ANALYSIS OF GAS MODEL’S INFLUENCE ON AERODYNAMIC CHARACTERISTICS FOR HYPERSONIC VEHICLE OVER HOT JET INTERACTION FLOW FIELD
-
摘要: 针对不同气体模型对高超声速飞行器喷流反作用控制系统(RCS)热喷干扰流场模拟的计算效率和准确性问题, 基于喷流燃气物理化学模型, 通过数值求解含化学反应源项的三维N-S方程, 建立了飞行器RCS热喷干扰流场数值模拟方法, 分别采用化学反应流、反应冻结流、二元异质流以及空气喷流四种气体模型开展了典型外形热喷干扰流场的数值模拟, 研究了不同气体模型对热喷干扰流场结构、飞行器气动力热特性的影响, 分析了不同马赫数、飞行高度下的变化规律. 研究表明: 化学反应流模型计算精度较高, 计算与风洞试验数据的吻合程度优于其他三种简化模型; 在本文的低空条件下, 采用简化模型进行热喷干扰流场数值模拟, 会低估分离区大小, 使飞行器气动力特性预测出现偏差, 同时也会低估表面热环境, 对防热系统设计不利, 随着马赫数增加, 简化模型对气动力热特性预估的误差进一步增大, 同时不同简化模型之间的差异也进一步增大; 飞行高度较高时, 模型之间的差异减小, 此时可采用简化模型进行计算以提高计算效率. 本文的研究结果可为飞行器热喷干扰流场数值模拟及喷流反作用控制系统设计提供参考.Abstract: Gas model can have significant influence on the efficiency and accuracy of hypersonic vehicle’s reaction control system (RCS) hot jet interaction flow field simulation, the choice of gas model in numerical simulation is an important issue remains to be solved. Based on reaction jet hot gas’s physical and chemical reaction model and by solving three dimensional Navier-Stokes equation with chemical reaction source term, numerical simulation method of hypersonic vehicle’s reaction control system hot jet interaction flow field is established, by using chemical reacting flow, chemical frozen flow, binary gas model and simplified air jet model, numerical simulation of typical configuration’s hot jet interaction flow field is carried out, based on the simulation results, the influence of different gas model on hot jet interaction flow field structure and hypersonic vehicle’s aerodynamic characteristics is studied, the influences under various flight altitude and flight speeds are also discussed in detail. The result shows that: among the above four different gas models, chemical reacting flow model has higher precision, its result agrees better with wind tunnel experiment data than other three simplified models. In this paper’s low flight altitude conditions, using simplified model for hot jet interaction flow field simulation will underestimate the boundary layer separation length, which will introduce error to the prediction of vehicle’s aerodynamic characteristics, it will also underestimate the surface heat flux near nozzle exit, which is unfavorable for the design of thermal protection system. As the flight Mach number increases, the error introduced by simplified models increases, while the discrepancy between different simplified models also increases. In this paper’s high flight altitude conditions, the discrepancy between different gas models decrease, for these cases, simplified models are good to use for their high computation efficiency. These results can provide reference for future numerical simulation of hypersonic vehicle’s hot jet interaction flow field and the design of hypersonic vehicle’s reaction control system.
-
表 1 化学反应模型
Table 1. Chemical reaction model
No. Reaction No. Reaction 1 CO2 + M1↔CO + O + M1 11 NO + CO ↔ CO2 + N 2 H2O + M2↔H + OH + M2 12 CO2 + O ↔ O2 + CO 3 CO + M3 ↔C + O + M3 13 CO + CO ↔ CO2 + C 4 N2 + M4 ↔N + N + M4 14 CO + O ↔ O2 + C 5 O2 + M5 ↔O + O + M5 15 CO + N ↔NO + C 6 NO + M6 ↔N + O + M6 16 OH + CO ↔CO2 + H 7 H2 + M7 ↔H + H + M7 17 OH + H2 ↔H2O + H 8 OH + M8 ↔O + H + M8 18 H + O2 ↔OH + O 9 O + NO ↔N + O2 19 O + H2 ↔OH + H 10 O + N2 ↔N + NO 20 OH + OH ↔H2O + O 表 2 喷管出口燃气组分质量分数
Table 2. Hot gas species mass fraction at nozzle exit
CO2 H2O CO N2 O2 NO ci 0.0867 0.2976 0.1744 0.4191 0.0002 0.0015 H2 OH C N H O ci 0.0152 0.0049 7 e-11 1.1 e-6 0.0003 0.0001 表 3 不同网格计算得到的气动力系数对比
Table 3. Comparison of aerodynamic characteristics computed by different grid
Grid Coarse Medium Dense CA 0.1478 0.1480 0.1479 CN −0.0158 −0.0159 −0.0159 CMZ −0.0175 −0.0176 −0.0176 表 4 不同计算模型得到的气动力特性对比
