Chen JH, et al. A DNS study on the stabilization mechanism of a turbulent lifted ethylene jet flame in highly-heated coflow. Proceedings of the Combustion Institute, 2011, 33(1): 1619-1627 doi: 10.1016/j.proci.2010.06.147
    [28] Yao W, Liu H. Performance analysis of a strut-aided hypersonic scramjet by full-scale IDDES modeling. Aerospace Science and Technology, 2021, 117: 106941
    [29] Robin V, Mura A, Champion M. Direct and indirect thermal expansion effects in turbulent premixed flames. Journal of Fluid Mechanics, 2011, 689(6): 149-182
    [30] Kha KQN, Robin V, Mura A, et al. Implications of laminar flame finite thickness on the structure of turbulent premixed flames. Journal of Fluid Mechanics, 2016, 787(7): 116-147
    [31] 李晓鹏, 齐力, 范学军等. 超声速燃烧中的特征尺度及影响因素. 航空动力学报, 2013, 28(7): 1458-1466 (Li Xiaopeng, Qi Li, Fan Xuejun, et al. Characteristic scales and influential factors in supersonic combustion. Journal of Aerospace Power, 2013, 28(7): 1458-1466 (in Chinese)

    Li Xiaopeng, Qi Li, Fan Xuejun, et al. Characteristic scales and influential factors in supersonic combustion. Journal of Aerospace Power, 2013, 28(7): 1458-1466 (in Chinese))
    [32] Sutherland W. The viscosity of gases and molecular force. Philosophical Magazine, 2009, 365(36): 507-531
    [33] 孟宇. 超燃冲压发动机加速过程及等离子体对超声速火焰结构的影响. [博士论文]. 北京: 中国科学院大学, 2019

    Meng Yu. Effect of acceleration and plasma on supersonic combustion structure of scramjet. [PhD Thesis]. Beijing: University of Chinese Academy of Sciences, 2019 (in Chinese))
    [34] 李忠朋. 基于被动内窥火焰传感器技术的超声速燃烧感知实验研究. [硕士论文]. 北京: 中国科学院大学, 2021

    Li Zhongpeng. Supersonic combustion sensing by the passive endoscopic flame sensor. [Master Thesis]. Beijing: University of Chinese Academy of Sciences, 2021 (in Chinese))
    [35] Mondal S. Effects of inlet conditions on dynamics of a thermal pulse combustor. Combustion Theory and Modelling, 2011, 16(1): 59-74
    [36] Gotoda H. Nonlinear analysis on dynamic behavior of buoyancy-induced flame oscillation under swirling flow. International Journal of Heat and Mass Transfer, 2009, 52(23): 5423-5432
    [37] Kabiraj L, Saurabh A. Route to chaos for combustion instability in ducted laminar premixed flames. American Institute of Physics, 2012, 22(2): 713-716
    [38] Kabiraj L, Sujith RI. Nonlinear self-excited thermoacoustic oscillations: intermittency and flame blowout. Journal of Fluid Mechanics, 2012, 713(10): 376-397
    [39] Noble AC, King GB. Nonlinear thermoacoustic instability dynamics in a Rijke Tube. Combustion Science and Technology, 2012, 184(3): 293-322 doi: 10.1080/00102202.2011.635614
    [40] Vervisch VL, Veynante D. Turbulent combustion modeling. Progress in Energy and Combustion Science, 2002, 28(8): 193-266
    [41] Li L, Song DR. Parameter estimation based on fractional power spectrum under alpha-stable distribution noise environment in wideband bistatic MIMO radar system. International Journal of Electronics and Communications, 2013, 67(11): 947-954 doi: 10.1016/j.aeue.2013.05.006
    [42] Gotodaa H, Ikawa T. Short-term prediction of dynamical behavior of flame front instability induced by radiative heat loss. American Institute of Physics, 2012, 22(3): 1-8
    [43] Gotoda H, Ueda T. Transition from periodic to non-periodic motion of a bunsen-type premixed flame tip with burner rotation. Proceedings of the Combustion Institute, 2002, 29(2): 1503-1509 doi: 10.1016/S1540-7489(02)80184-5
    [44] Gotoda H, Asano Y. Nonlinear analysis on dynamic behavior of buoyancy-induced flame oscillation under swirling flow. International Journal of Heat and Mass Transfer, 2009, 21(1): 1-11
    [45] Gotoda H, Miyano T, Shepherd IG. Dynamic properties of unstable motion of swirling premixed flames generated by a change in gravitational orientation. Physical Review E, 2010, 81(2): 1-10
    [46] Lian H, Martz J, Prakash N, et al. Fast computation of combustion phasing and its influence on classifying random or deterministic patterns. Journal of Engineering for Gas Turbines and Power, 2016, 138: 1-8
  • 加载中
图(32) / 表(1)
计量
  • 文章访问数:  336
  • HTML全文浏览量:  123
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-27
  • 录用日期:  2022-04-17
  • 网络出版日期:  2022-04-17
  • 刊出日期:  2022-06-18

目录

    /

    返回文章
    返回