Table 4. Comparison of aerodynamic characteristics by different gas model
Reacting Froz Binary Air CA 0.1480 0.1482 0.1501 0.1472 CN −0.0159 −0.0047 −0.0060 −0.0030 CMZ −0.0176 −0.0227 −0.0245 −0.0251 Fji/N −304.61 −89.80 −114.21 −58.06 Mji/(N·m) −337.70 −433.89 −468.92 −480.33 Kf 1.0448 1.0132 1.0168 1.0085 Km 1.1287 1.1653 1.1786 1.1830 表 5 飞行器局部区域气动力系数对比
Table 5. Comparison of part aerodynamic coefficient
CN, up CN, down CMZ, upstream CMZ, downstream reacting −0.3454 0.3294 −0.00214 −0.01548 froz −0.3328 0.3281 −0.00168 −0.02100 binary −0.3323 0.3264 −0.00181 −0.02266 air −0.3301 0.3271 −0.00195 −0.02311 -
[1] 董哲, 刘凯, 李旦伟等. 考虑动态控制分配的空天飞行器再入姿态复合控制设计. 宇航学报, 2021, 42(6): 749-756 (Dong Zhe, Liu Kai, Li Danwei, et al. A dynamic control al-location approach for reentry compound attitude control design of aerospace vehicle. Journal of Astronautics, 2021, 42(6): 749-756 (in Chinese) doi: 10.3873/j.issn.1000-1328.2021.06.008 [2] 管再升, 阮文华, 刘伟等. 轨控推力矢量技术在防空导弹上的应用研究. 空天防御, 2020, 3(2): 1-7 (Guan Zaisheng, Ruan Wenhua, Liu Wei, et al. Study of Trajec-tory-controlled thrust vector technology application in air defense missile. Air and Space Defense, 2020, 3(2): 1-7 (in Chinese) doi: 10.3969/j.issn.2096-4641.2020.02.001 [3] Lai J, Zhao ZL, Wang XB, et al. Numerical investiga-tion of pitch motion induced unsteady effects on trans-verse jet interaction. Aerospace Science and Technology, 2020, 105: 106005 doi: 10.1016/j.ast.2020.106005 [4] 张庆兵, 逯雪铃, 沙莎. 侧喷干扰高温燃气效应讨论. 实验流体力学, 2019, 33(6): 34-40 (Zhang Qingbing, Lu Xueling, Sha Sha. Effects of the high tem-perature exhaust plume reaction on lateral jet interac-tions. Journal of Experiments in Fluid Mechanics, 2019, 33(6): 34-40 (in Chinese) doi: 10.11729/syltlx20180161 [5] Zhou Z, Zhao C, Lu C, et al. Numerical studies on four-engine rocket exhaust plume impinging on flame de-flectors with afterburning. Defence Technology, 2021, 17: 1207-1216 doi: 10.1016/j.dt.2020.06.016 [6] 包醒东, 余西龙, 毛宏霞等. 火箭发动机出口参数对喷焰流动及辐射的影响. 航空动力学报, 2019, 34(11): 2448-2457 (Bao Xingdong, Yu Xilong, Mao Hongxia, et al. Influence of rocket engine exit parameters on flow and radiation characteristics of exhaust plume. Journal of Aerospace Power, 2019, 34(11): 2448-2457 (in Chinese) [7] Gnemmi P, Seiler F. Interaction of a lateral jet with the projectile external flow. AIAA Paper 2000-4196, 2000. [8] Shingo M, Hiroki T, Kazuhisa F. Hot jet and Mach number effect on jet interaction upstream separation. AIAA Paper 2013-2977, 2013. [9] 赵弘睿, 龚安龙, 刘周等. 高空侧向喷流干扰效应数值模拟. 空气动力学学报, 2020, 38(5): 996-1003 (Zhao Hongrui, Gong Guoliang, Liu Zhou, et al. Numerical study of lateral jet interaction at high altitude. Acta Aerodynamica Sinica, 2020, 38(5): 996-1003 (in Chinese) doi: 10.7638/kqdlxxb-2020.0017 [10] Votta R, Trifonie E, Pezzella G, et al. Numerical investigation of RCS jet interaction and plume im-pingement for Mars precision landing. AIAA Paper 2017-3350, 2017. [11] Despirito J. Effects of turbulence model on prediction of hot-gas lateral jet interaction in a supersonic crossflow. AIAA Paper 2015-1923, 2015. . [12] 林薄希, 阎超, 李亚超. 喷流干扰气动热数值模拟的若干影响因素. 北京航空航天大学学报, 2016, 42(6): 1210-1218 (Lin Boxi, Yan Chao, Li Yachao. Some influence factors in aerodynamic heat transfer numerical simulation of jet-interaction flow. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(6): 1210-1218 [13] Li Y, Reimann B, Eggers T. Coupled simulation of CFD-flight-mechanics with a two-species-gas-model for hot rocket staging. Acta Astronautica, 2016, 128: 44-61 doi: 10.1016/j.actaastro.2016.07.009 [14] Li Y, Reimann B, Eggers T. Numerical investigation on the aerodynamics of SHEFEX-III launcher. Acta As-tronautica, 2014, 97: 99-108 doi: 10.1016/j.actaastro.2014.01.006 [15] Dong H, Liu J, Chen Z, et al. Numerical investigation of lateral jet with supersonic reacting flow. Journal of Spacecraft and Rockets, 2018, 55(4): 928-935 doi: 10.2514/1.A34096 [16] 赵法明. 高超声速空气化学非平衡流与燃气混合反应流场数值模拟研究. [博士论文]. 南京: 南京航空航天大学, 2019: 75-90Zhao Faming. A numerical investigation for mixed react-ing flow-field of the air chemical nonequilibrium flow and gaseous jet flow. [PhD Thesis]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019: 75-90(in Chinese)) [17] 董维中. 热化学非平衡效应对高超声速流动影响的数值计算与分析. [博士论文]. 北京: 北京航空航天大学, 1996: 21-36Dong Weizhong. Numerical simulation and analysis of thermal-chemical none-equilibrium effects at hypersonic flows. [PhD Thesis]. Beijing: Beijing University of Aeronautics and Astronautics, 1996: 21-36 (in Chinese) [18] Menter FR. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 1994, 32(8): 1598-1605 doi: 10.2514/3.12149 [19] 丁明松, 刘庆宗, 江涛等. 磁控热防护系统在天地往返运载器上的应用仿真. 航空学报, 2020, 42(2): 124501 (Ding Mingsong, Liu Qingzong, Jiang Tao, et al. Simulation of magnetohydrodynamic heat shield system on reusable lauch vehicle. Acta Aeronautica et Astronautica Sinica, 2020, 42(2): 124501 (in Chinese) [20] Park C. Review of chemical-kinetic problems of future NASA missions I: earth entries. Journal of Thermophysics and Heat Transfer, 1993, 7(1): 385-398 [21] Surzhikov T, Shang JS. Kinetic models analy-sis for super-orbital aerophsics. AIAA Paper 2008-1278, 2008. [22] Park C, Howe JT, Jaffe RL, et al. Review of chemical-kinetic problems of future NASA missions II mars entries. Journal of Thermophysics and Heat Transfer, 1994, 8(1): 9-23 doi: 10.2514/3.496 [23] Tong TW, Abou-ellail MM, Li Y. Mathematical modeling of catalytic-surface combustion of reacting flows. AIAA Paper 2006-3815, 2006. [24] Katta VR, Roquemore WM. Simulation of dynamic jet diffusion flames using finite rate chemistry models. AIAA Journal, 1998, 36(11): 2044-2054 doi: 10.2514/2.305 [25] 丛彬彬, 万田. 高速双锥绕流中热化学与输运模型影响研究. 力学学报, 2019, 51(4): 1012-1021 (Cong Binbin, Wan Tian. Effects of thermochemical and transport models on high-speed double-cone flowfield. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1012-1021 (in Chinese) doi: 10.6052/0459-1879-19-022 [26] 洪启臻, 王小永, 孙泉华. 高温非平衡流动中的氧分子振动态精细分析. 力学学报, 2019, 51(6): 1761-1774 (Hong Qizhen, Wang Xiaoyong, Sun Quanhua. Detailed analysis of vibrational states of oxygen in high temperature non-equilibrium flows. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1761-1774 (in Chinese) doi: 10.6052/0459-1879-19-145 [27] 丁明松, 傅杨奥骁, 高铁锁等. 高超声速磁流体力学控制霍尔效应影响. 物理学报, 2020, 69(21): 214703 (Ding Mingsong, Fu Yangaoxiao, Gao Tiesuo, et al. Influence of hall effect on hypersonic magnetohydrodynamic control. Acta Physica Sinica, 2020, 69(21): 214703 (in Chinese) doi: 10.7498/aps.69.20200630 [28] 孙得川, 杨建文, 白荣博. 喷流气体性质对导弹侧向流场的影响. 空气动力学学报, 2010, 28(6): 720-723 (Sun Dewen, Yang Jianwen, Bai Rongbo. The effects of gas properties on the lateral jet interaction flowfield. Acta Aerodynamica Sinica, 2010, 28(6): 720-723 (in Chinese) doi: 10.3969/j.issn.0258-1825.2010.06.018 [29] Pao SP, Deere KA, Abdol-Hamid KS. Establishing approaches to modeling the Ares I-X and Ares I roll control system with free stream interaction. AIAA Paper 2011-1056, 2011 [30] Stahl B, Esch H, Gulhan A. Experimental inves-tigation of side jet interaction with a supersonic cross flow. Aerospace Science and Technology, 2008, 12(1): 269-275 [31] Gnemmi P, Schafer HJ. Experimental and numerical investigations of a transverse jet interaction on a missile body. AIAA Paper 2005-52, 2005 -